首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu H  Chen X  Focia PJ  He X 《The EMBO journal》2007,26(3):891-901
Stem cell factor (SCF) binds to and activates the KIT receptor, a class III receptor tyrosine kinase (RTK), to stimulate diverse processes including melanogenesis, gametogenesis and hematopoeisis. Dysregulation of KIT activation is associated with many cancers. We report a 2.5 A crystal structure of the functional core of SCF bound to the extracellular ligand-binding domains of KIT. The structure reveals a 'wrapping' SCF-recognition mode by KIT, in which KIT adopts a bent conformation to facilitate each of its first three immunoglobulin (Ig)-like domains to interact with SCF. Three surface epitopes on SCF, an extended loop, the B and C helices, and the N-terminal segment, contact distinct KIT domains, with two of the epitopes undergoing large conformational changes upon receptor binding. The SCF/KIT complex reveals a unique RTK dimerization assembly, and a novel recognition mode between four-helix bundle cytokines and Ig-family receptors. It serves as a framework for understanding the activation mechanisms of class III RTKs.  相似文献   

2.
Toll-like receptor 4 (TLR4) is involved in activation of the innate immune response in a large number of different diseases. Despite numerous studies, the role of separate domains of TLR4 in the regulation of receptor activation is poorly understood. Replacement of the TLR4 ectodomain with LPS-binding proteins MD-2 or CD14 resulted in a robust ligand-independent constitutive activation comparable with the maximal stimulation of the receptor with LPS. The same effect was achieved by the replacement of the ectodomain with a monomeric fluorescent protein or a 24-kDa gyrase B fragment. This demonstrates an intrinsic dimerization propensity of the transmembrane and cytoplasmic domains of TLR4 and reveals a previously unknown function of the ectodomain in inhibiting spontaneous receptor dimerization. Constitutive activation was abolished by the replacement of the ectodomain by a bulkier protein ovalbumin. N-terminal deletion variants of TLR4 revealed that the smallest segment of the ectodomain that already prevents constitutive activity comprises only 90 residues (542 to 631) of the total 608 residues. We conclude that TLR4 represents a receptor with a low threshold of activation that can be rapidly activated by the release of inhibition exerted by its ectodomain. This is important for the sensitivity of TLR4 to activation by different agonists. The TLR4 ectodomain has multiple roles in enabling ligand regulated activation, providing proper localization while serving as an inhibitor to prevent spontaneous, ligand-independent dimerization.  相似文献   

3.
Stimulation of the receptor tyrosine kinase KIT by Stem Cell Factor (SCF) triggers activation of RAS and its downstream effectors. Proper KIT activation is essential for the maturation, survival and proliferation of mast cells. In addition, SCF activation of KIT is critical for recruiting mast cells to sites of infection or injury, where they release a mix of pro-inflammatory substances. RIN3, a RAS effector and RAB5-directed guanine nucleotide exchange factor (GEF), is highly expressed and enriched in human mast cells. SCF treatment of mast cells increased the amount of GTP-bound RAB5, and the degree of RAB5 activation correlated with the expression level of RIN3. At the same time, SCF caused the dissociation of a pre-formed complex of RIN3 with BIN2, a membrane bending protein implicated in endocytosis. Silencing of RIN3 increased the rate of SCF-induced KIT internalization, while persistent RIN3 over-expression led to KIT down regulation. These observations strongly support a role for RIN3 in coordinating the early steps of KIT endocytosis. Importantly, RIN3 also functioned as an inhibitor of mast cell migration toward SCF. Finally, we demonstrate that elevated RIN3 levels sensitize mastocytosis cells to treatment with a KIT tyrosine kinase inhibitor, suggesting the value of a two-pronged inhibitor approach for this difficult to treat malignancy. These findings directly connect KIT activation with a mast cell-specific RAS effector that regulates the cellular response to SCF and provide new insight for the development of more effective mastocytosis treatments.  相似文献   

