首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Experiments were conducted to determine if changes in the accumulation and partitioning of dry matter (DM) and nitrogen (N) in soybean [Glycine max (L.) Merr.] were associated with agronomic improvements and to assess the degree of genetic variation present for these traits. Fifteen maturity group II soybean genotypes including three ancestral cultivars, three modern cultivars, and nine agronomically superior plant introductions (PI's) were grown in replicated tests at four locations in the eastern U.S. The DM and N of stems, pod walls, and seeds were determined at maturity, and the apparent harvest indices (HI) and the apparent nitrogen harvest indices (NHI) were calculated. Pod DM partitioning was calculated as the ratio of seed DM to total pod DM and pod N partitioning was the ratio of seed N to total pod N. The mean DM accumulation of the modern cultivars was significantly greater than that of the ancestral cultivars and PI's. The apparent HI and the pod DM partitioning of both the modern and ancestral cultivars were significantly higher than that of the PI's. The three modern cultivars demonstrated the highest N accumulation. As a group, the modern cultivars consistently showed maximal accumulation and partitioning of DM and N suggesting that these physiological traits are associated with agronomic improvement. No individual PI was found to possess DM or N accumulation or partitioning which significantly exceeded the best modern cultivar or ancestral cultivar, indicating that genotypes with accumulation or partitioning characteristics which exceed available germplasm may be difficult to identify. Seed yield was correlated (P<0.05) with both DM (r=0.61) and N (r=0.57) accumulation.  相似文献   

2.
Wheat cultivars grown in pots in a greenhouse were inoculated either once or twice with the vesicular-arbuscular mycorrhizal fungus (VAMF) Glomus mosseae. If inoculum was only added to the soil once (before planting) the cultivars showed differences in subsequent VAM development. If additional inoculum was added ten days after planting, VAM development was much increased and cultivars which remained without VAM after only one inoculum application now became mycorrhizal.Succinate dehydrogenase (SDH) activity decreased throughout the experiment, but this decrease was less rapid in mycelium in twice-inoculated plants.No close relationship between SDH-activity and plant growth (VAM effectiveness) was found.  相似文献   

3.
Soybeans [Glycine max (L.) Merr. cv. Essex] were grown in nonsterile acid (pH. 5.2) infertile Wynnville silt loam (Glossic Fragiudult) in a glasshouse. The effects of P fertilization and lime were determined by inoculation with two VAM-fungi (VAMF): Glomus fasciculatum (Gf) and Glomus etunicatum (Ge). An important factor affected by the interaction between applied lime (soil acidity), applied P, and VAMF inoculation was the soil Al. Five application rates of P as KH2PO4 and three rates of lime were tested. Potassium was equalized with KCl (muriate of potash). P-efficiency (g seed/mg P kg-1 soil) by vesicular-arbuscular mycorrhiza (VAM) was maximal at 20 mg P kg-1 soil at all lime and VAMF treatments. VAMF inoculation increased plant survival and protected the soybeans from leaf scorch, thereby substituting for the effects of lime and P. The Ge inoculum was superior in ameliorating leaf scorch in the nonlimed soil. The Gf inoculum required more lime and P than the Ge inoculum to increase seed yield relative to the noninoculated controls containing only native VAMF. Both inocula increased root Al uptake and extractable soil Al in the acid soil without apparent adverse effects on root or shoot. The ability of the VAMF inocula to enhance the efficiency of applied P and decrease seed Cl concentration was increased by lime. Seed yield (Y) was negatively related to seed Cl concentration (X) where Y=aX-b. Both VAMF inoculation and lime application reduced this negative relationship and may have increased the tolerance to both Cl and soil Al.  相似文献   

