首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photochemical behavior of a series of trans-[Ru(NH3)4L(NO)]3+ complexes, where L=nitrogen bound imidazole, L-histidine, 4-picoline, pyridine, nicotinamide, pyrazine, 4-acetylpyridine, or triethylphosphite is reported. In addition to ligand localized absorption bands (<300 nm), the electronic spectra of these complexes are dominated by relatively low intensity bands assigned as ligand field (LF) and metal to ligand (dπ → NO) charge transfer (MLCT) transitions. Irradiation of aqueous solutions of these complexes with near-UV light (300-370 nm) labilizes NO, i.e.,
  相似文献   

2.
The reaction of the Tc(I) complex [Tc(NO)Cl2(HOMe)(PPh3)2] with stoichiometric amounts of 2-mercatopyridine and a proton scavenger yields [Tc(NO)Cl(Spy)(PPh3)2] or [Tc(NO)(Spy)2(PPh3)], depending upon quantities of ligands employed. These two complexes have been structurally characterized. The small bite angles of the bidentate mercaptopyridine ligands cause significant deviation from octahedral coordination geometry.  相似文献   

3.
The crystal structures of the four-coordinate trans-[Rh(Cl)(CO)(SbPh3)2] (1) and the five-coordinate trans-[Rh(Cl)(CO)(SbPh3)3] (2) are reported, as well as the unexpected oxidative addition product, trans-[Rh(I)2(CH3)(CO)(SbPh3)2] (3), obtained from the reaction of 2 with CH3I. The formation constants of the five-coordinate complex were determined in dichloromethane, benzene, diethyl ether, acetone and ethyl acetate as 163±8, 363±10, 744±34, 1043±95 and 1261±96 M−1, respectively. While coordinating solvents facilitate the formation of the five-coordinate complex, the four-coordinate complex could be obtained from diethyl ether due to the favorable low crystallization energy. The tendency of stibine ligands to form five-coordinate rhodium(I) complexes is attributed mainly to electron deficient metal centers in these systems, with smaller contributions by the steric effects. The average effective cone angle for the SbPh3 ligand in the three crystallographic studies was determined as 139° with individual values ranging from 133 to 145°.  相似文献   

4.
The reaction of [HRe3(CO)12]2− with an excess of Ph3PAuCl in CH2Cl2 yields [(Ph3PAu)4Re(CO)4]+ as the main product, which crystallizes as [(Ph3PAu)4Re(CO)4]PF6 · CH2Cl2 (1 · CH2Cl2) after the addition of KPF6.The crystal structure determination reveals a trigonal bipyramidal Au4Re cluster with the Re atom in equatorial position.If [(Ph3PAu)4Re(CO)4]+ is reacted with PPh4Cl, a cation [Ph3PAu]+ is eliminated as Ph3PAuCl, and the neutral cluster [(Ph3PAu)3Re(CO)4] (2) is formed.It combines with excess [(Ph3PAu)4Re(CO)4]+ to afford the cluster cation, [(Ph3PAu)6AuRe2(CO)8]+. It crystallizes from CH2Cl2 as[(Ph3PAu)6AuRe2(CO)8]PF6 · 4CH2Cl2 (3 · 4CH2Cl2). In [(Ph3PAu)3Re(CO)4] the metal atoms are arranged in form of a lozenge while in [(Ph3PAu)6AuRe2(CO)8]+ two Au4Re trigonal bipyramids are connected by a common axial Au atom.The treatment of [(Ph3PAu)4Re(CO)4]+ with KOH and Ph3PAuCl in methanol yields the cluster cation [(Ph3PAu)6Re(CO)3]+, which crystallizes with from CH2Cl2 as [(Ph3PAu)6Re(CO)3]PF6 · CH2Cl2 (4 · CH2Cl2). The metal atoms in this cluster form a pentagonal bipyramid with the Re atom in the axial position.  相似文献   

5.
6.
Spectroscopic and electrochemical study of the [Fe(4)(mu(3)-S)(3)(NO)(7)](-) photochemical reaction and thermodynamic calculations of relevant systems demonstrate the redox character of this process. The photoinduced electron transfer between substrate clusters in excited and ground state (probably via exciplex formation) results in dismutation yielding unstable [Fe(4)(mu(3)-S)(3)(NO)(7)](2-) and [Fe(4)(mu(3)-S)(3)(NO)(7)](0). Back electron transfer between the primary products is responsible for fast reversibility of the photochemical reaction in deoxygenated solutions. In the presence of an electron acceptor (such as O(2), MV(2+) or NO) an oxidative quenching of the (*)[Fe(4)(mu(3)-S)(3)(NO)(7)](-) is anticipated, although NO seems to participate as well in the reductive quenching. The electron acceptors can also regenerate the substrate from its reduced form ([Fe(4)(mu(3)-S)(3)(NO)(7)](2-)), whereas the other primary product ([Fe(4)(mu(3)-S)(3)(NO)(7)](0)) decomposes to the final products. The suggested mechanism fits well to all experimental observations and shows the thermodynamically favored pathways and explains formation of all major (Fe(2+), S(2-), NO) and minor products (N(2)O, Fe(3+)). The photodissociation of nitrosyl ligands suggested earlier as the primary photochemical step cannot be, however, definitely excluded and may constitute a parallel pathway of [Fe(4)(mu(3)-S)(3)(NO)(7)](-) photolysis.  相似文献   