4.
We have determined the 3.0 A crystal structure of the three C-terminal domains 3-5 (D3-D5) of ICAM-1. Combined with the previously known N-terminal two-domain structure (D1D2), a model of an entire ICAM-1 extracellular fragment has been constructed. This model should represent a general architecture of other ICAM family members, particularly ICAM-3 and ICAM-5. The observed intimate dimerization interaction at D4 and a stiff D4-D5 stem-like architecture provide a good structural explanation for the existence of preformed ICAM-1 cis dimers on the cell membrane. Together with another dimerization interface at D1, a band-like one-dimensional linear cluster of ICAM-1 on an antigen-presenting cell (APC) surface can be envisioned, which might explain the formation of an immunological synapse between an activated T cell and APC which is critical for T cell receptor signaling.  相似文献   

5.
The transmembrane glycoprotein gp130 is the common signal transducing receptor subunit of the IL-6-type cytokines. The gp130 extracellular part is predicted to consist of six individual domains. Whereas the role of the three membrane-distal domains (D1-D3) in binding of IL-6 and IL-11 is well established, the function of the membrane-proximal domains (D4-D6) is unclear. Mapping of a neutralizing mAb to the membrane-proximal part of gp130 suggests a functional role of D4-D6 in receptor activation. Individual deletion of these three domains differentially interferes with ligand binding of the soluble and membrane-bound receptors. All deletion mutants do not signal in response to IL-6 and IL-11. The deletion mutants Delta4 and, to a lesser extent, Delta6 are still activated by agonistic monoclonal gp130 Abs, whereas the deletion mutant Delta5 does not respond. Because membrane-bound Delta5 binds IL-6/soluble IL-6R as does wild-type gp130, but does not transduce a signal in response to various stimuli, this domain plays a prominent role in coupling of ligand binding and signal transduction. Replacement of the fifth domain of gp130 by the corresponding domain of the homologous G-CSF receptor leads to constitutive activation of the chimera upon overexpression in COS-7 cells. In HepG2 cells this mutant responds to IL-6 comparable to wild-type gp130. Our findings suggest a functional role of the membrane-proximal domains of gp130 in receptor activation. Thus, within the hematopoietic receptor family the mechanism of receptor activation critically depends on the architecture of the receptor ectodomain.  相似文献   

6.

Background

Long-form (LF) homodimers of the human prolactin receptor (PRLR) mediate prolactin's diverse actions. Short form S1b inhibits the LF function through heterodimerization. Reduced S1b/LF-ratio in breast cancer could contribute to tumor development/progression. Current work defines the structural and functional relevance of the D1 domain of S1b on its inhibitory function on prolactin-induced LF function.

Methods

Studies were conducted using mutagenesis, promoter/signaling analyses, bioluminescence resonance energy transfer (BRET) and molecular modeling approaches.

Results

Mutation of E69 in D1 S1b or adjacent residues at the receptor surface near to the binding pocket (S) causes loss of its inhibitory effect while mutations away from this region (A) or in the D2 domain display inhibitory action as the wild-type. All S1b mutants preserved prolactin-induced Jak2 activation. BRET reveals an increased affinity in D1 mutated S1b (S) homodimers in transfected cells stably expressing LF. In contrast, affinity in S1b homodimers with either D1 (A) or D2 mutations remained unchanged. This favors LF mediated signaling induced by prolactin. Molecular dynamics simulations show that mutations (S) elicit major conformational changes that propagate downward to the D1/D2 interface and change their relative orientation in the dimers.

Conclusions

These findings demonstrate the essential role of D1 on the S1b structure and its inhibitory action on prolactin-induced LF-mediated function.