4.
Run-Jin Liu 《Mycorrhiza》1995,5(4):293-297
The development of vesicular-arbuscular mycorrhizal fungi (VAMF): Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe, Glomus versiforme (Karsten) Berch, Sclerocystis sinuosa Gerdemann and Bakhi and Verticillium dahliae and the effects of the VAMF on the verticillium wilt of cotton (Gossypium hirsutum L. and Gossypium barbadense L.) were studied with paper pots, black plastic tubes and clay pots under natural growth conditions. All of the tested VAMF were able to infect all the cotton varieties used in the present experiment and typical vesicles and arbuscules were formed in the cortical cells of the cotton roots after inoculation. The cap cells, meristem, differentiating and elongating zones of the root tip were found to be colonized by the VAMF. In the case of most V. dahliae infection, the colonization occurred mostly from the root tip up to 2 cm. VAMF and V. dahliae mutually reduced their percentage of infection when inoculated simultaneously. VAMF inoculation reduced the numbers of germinable microsclerotia in the soil of the mycorrhizosphere, while the quantity of VAM fungal spores in the soil was not influenced by infection of with V. dahliae. The % of arbuscule colonization in roots was negatively correlated with the disease grades, while the numbers of vesicles in roots were not. These results suggest that certain vital competition and antagonistic reactions exist between VAMF and V. dahliae. VAMF reduced the incidence and disease indices of verticillium wilt of cotton during the whole growth phase. It is evident that cotton seedling growth was promoted, flowering was advanced, the numbers of flowers and bolls were increased, and this resulted in an increase in the yield of seed cotton. Among the VAMF species, Glomus versiforme was the most effective, and Sclerocystis sinuosa was inferior. So far as the author is aware, such an effect of VAMF on the increase of cotton wilt tolerance/resistance is reported here far the first time.  相似文献   

5.
Summary Mixing ability analyses, adapted from combining ability analyses used in plant breeding, were performed on yield and stripe rust (Puccinia striiformis) severity data for two-way mixtures among either four or five club wheat (Triticum aesitivum) cultivars grown in five environments. Initially, two statistics were calculated for each trait: general mixing ability (GMA), the average performance of a cultivar over all of the mixtures, and specific mixing ability (SMA), the deviation of a mixture from the estimated performance of the pair based on its average performance in mixtures. General mixing ability was further divided into two components: genotype performing ability (GPA), the innate ability of a cultivar to yield and resist disease in pure stand, and true general mixing ability (TGMA), the average ability of a cultivar to influence yield and disease when mixed with other cultivars. Significant mean squares for genotypes, GMA, SMA, and TGMA were found for all of the traits in most environments. Examination of TGMA and SMA revealed cultivars and cultivar combinations that were statistically better mixers than the others. Some of the significant effects were probably due to the use of cultivars that differed in height and stripe rust resistance, but for other combinations there was no apparent explanation for enhanced mixing ability.Paper No. 9132 of the Oregon Agricultural Experiment Station. Supported in part by USDA Grants 88-34106-3631 and 88-37151-3662  相似文献   

6.
选用高蛋白品种KB008(KB008)、高脂肪品种花17(H17)和高油酸/亚油酸(O/L)品种农大818(818),在大田栽培条件下,研究了盛花后期叶面喷施多效唑(PBZ)对不同品质类型花生产量、品质及相关碳、氮代谢酶活性的影响.结果表明:喷施PBZ显著增加了3种品质类型花生荚果产量,原因是增加了单株结果数,降低了千克果数而提高了双仁果率.喷施PBZ不同程度地提高了3种类型花生籽仁脂肪和可溶性糖含量,降低了蛋白质含量,显著增加了高脂肪品种H17的O/L值.PBZ使高O/L值品种818的脂肪含量增加显著,同时其蛋白质含量显著降低,而对其他两品种的蛋白质和脂肪含量影响较小.喷施PBZ均降低了3种类型花生结荚期叶片硝酸还原酶(NR)活性及结荚期和饱果期叶片谷氨酰胺合成酶和谷氨酸脱氢酶活性,818的3种酶活性降低幅度最大,KB008和H17的酶活性降幅较小;喷施PBZ均降低了3种类型花生结荚期和饱果期叶片谷草转氨酶和谷丙转氨酶活性.说明氮代谢酶活性的降低是喷施PBZ降低3种类型花生籽仁蛋白质含量的主要原因.喷施PBZ均提高了3品种结荚期和饱果期叶片蔗糖合成酶和磷酸蔗糖合成酶活性,其中显著提高了818的2种酶活性,而对KB008和H17的活性提高不显著;喷施PBZ提高了3品种结荚期和饱果期的磷酸烯醇式丙酮酸羧化酶和1,5-二磷酸核酮糖羧化酶活性,其中对818在结荚期的活性提高最显著,对H17活性提高较小.碳代谢酶活性的增强是喷施PBZ提高花生籽仁脂肪含量的生理基础.  相似文献   