7.
Cyclometalation of benzo[h]quinoline (bzqH) by [RuCl(μ-Cl)(η6-C6H6)]2 in acetonitrile occurs in a similar way to that of 2-phenylpyridine (phpyH) to afford [Ru(bzq)(MeCN)4]PF6 (3) in 52% yield. The properties of 3 containing ‘non-flexible’ benzo[h]quinoline were compared with the corresponding [Ru(phpy)(MeCN)4]PF6 (1) complex with ‘flexible’ 2-phenylpyridine. The [Ru(phpy)(MeCN)4]PF6 complex is known to react in MeCN solvent with ‘non-flexible’ diimine 1,10-phenanthroline to form [Ru(phpy)(phen)(MeCN)2]PF6, being unreactive toward ‘flexible’ 2,2′-bipyridine under the same conditions. In contrast, complex 3 reacts both with phen and bpy in MeCN to form [Ru(bzq)(LL)(MeCN)2]PF6 {LL = bpy (4) and phen (5)}. Similar reaction of 3 in methanol results in the substitution of all four MeCN ligands to form [Ru(bzq)(LL)2]PF6 {LL = bpy (6) and phen (7)}. Photosolvolysis of 4 and 5 in MeOH occurs similarly to afford [Ru(bzq)(LL)(MeCN)(MeOH)]PF6 as a major product. This contrasts with the behavior of [Ru(phpy)(LL)(MeCN)2]PF6, which lose one and two MeCN ligands for LL = bpy and phen, respectively. The results reported demonstrate a profound sensitivity of properties of octahedral compounds to the flexibility of cyclometalated ligand. Analogous to the 2-phenylpyridine counterparts, compounds 4-7 are involved in the electron exchange with reduced active site of glucose oxidase from Aspergillus niger. Structure of complexes 4 and 6 was confirmed by X-ray crystallography.  相似文献   

8.
Photolysis of cis-Fe(CO)4X2, where X = Br and I, results in low energy, facile rearrangement to the trans isomer with no evidence of CO-loss. In contrast, the isoelectronic cis-Mn(CO)4Br2 anion exhibits CO-loss upon photolysis with only weak evidence for the trans isomer. The photolysis of Mn(CO)5Br, Mn(CO)4Br(PBu3) and Mn(CO)3Br(PBu3)2 have also been examined in frozen matrices.  相似文献   

9.
The character and dynamics of low-lying electronic excited states of the complexes fac-[Re(Cl)(CO)3(papy)2] and fac-[Re(papy)(CO)3(bpy)]+ (papy = trans-4-phenylazopyridine) were investigated using stationary (UV-Vis absorption, resonance Raman) and ultrafast time-resolved (visible, IR absorption) spectroscopic methods. Excitation of [Re(Cl)(CO)3(papy)2] at 400 nm is directed to 1ππ(papy) and Re → papy 1MLCT excited states. Ultrafast (?1.4 ps) intersystem crossing (ISC) to 3(papy) follows. Excitation of [Re(papy)(CO)3(bpy)]+ is directed to 1ππ(papy), 1MLCT(papy) and 1MLCT(bpy). The states 3(papy) and 3MLCT(bpy) are then populated simultaneously in less then 0.8 ps. The 3MLCT(bpy) state decays to 3(papy) with a 3 ps time constant. 3(papy) is the lowest excited state for both complexes. It undergoes vibrational cooling and partial rotation around the -NN- bond, to form an intermediate with a nonplanar papy ligand in less than 40 ps. This species then undergoes ISC to the ground state potential energy surface, on which the trans and cis isomers are formed by reverse and forward intraligand papy rotation, respectively. This process occurs with a time constant of 120 and 100 ps for [Re(Cl)(CO)3(papy)2] and [Re(papy)(CO)3(bpy)]+, respectively. It is concluded that coordination of papy to the Re center accelerates the ISC, switching the photochemistry from singlet to triplet excited states. Comparison with analogous 4-styrylpyridine complexes (M. Busby, P. Matousek, M. Towrie, A. Vl?ek Jr., J. Phys. Chem. A 109 (2005) 3000) reveals similarities of the decay mechanism of excited states of Re complexes with ligands containing -NN- and -CC- bonds. Both involve sub-picosecond ISC to triplets, partial rotation around the double bond and slower ISC to the trans or cis ground state. This process is about 200 times faster for the -NN- bonded papy ligand. The intramolecular energy transfer from the 3MLCT-excited Re(CO)3(bpy) chromophore to the intraligand state of the axial ligand occurs for both L = stpy and papy with a comparable rate of a few ps.  相似文献   