General significance

Major changes in receptor conformation and dimerization affinity are triggered by single mutations in critical regions of D1. Our structure–function/simulation studies provide a basis for modeling and design of small molecules to enhance inhibition of LF activation for potential use in breast cancer treatment.  相似文献   

7.
Glycoprotein hormone receptors (GPHRs) differ from the other seven transmembrane receptors mainly through a complex activation mechanism that requires the binding of a large hormone toward a large N-terminal ectodomain. The intramolecular mechanism of the signal transduction to the serpentine domain upon hormone binding at the ectodomain is not understood. To identify determinants at the GPHR ectodomain that may be involved in signal transduction, we first searched for homologous structural features. Based on high sequence similarity to the determined structures of the Nogo-receptor ectodomain and the intermolecular complex of the Interleukin-8 ligand (IL8) and the N-terminal peptide of the IL8 receptor (IL8RA), the hypothesis was developed that portions of the intramolecular components, Cysteine-box-2 and Cysteine-box-3, of the GPHR ectodomain interact and localize at the interface between ectodomain and serpentine domain. Indeed, point mutations within the D403EFN406 motif at Cysteine-box-3 of the thyrotropin receptor resulted in increased basal cAMP levels, suggesting that this motif may be important for transduction of the signal from the ectodomain to the transmembrane domain. New indications are provided about the tight spatial cooperation and relative location of the new epitope and other determinants at the thyrotropin receptor ectodomain, such as the leucine-rich repeat motif Ser281 and the cysteine boxes. According to the high sequence conservation, the results are of general relevance for the signal transduction mechanism of other glycoprotein hormone receptors such as choriogonadotrophic/luteinizing hormone receptor and follicle-stimulating hormone receptor.  相似文献   

8.
9.
10.
Activation of receptor tyrosine kinases needs tight control by tyrosine phosphatases to keep their normal function. In this study, we investigated the regulation of activation of the type III receptor tyrosine kinase KIT by protein tyrosine phosphatase receptor type E (PTPRE). We found that PTPRE can associate with wild-type KIT and inhibit KIT activation in a dose-dependent manner, although the activation of wild-type KIT is dramatically inhibited even when PTPRE is expressed at low level. The D816V mutation of KIT is the most frequently found oncogenic mutation in mastocytosis, and we found that PTPRE can associate and inhibit the activation of KIT/D816V in a dose dependent manner, but the inhibition is much weaker compared with wild-type KIT. Similar to mastocytosis, KIT mutations are the main oncogenic mutations in gastrointestinal stromal tumors (GISTs) although GISTs carry different types of KIT mutations. We further studied the regulation of the activation of GISTs-type KIT mutants and other mastocytosis-type KIT mutants by PTPRE. Indeed, PTPRE can almost block the activation of GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to the inhibition of PTPRE. Taken together, our results suggest that PTPRE can associate with KIT, and inhibit the activation of both wild-type KIT and GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to PTPRE.  相似文献   

11.
The protooncogene c-kit encodes a tyrosine kinase receptor for the stem cell factor (SCF). Mutants of c-kit were shown to confer a pleiotropic defective phenotype and often display negative dominance in heterozygous mice. To explore the involvement of receptor dimerization in this genetic phenomenon, we employed both a human ligand, which does not recognize the murine receptor, and a rodent SCF, which binds to the human receptor with 100-fold reduced affinity as compared with human SCF. SCF binding to living cells was found to induce rapid and complete receptor dimerization that involved activation of the catalytic tyrosine kinase function. Although receptor dimerization can be attributed to the dimeric nature of the ligand, no dissociation of Kit dimers occurred at high excess of SCF, suggesting that receptor-receptor interactions are also involved in dimer stabilization. This was supported by in vitro formation of heterodimers between the human and murine Kit proteins through monovalent binding of species-specific human SCF. By coexpression of human and mouse Kit in murine fibroblasts, we found that receptor heterodimerization in living cells involved an increase in the affinity of human Kit for rat SCF and also an accelerated rate of receptor down-regulation. When a human Kit mutant lacking the kinase insert domain was coexpressed with the murine wild-type receptor, we observed a significant decrease in both the activation of the intact tyrosine kinase and its coupling to an effector protein, namely phosphatidylinositol 3'-kinase. Our results favor a receptor activation model that assumes an initial step of monovalent ligand binding, followed by an intermediate receptor dimer bound by one arm of the ligand molecule. This model predicts the existence of an intrinsic receptor dimerization site and provides a structural basis for genetic dominance of mutant SCF receptors.  相似文献   