7.
Peanut (Arachis hypogaea) crops in Benin often experience late leafspot (Cercosporidium personatum), which causes severe yield losses associated with leaf defoliation and necrosis. The objective of this research was to determine the best method of disease assessment and to test its utility in the CROPGRO‐peanut model to simulate growth and yield as affected by late leafspot in early and late maturing peanut cultivars grown at different sowing dates under rain‐fed conditions (without irrigation) in northern Benin. Two peanut cultivars TS 32‐1 and 69–101 were sown on three dates between May and August during 1998 and 1999. In both years there was severe occurrence of late leafspot and the progression of disease was earlier and faster with later sowing dates. Overall, the long duration cultivar 69–101 produced greater yield than the short duration cultivar TS 32‐1. The CROPGRO‐peanut model was able to predict and simulate the observed crop and pod dry matter over time when input on percent diseased leaf area and percent defoliation were provided. Of several disease assessments, the best approach was to input measured percent main‐stem defoliation above the fourth node and percent diseased leaf area estimated from visual leafspot score.  相似文献   

8.
The seed yield per unit of potassium applied differed for five soybean cultivars which were grown to maturity under different K regimes in a glasshouse. Whereas Dodds was the most responsive cultivar to moderate increases in K supply, the cultivar Bragg was the most efficient in its ability to produce seed with low levels of available K; Lee and Forest were the least efficient cultivars while Bossier and Dodds were of intermediate efficiency. The basis for the efficiency of cv. Bragg was that the growth of its tops, as indicated by mature stem weights and its roots, were less affected by reduced K supply than those of other cultivars. This enabled it to produce more pods under K-deficient regimes, resulting in a greater seed yield per plant. The percentage reduction in oil/protein ratios in the seed of the five cultivars under moderate K deficiency correlated closely with reductions in seed yield. However, changes in this ratio were poorly related to the K percentages in the seed. All cultivars experienced an impairment of plant senescence under K deficiency as evidenced by a reduction in leaf abcission and a delay in pod maturity. The existence of genetic diversity in K-use efficiency means that breeding programmes could utilize K-efficient germplasm in developing new cultivars for soils not naturally high in potassium.  相似文献   

9.
Summary Four quantitative traits were studied by analysing F2 data derived from a 9 × 9 diallel cross utilizing widely divergent, inbred, erect cultivars of peanuts, A. hypogaea. Bidirectional dominance was found in the traits total pod yield per plant and number of days from planting to first flower; in pod size, the alleles giving small pods were consistently dominant and for high tops' weight, dominance and overdominance were found. The high heritability of pod yield/plant (0.79) indicates that breeding for higher yield/plant can succeed if large F2 populations are grown and rigorous visual selection combined with progeny testing are employed. The genetic correlations of pod yield/plant with other traits were low. Breeding for plants with large (jumbo) pods can be aided by the fact that they are homozygous recessive, or nearly so. Simultaneous breeding for high yields and large pods is possible: there was a positive (but low) genetic correlation between the two (0.16). A modification by which less biased estimates of the number of effective factors can be obtained and a possible relationship between bidirectional dominance and genic interaction were proposed.  相似文献   

10.
The aim of the present studies was to compare H2O2 and ascorbate contents as well as peroxidase (PO) and catalase (CAT) activities in leaves of less susceptible cultivar Perkoz and more susceptible Corindo after B. cinerea infection. Increase in H2O2 contents in both Perkoz and Corindo cytosol was observed, however, it appeared earlier in the less susceptible cultivar. The increase in PO activity in the cytosol fraction was observed 48 hours after infection in both cultivars but it was greater in the less susceptible Perkoz. No significant differences between the tested cultivars were observed in ascorbate peroxidase (APX) activity and in reduced and oxidated ascorbate contents. PO activity was thoroughly analyzed in the apoplast fraction. It was measured with syringaldazine (S), tetramethylbenzidine (TMB) and ferulic acid (FA)—substrates characteristic of isoenzymes involved in lignification and stiffening of a cell wall. Increase in PO activity with these substrates was observed earlier in cultivar Perkoz than in cultivar Corindo. Similarly, increase in PO activity with NADH appeared significantly earlier in cultivar Perkoz. Apoplastic PO was separated with DEAE Sepharose and two fractions binding and non-binding were obtained. Binding PO fraction was significantly more active especially with S, TMB and NADH after B. cinerea infection. The increase in the enzyme activity was mostly observed in cultivar Perkoz. Binding PO was separated by electrophoresis on acrylamide gel and revealed six enzymatic forms from which three were much more active after infection in cultivar Perkoz. The obtained results suggest that cell wall strengthening mediated by apoplast PO is a key factor responsible for different resistance of tomato cultivars Perkoz and Corindo to B. cinerea infection.  相似文献   

