首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the protein folding mechanism of the GroEL system of a psychrophilic bacterium, Colwellia psychrerythraea 34H. The amount of mRNA of the groESL operon of C. psychrerythraea was increased about 6-fold after a temperature upshift from 8 to 18?°C for 30?min, suggesting that this temperature causes heat stress in this bacterium. A σ32-type promoter was found upstream of the groESL, suggesting that the C. psychrerythraea groESL is regulated by the σ32 system, like the groESL in E. coli. The maximum ATPase and CTPase activities of CpGroEL were observed at 45 and 35?°C, respectively, which are much higher than the growth temperatures of C. psychrerythraea. We found that the refolding activity of the CpGroEL system in the presence of ATP is lower than that in the presence of CTP. This suggests that ATP is not the optimum energy source of the CpGroEL system. Analyses for the interaction of CpGroEL–CpGroES revealed that CTP could weaken this interaction, resulting in effective refolding function of the CpGroEL system. From these findings, we consider that the CpGroEL system possesses an energy-saving mechanism for avoiding excess consumption of ATP to ensure growth in a low-temperature environment.  相似文献   

2.
The psychrophilic organism Colwellia psychrerythraea strain 34H produces extracellular polysaccharide substances to tolerate cold environments. Sedoheptulose 7-phosphate isomerase (GmhA) is essential for producing d-glycero-d-mannoheptose 7-phosphate, a key mediator in the lipopolysaccharide biosynthetic pathway. We determined the crystal structure of GmhA from C. psychrerythraea strain 34H (CpsGmhA, UniProtKB code: Q47VU0) at a resolution of 2.8 Å. The tetrameric structure is similar to that of homologous GmhA structures. Interestingly, one of the catalytic residues, glutamate, which has been reported to be critical for the activity of other homologous GmhA enzymes, is replaced by a glutamine residue in the CpsGmhA protein. We also found differences in the conformations of several other catalytic residues. Extensive structural and sequence analyses reveal that CpsGmhA shows high similarity to Escherichia coli DnaA initiator-associating protein A (DiaA). Therefore, the CpsGmhA structure reported here may provide insight into the structural and functional correlations between GmhA and DiaA among specific microorganisms.  相似文献   

3.
NADP+-dependent isocitrate dehydrogenase (IDH) isozymes of a psychrophilic bacterium, Colwellia psychrerythraea strain 34H, were characterized. The coexistence of monomeric and homodimeric IDHs in this bacterium was confirmed by Western blot analysis, the genes encoding two monomeric (IDH-IIa and IDH-IIb) and one dimeric (IDH-I) IDHs were cloned and overexpressed in Escherichia coli, and the three IDH proteins were purified. Both of the purified IDH-IIa and IDH-IIb were found to be cold-adapted enzymes while the purified IDH-I showed mesophilic properties. However, the specific activities of IDH-IIa and IDH-IIb were lower even at low temperatures than that of IDH-I. Therefore, IDH-I was suggested to be important for the growth of this bacterium. The results of colony formation of E. coli transformants carrying the respective IDH genes and IDH activities in their crude extracts indicated that the expression of the IDH-IIa gene is cold-inducible in the E. coli cells.  相似文献   

4.
The limited database on cold-active extracellular proteases from marine bacteria was expanded by successful purification and initial biochemical and structural characterization of a family M1 aminopeptidase (designated ColAP) produced by the marine psychrophile Colwellia psychrerythraea strain 34H. The 71-kDa enzyme displayed a low optimum temperature (19 degrees C) and narrow pH range (pH 6 to 8.5) for activity and greater thermolability than other extracellular proteases. Sequencing of the gene encoding ColAP revealed a predicted amino acid sequence with the highest levels of identity (45 to 55%) to M1 aminopeptidases from mesophilic members of the gamma subclass of the Proteobacteria and the next highest levels of identity (35 to 36%) to leukotriene A(4) hydrolases from mammalian sources. Compared to mesophilic homologs, ColAP had structural differences thought to increase the flexibility for activity in the cold; for example, it had fewer proline residues, fewer ion pairs, and a lower hydrophobic residue content. In addition to intrinsic properties that determine enzyme activity and stability, we also investigated effects of extracellular polymeric substances (EPS) from spent culture medium of strain 34H on ColAP activity at an environmentally relevant temperature (0 degrees C) and at 45 degrees C (the maximum temperature for activity). In both cases, ColAP stability increased significantly in the presence of EPS, indicating the importance of considering environmentally relevant extrinsic factors when enzyme structure and function are investigated.  相似文献   