10.
Reaction of [Ru2(O2CMe)4]Cl with K3[Cr(CN)5NO] in water forms Hx[RuII/III2(O2CMe)4]3−x-[Cr(CN)5NO]·zH2O (x = 0.2) that magnetically orders at 4.0 K and possesses an interpenetrating body centered cubic [a = 13.2509(2) Å] structure with random locations of the bridging nitrosyl ligands, and x/3 vacant cation sites. Similarly, the aqueous reaction of [Ru2(O2CMe)4]Cl with Na2[Fe(CN)5NO] forms paramagnetic [Ru2(O2CMe)4]2[Fe(CN)5NO]·H2O, which has a similar tetragonal interpenetrating structure [a = 13.0186(1) Å, c = 13.0699(2) Å] where the NO ligands are presumably nonbridging and 1/3 of the expected cation sites are unoccupied. The presence of uncoordinated NO sites in addition to missing neighboring [Ru2(O2CMe)4]+ units, results in significant vacancies (or holes) in the lattice.  相似文献   

11.
The compounds W(CO)5P(C6H4-4-CH2CH2(CF2)7CF3)3 (1) and W(CO)5P(CH2CH2(CF2)5CF3)3 (2) were synthesized in order to probe the electronic and physical effects of ligation by perfluorocarbon substituted tertiary phosphine ligands in a W(CO)5L complex. The π-accepting ability of the fluorous phosphines was found to rank with non-fluorous comparators as P(CH2CH2(CF2)5CF3)3 > P(C6H4-4-CH2CH2(CF2)7CF3)3 > PPh3 > P(p-tolyl)3 > P(n-octyl)3. The X-ray crystal structure of W(CO)5P(C6H4-4-CH2CH2(CF2)7CF3)3 shows strong intermolecular association of fluorous components but confirms that the para fluorocarbon subtituents have an insignificant effect on the tungsten coordination environment. Partition coefficients (toluene/perfluoromethylcyclohexane) were measured for compounds 1 and 2.  相似文献   

12.
Di-μ-azido-bis[azido(2-aminopyridine)aquo]dicopper(II), [Cu(2-ampy)(N3)2(H2O)]2, was synthesized and characterized by X-ray crystallography. The crystals are triclinic, space group P1, with a = 7.142(1), b = 7.812(1), c = 9.727(1) Å, a = 96.52(1), β = 95.52(1), γ = 113.47(1)°, and Z = 1. The structure was refined to RF = 0.030 for 1960 observed MoKα diffractometer data. The dimeric molecule, which possesses a crystallographic inversion center, contains both terminal and μ(1)-bridging azido groups. Each copper(II) atom is further coordinated by a 2-aminopyridine ligand (via its ring N atom) and a water molecule to give a distorted square pyramid, with the metal atom raised by 0.17 Å above the N4 basal plane [CuN (ring) = 2.001(2), CuN (azide) = 1.962(3)–2.018(2) Å] towards the apical aquo ligand [CuO = 2.371(2) Å]. Each water molecule forms an intramolecular O?HN (amine) acceptor hydrogen bond, and is linked by two OH?N (terminal azide) intermolecular donor hydrogen bonds to adjacent dimeric complexes to yield a layer structure parallel to (001). Infrared and electronic spectral data are presented and discussed.  相似文献   

13.
Complexes of the type [Pt(amine)4]I2 were synthesized and characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The compounds were prepared with different primary amines, but not with bulky amines, due to steric hindrance. In 195Pt NMR, the signals were observed between −2715 and −2769 ppm in D2O. The coupling constant 3J(195Pt-1H) for the MeNH2 complex is 42 Hz. In 13C NMR, the average values of the coupling constants 2J(195Pt-13C) and 3J(195Pt-13C) are 18 and 30 Hz, respectively. The crystal structure of [Pt(EtNH2)4]I2 was determined by X-ray diffraction methods. The Pt atom is located on an inversion center. The structure is stabilized by H-bonding between the amines and the iodide ions. The compound with n-BuNH2 was found by crystallographic methods to be [Pt(n-BuNH2)4]2I3(n-BuNHCOO). The crystal contains two independent [Pt(CH3NH2)4]2+ cations, three iodide ions and a carbamate ion formed from the reaction of butylamine with CO2 from the air. When the compound [Pt(CH3NH2)4]I2 was dissolved in acetone, crystals identified as trans-[Pt(CH3NH2)2(H3CNC(CH3)2)2]I2 were isolated and characterized by crystallographic methods. Two trans bonded MeNH2 ligands had reacted with acetone to produce the two N-bonded Schiff base Pt(II) compound.  相似文献   