11.
The vesicular-arbuscular mycorrhizal fungi (VAMF) Glomus clarum (Nicol. and Schenck) isolate NT4, G. mosseae (Nicol. and Gerd.) Gerd. and Trappe isolate NT6 and G. versiforme (Karst.) Berch isolate NT7 coexist in wheat field soils in Saskatchewan. This study assessed the response of lentil (Lens esculenta L.) and wheat (Triticum aestivum L.) to monospecific and mixed cultures of these VAMF isolates. Seedlings were inoculated with 100 spores of a VAMF isolate, or an equal mixture of spores of two isolates, and grown in a sterile soil mix in a growth chamber. Both crops responded differently to these different VAMF isolates. In the case of lentil, G. clarum NT4 was more effective than G. mosseae NT6 and G. versiforme NT7, and significantly increased (P<0.05) the shoot dry weight (43%) and grain yield (57%) compared with the uninoculated control. There was a significant positive correlation between the percentage of VAMF colonized roots and shoot dry weight (r=0.672***) and shoot phosphorus concentration (r=0.608***) of lentil. In the case of wheat, G. clarum NT4 had no effect on shoot dry weight, but produced significant (P<0.08) increases in grain yield (12%) and the phosphorus concentration of the shoot and grain. Although G. clarum NT4 and G. mosseae NT6 both produced similar levels of VAM colonization in wheat, the only response of wheat to isolate NT6 was an increase in plant height at harvest. The efficacy of G. clarum NT4 on both crops appeared to be related to its ability to produce more arbuscular colonization than G. mosseae NT6. Dual inoculation of seedlings with G. clarum NT4 and G. mosseae NT6 resulted in competition between these two isolates. This was evident from a comparison of plant shoot dry weight and grain yield, and VAMF spore production on the two crops inoculated either with isolate NT4 alone or in combination with NT6. G. mosseae NT6 reduced the efficacy of G. clarum NT4 by 16% when dual inoculated on lentil, but had no effect when the host was wheat. Based on spore production, it was found that G. clarum NT4 was more competitive than G. mosseae NT6 when dual inoculated on lentil or wheat. Isolate NT4 produced ca. 2000 and 500 spores/ 100 g substrate, respectively, in the lentil and wheat pots, which was approximately 2–3 times more spores than those produced by isolate NT6 with either crop. When the plants were dual inoculated, there was a 15–19% reduction in spore production by G. clarum NT4 and a 50–70% decrease in spore production by G. mosseae NT6. Our results show that G. clarum NT4 was more competitive and effective in its ability to colonize and increase the growth and yield of lentil and wheat than G. mosseae NT6 or G. versiforme NT7. The relative performance of isolate NT4 with different host plants suggests that this VAMF isolate exhibits a host preference for lentil.  相似文献   

12.
The effects of enhanced UV-B radiation on hormone changes in vegetative and reproductive tissues of tomato (Lycopersicon esculentum Mill.) and their relationships with reproductive characteristics were studied. Two cultivars, TongHui (TH) and XiaGuang (XG), were grown in the field for one growing season under ambient (Control), ambient plus 2.54 kJ m–2 d–1 (T1) or ambient plus 4.25 kJ m–2 d–1 (T2) of supplemental ultraviolet-B (280–320 nm). The number of open flowers increased significantly in the TH cultivar under T2 while it declined in the XG cultivar under T1. Although pollen germination from both cultivars was inhibited by UV-B treatment, fruit number was enhanced in the TH cultivar at both UV-B doses and in the XG cultivar at the low dose. On the other hand, seed size (dry weight) was reduced in the XG cultivar by both UV-B doses and in the TH cultivar at the low UV-B dose. The final germination rates of seeds from control and UV-B treated plants of both cultivars showed no significant differences (p > 0.05), while germination was delayed in the TH cultivar at both doses of UV-B and in the XG cultivar only for T2. To determine the mechanism of UV-B's effects on developmental processes, hormone concentrations in leaves, pistils and seeds were analyzed using ELISA on partially purified extracts. The results suggested that enhanced UV-B radiation induced hormone changes in both vegetative and reproductive tissues. The alteration of flower number may be associated with the changes of ZR in leaves under enhanced UV-B radiation and the delayed germination may due to the changes in seed ABA and GAs.  相似文献   