12.
We study a mechanism by which dimerization of the EGF receptor (EGFR) cytoplasmic domain is transmitted to the ectodomain. Therapeutic and other small molecule antagonists to the kinase domain that stabilize its active conformation, but not those that stabilize an inactive conformation, stabilize ectodomain dimerization. Inhibitor-induced dimerization requires an asymmetric kinase domain interface associated with activation. EGF and kinase inhibitors stimulate formation of identical dimer interfaces in the EGFR transmembrane domain, as shown by disulfide cross-linking. Disulfide cross-linking at an interface in domain IV in the ectodomain was also stimulated similarly; however, EGF but not inhibitors stimulated cross-linking in domain II. Inhibitors similarly induced noncovalent dimerization in nearly full-length, detergent-solubilized EGFR as shown by gel filtration. EGFR ectodomain deletion resulted in spontaneous dimerization, whereas deletion of exons 2–7, in which extracellular domains III and IV are retained, did not. In EM, kinase inhibitor-induced dimers lacked any well defined orientation between the ectodomain monomers. Fab of the therapeutic antibody cetuximab to domain III confirmed a variable position and orientation of this domain in inhibitor-induced dimers but suggested that the C termini of domain IV of the two monomers were in close proximity, consistent with dimerization in the transmembrane domains. The results provide insights into the relative energetics of intracellular and extracellular dimerization in EGFR and have significance for physiologic dimerization through the asymmetric kinase interface, bidirectional signal transmission in EGFR, and mechanism of action of therapeutics.  相似文献   

13.
The co‐expression of KIT receptor and its ligand stem cell factor (SCF) has been reported in biopsy specimens of Merkel cell carcinoma (MCC). However, the functional role of SCF/KIT in the pathogenesis of this aggressive tumor has not been elucidated. The present study reports expression and effects of SCF and KIT in the Merkel cell carcinoma cell line MCC‐1 in vitro. SCF and KIT were endogenously co‐expressed in MCC‐1 cells. Exogenous soluble SCF modulated KIT receptor mRNA and protein expression, stimulated growth of MCC‐1 cells, upregulated endogenous activation of KIT, AKT, and of extracellular signal‐regulated kinase (ERK) 1/2 signaling pathway. On the contrary, an inhibitory antibody that neutralized the KIT ligand binding site, reduced growth of MCC‐1 cells, as did high doses of the KIT kinase inhibitors imatinib and nilotinib. Also, inhibitors of KIT downstream effectors, U0126 that blocks MEK1/2 as well as wortmannin and LY294002 that inhibit phosphatidylinositol 3‐kinase‐dependent AKT phosphorylation, inhibited the proliferation of MCC‐1 cells. These data support the hypothesis that KIT is activatable by paracrine or autocrine tumor cell‐derived SCF and stimulates growth of Merkel cell carcinoma in vitro. Blockade of KIT and the downstream signaling cascade at various levels results in inhibition of Merkel cell carcinoma growth in vitro, suggesting targets for therapy of this cancer. J. Cell. Physiol. 226: 1099–1109, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Myeloproliferative neoplasms (MPNs) are frequently driven by mutations within the C-terminal domain (C-domain) of calreticulin (CRT). CRTDel52 and CRTIns5 are recurrent mutations. Oncogenic transformation requires both mutated CRT and the thrombopoietin receptor (Mpl), but the molecular mechanism of CRT-mediated constitutive activation of Mpl is unknown. We show that the acquired C-domain of CRTDel52 mediates both Mpl binding and disulfide-linked CRTDel52 dimerization. Cysteine mutations within the novel C-domain (C400A and C404A) and the conserved N-terminal domain (N-domain; C163A) of CRTDel52 are required to reduce disulfide-mediated dimers and multimers of CRTDel52. Based on these data and published structures of CRT oligomers, we identify an N-domain dimerization interface relevant to both WT CRT and CRTDel52. Elimination of disulfide bonds and ionic interactions at both N-domain and C-domain dimerization interfaces is required to abrogate the ability of CRTDel52 to mediate cell proliferation via Mpl. Thus, MPNs exploit a natural dimerization interface of CRT combined with C-domain gain of function to achieve cell transformation.  相似文献   