5.
B S Gibbs  S J Benkovic 《Biochemistry》1991,30(27):6795-6802
A pterin analogue, 5-[(3-azido-6-nitrobenzylidene)amino]-2,6-diamino-4-pyrimidinone (ANBADP), was synthesized as a probe of the pterin binding site of phenylalanine hydroxylase. The photoaffinity label has been found to be a competitive inhibitor of the enzyme with respect to 6,7-dimethyltetrahydropterin, having a Ki of 8.8 +/- 1.1 microM. The irreversible labeling of phenylalanine hydroxylase by the photoaffinity label upon irradiation is both concentration and time dependent. Phenylalanine hydroxylase is covalently labeled with a stoichiometry of 0.87 +/- 0.08 mol of label/enzyme subunit. 5-Deaza-6-methyltetrahydropterin protects against inactivation and both 5-deaza-6-methyltetrahydropterin and 6-methyltetrahydropterin protect against covalent labeling, indicating that labeling occurs at the pterin binding site. Three tryptic peptides were isolated from [3H]ANBADP-photolabeled enzyme and sequenced. All peptides indicated the sequence Thr-Leu-Lys-Ala-Leu-Tyr-Lys (residues 192-198). The residues labeled with [3H]ANBADP were Lys198 and Lys194, with the majority of the radioactivity being associated with Lys198. The reactive sulfhydryl of phenylalanine hydroxylase associated with activation of the enzyme was also identified by labeling with the chromophoric label 5-(iodoacetamido)fluorescein [Parniak, M. A., & Kaufman, S. (1981) J. Biol. Chem. 256, 6876]. Labeling of the enzyme resulted in 1 mol of fluorescein bound per phenylalanine hydroxylase subunit and a concomitant activation of phenylalanine hydroxylase to 82% of the activity found with phenylalanine-activated enzyme. Tryptic and chymotryptic peptides were isolated from fluorescein-labeled enzyme and sequenced. The modified residue was identified as Cys236.  相似文献   

6.
In an effort to explore the effects of local flexibility on the cold adaptation of enzymes, we designed point mutations aiming to modify side-chain flexibility at the active site of the psychrophilic alkaline phosphatase from the Antarctic strain TAB5. The mutagenesis targets were residues Trp260 and Ala219 of the catalytic site and His135 of the Mg2+ binding site. The replacement of Trp260 by Lys in mutant W260K, resulted in an enzyme less active than the wild-type in the temperature range 5-25 degrees C. The additional replacement of Ala219 by Asn in the double mutant W260K/A219N, resulted in a drastic increase in the energy of activation, which was reflected in a considerably decreased activity at temperatures of 5-15 degrees C and a significantly increased activity at 20-25 degrees C. Further substitution of His135 by Asp in the triple mutant W260K/A219N/H135D restored a low energy of activation. In addition, the His135-->Asp replacement in mutants H135D and W260K/A219N/H135D resulted in considerable stabilization. These results suggest that the psychrophilic character of mutants can be established or masked by very slight variations of the wild-type sequence, which may affect active site flexibility through changes in various conformational constraints.  相似文献   