13.
Crop growth and disease epidemics in sprayed and non-sprayed bean plots, artificially infected with rust (Uromyces appendiculatus) 3 weeks after emergence. were assessed weekly in two cultivars, at two locations for two seasons. Disease intensity was regulated by the application of a fungicide at 5 spray frequencies. Fungicide application influenced leaf area index (LAI) and reduced rust intensity. The fungicide had no significant effect on other diseases and dead leaf area. Fungicide application increased seed yield (SY) by increased numbers of pods per plant (PP). Rust severity was strongly correlated with pustule density but the overall relationships among rust assessment parameters depended on cultivar and location. Seed yield and pods per plant were highly correlated with LAI. The relationships between LAI and seeds per pod or seed weight depended on cultivar and location. Overall rust assessment parameters (rust severity and pustule density) showed close, negative relationships with seed yield. seed weight and pods per plant but not with seeds per pod. The relationships obtained in the partially resistant line 6-R-395 were less definite than those in the susceptible line Mexican 142. The yield parameters seed yield and pods per plant, showed strong positive relationships.  相似文献   

14.
Thirty cowpea, Vigna unguiculata (L.) Walpers, cultivars were evaluated as intact pods to determine if any possessed resistance to the cowpea weevil, Callosobruchus maculatus (Fabr.). Pod resistance was measured as pre-establishment larval mortality (PreM); those larvae dying after egg hatch but before penetrating into the seeds, and as post-establishment within-seed mortality (PostM); those larvae dying after penetrating into the seeds. Among the 30 varieties examined, PreM ranged from 57.9% to 99.4% and PostM ranged from 6.7% to 82.6%. Ten varieties exhibited total intact pod mortality (mortality from egg hatch to adult emergence from the seed) greater than 95%.Physical measurements were made of several pod and seed characteristics to ascertain whether the observed pod resistance was due to seed factors, pod-wall factors, or to interactions between the pod and seeds. Although resistance to breakage (from handling plus pod dehiscence) is a necessary characteristic for overall pod protection against C. maculatus; other factors are also important. Among the other pod and seed characteristics measured to identify major resistance factors, seed coat thickness was the one most highly correlated with pod resistance. Our results suggest that interactions between pod-wall and seed coat characteristics play a large role in pod resistance of cowpeas to C. maculatus.  相似文献   

15.
Variations in random amplified polymorphic DNA (RAPD) profiles from leaf, stem, root, and tuber tissues were observed in case of two glasshouse grown potato cultivars using 40 decamer primers suggesting possible danger of cultivar misidentification. Genomic DNA extracted from the above four tissues of four in vitro grown potato cultivars, however, produced more uniform RAPD fingerprints. A significant effect of random primers on fingerprint uniformity was observed in case of both glasshouse and in vitro grown samples. A new concept of stability index for random primers based on homogeneity of RAPD profiles obtained from different tissues of a single plant have been introduced. It is concluded that RAPD analysis of genomic DNA extracted from any tissue of in vitro grown potato plants using 14 selected decamer primers could be used to develop RAPD fingerprints for identification of Indian potato cultivars.  相似文献   

16.
Pea (Pisum sativum L.) is a major legume crop grown in a semi‐arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed–ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control‐treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid‐infrared attenuated total reflectance (MIR‐ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar.  相似文献   

17.
Mycorrhizal responses of barley cultivars differing in P efficiency   总被引:2,自引:1,他引:1  
The purpose of this study was to investigate how barley cultivars which are different in dry matter yield at low phosphorus (P) supply (i.e. they differ in agronomic P efficiency) respond to mycorrhizal infection. In a preliminary experiment, six mycorrhizal fungi were tested for their ability to colonize barley (Hordeum vulgare L.) roots at a soil temperature of 15°C.Glomus etunicatum was the most effective species and was used in the main experiment. The main experiment was conducted under glasshouse conditions in which soil temperature was maintained at 15°C. Treatments consisted of a factorial arrangement of 8 barley cultivars, 2 mycorrhiza (inoculated and non-inoculated), and 3 rates of P (0, 10 and 20 mg kg-1). P utilization efficiency (dry matter yield per unit of P taken up) and agronomic P efficiency among the barley cultivars was significantly negatively correlated with mycorrhizal responses. However, the response to mycorrhizal infection was positively correlated with response to P application. Poor correlation was observed between P concentration when neither mycorrhiza nor P were supplied and the percentage of root length infected. The extent of mycorrhizal infection among the barley cultivars in soil without P amendment varied from 8.6 to 28.6%. Significant interactions between cultivar and P addition, and between mycorrhiza and P addition were observed for shoot dry weight but not root dry weight.  相似文献   