15.
Loss-of-function mutations of the c-kit receptor tyrosine kinase (KIT) result in depletion of mast cells and interstitial cells of Cajal (ICCs). In contrast, gain-of-function mutations of KIT induce neoplasms of mast cells and ICCs. In humans, the sites of mutations are different between mast cell neoplasms and those of ICCs. The former were found in the juxtamembrane domain between the transmembrane and tyrosine kinase domains, and the latter in the tyrosine kinase domain. Moreover, the mechanism of constitutive activation is different. Point mutations and/or deletions in the juxtamembrane domain induced the KIT dimerization, and the dimerized KIT was activated. A point mutation at the particular aspartic acid in the tyrosine kinase domain induced spontaneous activation without forming dimers. Mutations of the c-kit gene are a good model for understanding the relationship between mutations and diseases in both humans and mice.  相似文献   

16.
The receptor tyrosine kinase c-KIT and its ligand Stem Cell Factor (SCF) are critical in haemopoiesis but pathways linking receptor activation to specific responses in progenitor cells are still unclear. We have investigated the role of c-KIT expression level and the phosphatidylinositol 3-kinase (PI3-K) pathway in survival and cell division of early myeloid cells in response to SCF. Two factor-dependent murine early myeloid cell lines, FDC-P1 and Myb-immortalised haemopoietic cells (MIHC), were transduced to express wild-type c-KIT or a mutant form of the receptor (Y721F) that lacks the major recruitment site for the p85 regulatory subunit of PI3-K. Several clones expressing different receptor levels were analysed in each case. Growth of cells expressing either the wild-type or Y721F mutant KIT was strongly dependent on receptor level within the physiological range. Using an assay that allows quantitative measurement of the contributions of cell survival and cell division, diminished cell growth in response to SCF under limiting conditions of receptor copy number or PI3-K recruitment was shown to be almost entirely due to decreased cell survival. Further studies with the PI3-K inhibitor LY294002 indicated that PI3-K activation was also required for cell division. Alternate binding and/or indirect activation of PI3-K could support cell division mediated by Y721F mutant KIT, but was insufficient for the survival response.  相似文献   

17.
Heo J  Ja WW  Benzer S  Goddard WA 《Biochemistry》2008,47(48):12740-12749
Peptide inhibitors of Methuselah (Mth), a G protein-coupled receptor (GPCR), were reported that can extend the life span of Drosophila melanogaster. Mth is a class B GPCR, which is characterized by a large, N-terminal ectodomain that is often involved with ligand recognition. The crystal structure of the Mth ectodomain, which binds to the peptide inhibitors with high affinity, was previously determined. Here we report the predicted structures for RWR motif peptides in complex with the Mth ectodomain. We studied representatives of both Pro-class and Arg-class RWR motif peptides and identified ectodomain residues Asp139, Phe130, Asp127, and Asp78 as critical in ligand binding. To validate these structures, we predicted the effects of various ligand mutations on the structure and binding to Mth. The binding of five mutant peptides to Mth was characterized experimentally by surface plasmon resonance, revealing measured affinities that are consistent with predictions. The electron density map calculated from our MD structure compares well with the experimental map of a previously determined peptide/Mth crystal structure and could be useful in refining the current low-resolution data. The elucidation of the ligand binding site may be useful in analyzing likely binding sites in other class B GPCRs.  相似文献   