7.
The high-spin (S = 5/2) Fe(III) ion at the active site of recombinant human phenylalanine hydroxylase (PAH) has a paramagnetic effect on the longitudinal relaxation rate of water protons. This effect is proportional to the concentration of enzyme, with a paramagnetic molar-relaxivity value at 400 MHz and 25 degrees C of 1. 3 (+/- 0.03) x 10(3) s-1 M-1. The value of the Arrhenius activation energy (Ea) for the relaxation rate was -14.4 +/- 1.1 kJ/mol for the resting enzyme, indicating a fast exchange of water protons in the paramagnetic environment. The frequency dependence of the relaxation rate also supported this hypothesis. Thus, the recombinant human PAH appears to have a more solvent-accessible catalytic iron than the rat enzyme, in which the water coordinated to the metal is slowly exchanging with the solvent. These findings may be related to the level of basal activity before activation for these enzymes, which is higher for human than for rat PAH. In the presence of saturating (5 mM) concentrations of the substrate L-Phe, the paramagnetic molar relaxivity for human PAH decreased to 0.72 (+/- 0.05) x 10(3) s-1 M-1 with no significant change in the Ea. Effective correlation times (tauC) of 1.8 (+/- 0.3) x 10(-10) and 1.25 (+/- 0.2) x 10(-10) s-1 were calculated for the enzyme and the enzyme-substrate complex, respectively, and most likely represent the electron spin relaxation rate (tauS) for Fe(III) in each case. Together with the paramagnetic molar-relaxivity values, the tauC values were used to estimate Fe(III)-water distances. It seems that at least one of the three water molecules coordinated to the iron in the resting rat and human enzymes is displaced from coordination on the binding of L-Phe at the active site.  相似文献   

8.
The crystal structure of a cold-active aminopeptidase (ColAP) from Colwellia psychrerythraea strain 34H has been determined, extending the number of crystal structures of the M1 metallopeptidase family to four among the 436 members currently identified. In agreement with their sequence similarity, the overall structure of ColAP displayed a high correspondence with leukotriene A4 hydrolase (LTA4H), a human bifunctional enzyme that converts leukotriene A4 (LTA4) in the potent chemoattractant leukotriene B4. Indeed, both enzymes are composed of three domains, an N-terminal saddle-like domain, a catalytic thermolysin-like domain, and a less conserved C-terminal alpha-helical flat spiral domain. Together, these domains form a deep cavity harboring the zinc binding site formed by residues included in the conserved HEXXHX(18)H motif. A detailed structural comparison of these enzymes revealed several plausible determinants of ColAP cold adaptation. The main differences involve specific amino acid substitutions, loop content and solvent exposure, complexity and distribution of ion pairs, and differential domain flexibilities. Such elements may act synergistically to allow conformational flexibility needed for an efficient catalysis in cold environments. Furthermore, the region of ColAP corresponding to the aminopeptidase active site of LTA4H is much more conserved than the suggested LTA4 substrate binding region. This observation supports the hypothesis that this region of the LTA4H active site has evolved in order to fit the lipidic substrate.  相似文献   

9.
Phenylalanine hydroxylase (PAH) is a non-heme iron dioxygenase catalyzing the conversion of phenylalanine to tyrosine and is present in both prokaryotic and eukaryotic organisms. A relatively simple PAH is expressed by Chromobacterium violaceum, a gram-negative bacterium found in tropical and subtropical regions. The effects of temperature, pH and metals on the stability and catalytic activity of Chromobacterium violaceum PAH were determined by steady-state kinetics, circular dichroism (CD) and differential scanning calorimetry (DSC). The kcat and KM for phenylalanine were determined between 7 and 40 degrees C. The KM remained constant between 20 and 40 degrees C but rapidly increased below 20 degrees C. The half-life of the enzyme at 47 degrees C is 66+/-4 min in the presence of Fe(II) and 8+/-1 min in the presence of EDTA. The melting temperature of the protein determined by CD and DSC is 53+/-2 degrees C in the presence of EDTA and 63+/-2 degrees C in the presence of Fe(II). Co(II) stabilizes the enzyme (Tm=63+/-2 degrees C) and inhibits the catalytic activity by displacing iron from the active site. The optimum pH for catalytic activity and stability is 7.4. In conclusion, PAH is adapted for optimal phenylalanine binding at temperatures above 20 degrees C and Fe(II) enhances the resistance of the enzyme to thermal denaturation.  相似文献   