18.
Long-grain rice cultivars Cocodrie, Wells, and XP 723 grown in three locations (Hazen, MO; Essex and Newport, AR, USA), and medium-grain rice cultivars Bengal and XP 713 grown in two locations (Jonesboro and Lodge Corner, AR, USA), were harvested and assayed for susceptibility to Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), the lesser grain borer, and Sitophilus oryzae (L.) (Coleoptera: Curculionidae), the rice weevil, on rice held at 27℃, 57% and 75% relative humidity (RH). Separate samples from the same harvest lots were also analyzed for the physical characteristics of brown rice yield, percentage whole kernels and kernel thickness. Progeny production and feeding damage of R. dominica were significantly different among long-grain cultivars within two of the three locations (P 〈 0.05), but not for location or RH (P ≥ 0.05), while progeny production of S. oryzae was different among cultivars, location, and RH (P 〈 0.05). On medium-grain rice, both cultivar and location were significant for progeny production of R. dominica, but not RH, while cultivar and RH were significant for progeny production of S. oryzae, but not location. On both rice types, feeding damage of R. dominica followed the same trends and was always strongly positively correlated with progeny production (P 〈 0.05), but for S. oryzae there were several instances in which progeny production was not correlated with feeding damage (P ≥ 0.05). Physical characteristics of both rice types were statistically significant (P 〈 0.01) but actual numerical differences were extremely small, and were generally not correlated with progeny production of either species. Results indicate that the location in which a particular rice cultivar is grown, along with its characteristics, could affect susceptibility of the rice to R. dominica and S. oryzae.  相似文献   

19.
Drought is a major yield constraint in common bean (Phaseolus vulgaris L.). Pulse-chase (14)C-labelling experiments were performed using Pinto Villa (drought resistant) and Canario 60 (drought sensitive) cultivars, grown under optimal irrigation and water-deficit conditions. Starch and the radioactive label incorporated into starch were measured in leaves and pods at different time points, between the initiation of pod development and the production of mature pods. The water-stress treatment induced a higher starch accumulation in the drought-resistant cultivar pods than in those of the drought-sensitive cultivar. This effect was more noticeable during the early stages of pod development. Consistently, a reduction of starch content occurred in the leaves of the drought-resistant cultivar during the grain-filling stage. Furthermore, a synchronized accumulation of sucrose was observed in immature pods of this cultivar. These data indicate that carbohydrate partitioning is affected by drought in common bean, and that the modulation of this partitioning towards seed filling has been a successful strategy in the development of drought-resistant cultivars. In addition, our results suggest that, in the drought-resistant cultivar, the efficient carbon mobilization towards the seeds in response to water limitation is favoured by a mechanism that implies a more effective sucrose transport.  相似文献   

20.
Summary Plants of three common wheat (Triticum aestivum L. em. Thell) cultivars and one randomly selected doubled-haploid line derived by anther culture from each of the three cultivars were each grown in three environments, a field environment, a greenhouse environment, and a growth chamber environment. Anthers containing largely miduninucleate to late uninucleate microspores were cultured and calli were induced to regenerate plants in order to assess the effects of cultivar, cultivar family (cultivar and corresponding doubled-haploid derivative), anther-donor plant environment, and cultivar X environment interaction on androgenic responses. Large differences in response were observed among cultivars as well as between cultivars and doubled-haploids. Differences between cultivar and doubled-haploid within cultivar family usually resulted from higher frequency of response in the cultivar, contrary to the hypothesis that anther culture per se constitutes a general selective device for superior androgenic responses. Also, in a second experiment, anther callusing frequency was greater in the cultivar Kitt than in any of five unique doubled-haploid lines derived from Kitt. Significant effects were also observed in the first experiment for the interactions of cultivar family X environment as well as doubled-haploid vs. cultivar X environment, although the effect of environment itself was less significant than these interactions.Contribution from the USDA, SEA, AR, Beltsville, Md, and the Department of Agronomy, University of Maryland, College Park, Md, as scientific article No. A-3413, contribution No. 6486  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号