18.
Protein kinase PKR is activated by double-stranded RNA (dsRNA) and phosphorylates translation initiation factor 2alpha to inhibit protein synthesis in virus-infected mammalian cells. PKR contains two dsRNA binding motifs (DRBMs I and II) required for activation by dsRNA. There is strong evidence that PKR activation requires dimerization, but the role of dsRNA in dimer formation is controversial. By making alanine substitutions predicted to remove increasing numbers of side chain contacts between the DRBMs and dsRNA, we found that dimerization of full-length PKR in yeast was impaired by the minimal combinations of mutations required to impair dsRNA binding in vitro. Mutation of Ala-67 to Glu in DRBM-I, reported to abolish dimerization without affecting dsRNA binding, destroyed both activities in our assays. By contrast, deletion of a second dimerization region that overlaps the kinase domain had no effect on PKR dimerization in yeast. Human PKR contains at least 15 autophosphorylation sites, but only Thr-446 and Thr-451 in the activation loop were found here to be critical for kinase activity in yeast. Using an antibody specific for phosphorylated Thr-451, we showed that Thr-451 phosphorylation is stimulated by dsRNA binding. Our results provide strong evidence that dsRNA binding is required for dimerization of full-length PKR molecules in vivo, leading to autophosphorylation in the activation loop and stimulation of the eIF2alpha kinase function of PKR.  相似文献   

19.
The stem cell factor (SCF) is a polypeptide ligand that is essential for the development of germ cells, hematopoietic progenitor cells, and melanocyte precursors. It binds to a tyrosine kinase membrane receptor that is encoded by the c-kit proto-oncogene. We have constructed an expression vector that directs the synthesis of the entire extracellular ligand-binding domain of the Kit/SCF receptor. When expressed and amplified in Chinese hamster ovary cells, a secreted 90-kDa glycoprotein could be harvested from the growth medium of the cells in a soluble form. This extracellular portion of the Kit/SCF receptor, denoted Kit-X, was recognized by antibodies specific to the SCF receptor; and when injected into animals, it raised antibodies that were reactive with the complete membrane form of the receptor. Direct binding and covalent cross-linking of radiolabeled SCF showed that Kit-X fully retained high affinity ligand binding and also underwent efficient dimerization in the presence of the ligand. The capacity of Kit-X to act as an antagonist of SCF was assayed on cultured cells that overexpress the receptor. Simultaneous addition of SCF and Kit-X to these cells resulted in a stoichiometric inhibition of SCF binding and a consequent decrease in autophosphorylation of the SCF receptor on tyrosine residues. The inhibition extended to later SCF-mediated responses, including the association of the receptor with phosphatidylinositol 3'-kinase and coupling to the Raf1 protein kinase. These results indicate that the recombinant ectodomain of the Kit-SCF receptor can be used as a specific antagonist of SCF actions and may enable detailed molecular analysis of ligand-receptor interactions.  相似文献   

20.
Local anesthetics (LAs) block voltage-gated Na+ channels in excitable cells, whereas batrachotoxin (BTX) keeps these channels open persistently. Previous work delimited the LA receptor within the D4-S6 segment of the Na+ channel alpha-subunit, whereas the putative BTX receptor was found within the D1-S6. We mutated residues at D4-S6 critical for LA binding to determine whether such mutations modulate the BTX phenotype in rat skeletal muscle Na+ channels (mu1/rSkm1). We show that mu1-F1579K and mu1-N1584K channels become completely resistant to 5 microM BTX. In contrast, mu1-Y1586K channels remain BTX-sensitive; their fast and slow inactivation is eliminated by BTX after repetitive depolarization. Furthermore, we demonstrate that cocaine elicits a profound time-dependent block after channel activation, consistent with preferential LA binding to BTX-modified open channels. We propose that channel opening promotes better exposure of receptor sites for binding with BTX and LAs, possibly by widening the bordering area around D1-S6, D4-S6, and the pore region. The BTX receptor is probably located at the interface of D1-S6 and D4-S6 segments adjacent to the LA receptor. These two S6 segments may appose too closely to bind BTX and LAs simultaneously when the channel is in its resting closed state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号