10.
dUTPase is responsible for preventive DNA repair via exclusion of uracil. Developmental regulation of the Drosophila enzyme is suggested to be involved in thymine-less apoptosis. Here we show that in addition to conserved dUTPase sequence motifs, the gene of Drosophila enzyme codes for a unique Ala-Pro-rich segment. Kinetic and structural analyses of the recombinant protein and a truncation mutant show that the Ala-Pro segment is flexible and has no regulatory role in vitro. The homotrimer enzyme unfolds reversibly as a trimeric entity with a melting temperature of 54 degrees C, 23 degrees C lower than Escherichia coli dUTPase. In contrast to the bacterial enzyme, Mg(2+) binding modulates conformation of fly dUTPase, as identified by spectroscopy and by increment in melting temperature. A single well folded, but inactive, homotrimeric core domain is generated through three distinct steps of limited trypsinolysis. In fly, but not in bacterial dUTPase, binding of the product dUMP induces protection against proteolysis at the tryptic site reflecting formation of the catalytically competent closed conformer. Crystallographic analysis argues for the presence of a stable monomer of Drosophila dUTPase in crystal phase. The significant differences between prototypes of eukaryotic and prokaryotic dUTPases with respect to conformational flexibility of the active site, substrate specificity, metal ion binding, and oligomerization in the crystal phase are consistent with alteration of the catalytic mechanism and hydropathy of subunit interfaces.  相似文献   

11.
The interaction of pterin-dependent phenylalanine hydroxylase from Chromobacterium violaceum with the cofactor analogue 5-deaza-6-methyltetrahydropterin and the cofactor 6,7-dimethyltetrahydropterin (DMPH4) has been investigated by multifrequency electron spin resonance (ESR) spectroscopy. 5-Deaza-6-methyltetrahydropterin, which lacks the N-5 nitrogen present in the pyrazine ring of DMPH4, binds tightly to the cupric form of the enzyme; however, no changes are observed in the ESR parameters of the copper center. In contrast, the binding of DMPH4 (or 6-methyltetrahydropterin) shifts the ESR parameters (g and A) associated with the cupric enzyme. In addition, superhyperfine transitions were resolved and assigned to hyperfine splitting from nitrogen ligands. ESR spectra of the enzyme recorded in the presence of [5-14N]DMPH4 or [5-15N]DMPH4 were computer simulated and found to be consistent with pterin serving as a direct donor ligand to the copper center through the N-5 position.  相似文献   

12.
The wood-degrading fungus Phanerochaete chrysosporium secretes a number of extracellular enzymes called lignin peroxidases which are involved in the degradation of both lignin and a number of persistent environmental pollutants. Lignin peroxidase isozyme H2, a glycosylated protein of approximately 40 kDa, contains a single heme. X-ray absorption spectroscopy (XAS) has been used to probe the local environment of the iron in the active site of resting enzyme, reduced enzyme, and compound III. For the native and reduced forms, respectively, the average Fe-pyrrole nitrogen distances are 2.055 and 2.02 A (+/- 0.015 A); the Fe-proximal nitrogen distance is 1.93 and 1.91 A (+/- 0.02 A) while the Fe-distal ligand distance is 2.17 and 2.10 A (+/- 0.03 A). Although the results are not as well-defined, the active-site structure of compound III is largely 2.02 +/- 0.015 A for the average Fe-pyrrole nitrogen distance, 1.90 +/- 0.02 for the Fe-proximal nitrogen, and 1.74 +/- 0.03 A for the Fe-distal ligand distance. The heme iron-pyrrole nitrogen distance is more expanded in ligninase H2 than in other peroxidases. The possible significance of this is discussed in relation to other heme proteins.  相似文献   

13.
The effects of non-heme iron binding on the function, structure, and stability of a monomeric phenylalanine hydroxylase from the thermophile Chloroflexus aurantiacus (caPAH) were investigated. Comparative studies on holo (iron-bound) and apo (iron-depleted) caPAH indicated that iron(II) binding does not significantly affect the overall structure of the enzyme. Thermal denaturation studies performed using differential scanning calorimetry showed that the unfolding reaction was kinetically controlled and that holo-caPAH displayed a large increase in thermal stability (approximately 15 °C upshift in the T m value) compared with the apoenzyme. Analysis using a simple irreversible two-state model also showed a higher kinetic stability for holo-caPAH at optimal growth temperature (denaturing approximately 8 times more slowly than the apo form at 55 °C). Experiments performed in the presence of urea in combination with structure–energetics calculations suggest that iron binding reduces the change in accessible surface area exposed in the unfolding transition state (from approximately 36% to approximately 5% of the total change in accessible surface area) and also the surface involved in water-unsatisfied broken internal contacts (solvation barriers). Additional comparative analyses using phenylalanine hydroxylase from mesophilic and psychrophilic organisms suggest that, in addition to its catalytic role, the non-heme iron serves to enhance the kinetic stability of phenylalanine hydroxylase at the optimal growth temperature of the organism. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The mechanisms that allow psychrophilic bacteria to remain metabolically active at subzero temperatures result from form and function of their proteins. We present first proteomic evidence of physiological changes of the marine psychrophile Colwellia psychrerythraea 34H (Cp34H) after exposure to subzero temperatures (?1, and ?10°C in ice) through 8 weeks. Protein abundance was compared between different treatments to understand the effects of temperature and time, independently and jointly, within cells transitioning to, and being maintained in ice. Parallel [3H]‐leucine and [3H]–thymidine incubations indicated active protein and DNA synthesis to ?10°C. Mass spectrometry‐based proteomics identified 1763 proteins across four experimental treatments. Proteins involved in osmolyte regulation and polymer secretion were found constitutively present across all treatments, suggesting that they are required for metabolic success below 0°C. Differentially abundant protein groups indicated a reallocation of resources from DNA binding to DNA repair and from motility to chemo‐taxis and sensing. Changes to iron and nitrogen metabolism, cellular membrane structures, and protein synthesis and folding were also revealed. By elucidating vital strategies during life in ice, this study provides novel insight into the extensive molecular adaptations that occur in cold‐adapted marine organisms to sustain cellular function in their habitat.  相似文献   

15.
The catalytic activity of phenylalanine hydroxylase (PAH, phenylalanine 4-monooxygenase EC 1.14.16.1) is regulated by three main mechanisms, i.e. substrate (l-phenylalanine, L-Phe) activation, pterin cofactor inhibition and phosphorylation of a single serine (Ser16) residue. To address the molecular basis for the inhibition by the natural cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin, its effects on the recombinant tetrameric human enzyme (wt-hPAH) was studied using three different conformational probes, i.e. the limited proteolysis by trypsin, the reversible global conformational transition (hysteresis) triggered by L-Phe binding, as measured in real time by surface plasmon resonance analysis, and the rate of phosphorylation of Ser16 by cAMP-dependent protein kinase. Comparison of the inhibitory properties of the natural cofactor with the available three-dimensional crystal structure information on the ligand-free, the binary and the ternary complexes, have provided important clues concerning the molecular mechanism for the negative modulatory effects. In the binary complex, the binding of the cofactor at the active site results in the formation of stabilizing hydrogen bonds between the dihydroxypropyl side-chain and the carbonyl oxygen of Ser23 in the autoregulatory sequence. L-Phe binding triggers local as well as global conformational changes of the protomer resulting in a displacement of the cofactor bound at the active site by 2.6 A (mean distance) in the direction of the iron and Glu286 which causes a loss of the stabilizing hydrogen bonds present in the binary complex and thereby a complete reversal of the pterin cofactor as a negative effector. The negative modulatory properties of the inhibitor dopamine, bound by bidentate coordination to the active site iron, is explained by a similar molecular mechanism including its reversal by substrate binding. Although the pterin cofactor and the substrate bind at distinctly different sites, the local conformational changes imposed by their binding at the active site have a mutual effect on their respective binding affinities.  相似文献   

16.
The paramagnetic iron at the active site of highly purified, catalytically active phenylalanine hydroxylase was studied by EPR at 3.6 K and one-dimensional 1H-NMR spectroscopy at 293 K. The EPR-detectable iron of the bovine enzyme was found to be present as a high-spin form (S = 5/2) in different ligand field symmetries depending on medium conditions (buffer ions) and the presence of ligands known to bind at the active site. At 3.6 K and in phosphate buffer, the paramagnetic iron is coordinated in an environment of rhombic symmetry (g = 4.3), whereas Tris buffer favours an environment of axial ligand field symmetry (g = 6.7, 5.3 and 2.0). The latter axial type of signals resembles those observed at g = 7.0, 5.2 and 1.9 for the enzyme in phosphate buffer when L-noradrenaline is added as an active-site ligand (inhibitor). The same proportion of iron that coordinates to L-noradrenaline seems to be reduced by the pterin cofactor and participate in catalysis. Experimental evidence is presented that Tris inhibits the enzyme by interacting with the enzyme-bound ferric iron and decreases its rate of reduction by the tetrahydropterin cofactor. Preincubation with dithiothreitol also inhibits the enzyme activity and prevents the reduction of its catalytically active ferric iron by pterin cofactors as well as binding of catecholamines to the enzyme. 1H-NMR spectroscopy revealed that the substrate (L-phenylalanine) and L-noradrenaline bind close to the paramagnetic iron, and that the catecholamine displaces the substrate from its binding at the active site. The results support our recently proposed model for the cooperative binding of inhibitor and substrate at the active site [Martínez, A. et al. (1990) Eur. J. Biochem. 193, 211-219].  相似文献   

17.
18.
Phenylalanine hydroxylase from adult and foetal livers was purified by single step monoclonal antibody affinity chromatography. From adult and foetal livers, about 1280- and 1450-fold purified enzymes were obtained with 37% and 23% yield, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the resultant adult enzyme showed an essentially single band with an apparent molecular weight of 49K. On the other hand, two subunits (molecular weights 52K and 49K) were observed from the foetal enzyme. Molecular weights of the native adult and foetal enzymes as determined on Sepharose CL-6B column chromatogram were 150K and 160K, respectively. It was clear that adult and foetal liver phenylalanine hydroxylases were different proteins having different subunit molecular weights.  相似文献   

19.
20.
beta-Ketoacyl-ACP synthases catalyze the condensation steps in fatty acid and polyketide synthesis and are targets for the development of novel antibiotics and anti-obesity and anti-cancer agents. The roles of the active site residues in Streptococcus pneumoniae FabF (beta-ketoacyl-ACP synthase II; SpFabF) were investigated to clarify the mechanism for this enzyme superfamily. The nucleophilic cysteine of the active site triad was required for acyl-enzyme formation and the overall condensation activity. The two active site histidines in the elongation condensing enzyme have different electronic states and functions. His337 is essential for condensation activity, and its protonated Nepsilon stabilizes the negative charge developed on the malonyl thioester carbonyl in the transition state. The Nepsilon of His303 accelerated catalysis by deprotonating a structured active site water for nucleophilic attack on the C3 of malonate, releasing bicarbonate. Lys332 controls the electronic state of His303 and also plays a critical role in the positioning of His337. Phe396 functions as a gatekeeper that controls the order of substrate addition. These data assign specific roles for each active site residue and lead to a revised general mechanism for this important class of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号