14.
Pressure-tuning infrared spectra (up to ca. 40 kbar) are reported for Magnus’ Green salt, [Pt(NH3)4][PtCl4] and two of its derivatives, [Pt(ND3)4][PtCl4] and [Pt(NH3)4][PtBr4]. The spectroscopic data indicate that there is restricted rotation of the coordinated ammonia groups about the Pt-N bonds in the complexes. It is possible that this restricted rotation is due to the presence of weak hydrogen bonding to the halogens, i.e., N-H?X (X = Cl, Br) interactions.  相似文献   

15.
The reaction of [N(PPh3)2]2[Ni6(CO)12] with Cu(PPh3)xCl (x=1, 2), as well as the degradation of [N(PPh3)2]2[H2Ni12(CO)21] with PPh3, affords the new and unstable dark orange–brown [N(PPh3)2]2[Ni9(CO)16].THF salt in low yields. This salt has been characterized by a CCD X-ray diffraction determination, along with IR spectroscopy and elemental analysis. The close-packed two-layer metal core geometry of the [Ni9(CO)16]2− dianion is directly related to that of the bimetallic [Ni6Rh3(CO)17]3− trianion and may be envisioned to be formally derived from the hcp three-layer geometry of [Ni12(CO)21]4− by the substitution of one of the two outer [Ni3(CO)3(μ−CO)3]2− layers with a face-bridging carbonyl group.  相似文献   

16.
17.
The binuclear cyanoferrate, tetraphenylphosphonium pentacyanoiron(III)-μ-cyano-amminetetracyanoiron(III), [(C6H5)4P]4[Fe2(CN)10NH3]4−, was synthesized by air oxidation of aqueous solutions of Na3[Fe(CN)5NH3] · 3H2O. Single crystal X-ray diffraction studies show the compound to contain the binuclear, cyano-bridged anion, [(NC)5Fe---NC---Fe(CN)4NH3]4−. This compound is structurally identical to the one prepared by A. Ludi et al., [Inorg. Chim. Acta, 34, 113 (1979)], with the exception that [Fe(CN)6]3− is not required for the synthesis of this compound. The Fe(III) atoms are antiferromagnetically coupled through the CN bridge, as shown by a maximum in the magnetic susceptibility at 50 K. The electronic and IR spectra of the complex in the solid state and in solution are discussed.  相似文献   

18.
Reaction of [Rh(CO)2I]2 (1) with MeI in nitrile solvents gives the neutral acetyl complexes, [Rh(CO)(NCR)(COMe)I2]2 (R=Me, 3a; tBu, 3b; vinyl, 3c; allyl, 3d). Dimeric, iodide-bridged structures have been confirmed by X-ray crystallography for 3a and 3b. The complexes are centrosymmetric with approximate octahedral geometry about each Rh centre. The iodide bridges are asymmetric, with Rh-(μ-I) trans to acetyl longer than Rh-(μ-I) trans to terminal iodide. In coordinating solvents, 3a forms mononuclear complexes, [Rh(CO)(sol)2(COMe)I2] (sol=MeCN, MeOH). Complex 3a reacts with pyridine to give [Rh(CO)(py)(COMe)I2]2 and [Rh(CO)(py)2(COMe)I2] and with chelating diphosphines to give [Rh(Ph2P(CH2)nPPh2)(COMe)I2] (n=2, 3, 4). Addition of MeI to [Ir(CO)2(NCMe)I] is two orders of magnitude slower than to [Ir(CO)2I2]. A mechanism for the reaction of 1 with MeI in MeCN is proposed, involving initial bridge cleavage by solvent to give [Rh(CO)2(NCMe)I] and participation of the anion [Rh(CO)2I2] as a reactive intermediate. The possible role of neutral Rh(III) species in the mechanism of Rh-catalysed methanol carbonylation is discussed.  相似文献   

19.
Protonation of Na3[Ta(CO)5] in liquid ammonia provides the thermally unstable Na[Ta(CO)5NH3], which may be isolated as the crystalline and deep violet salt [Ph4As][Ta(CO)5NH3]. Sodium amminepentacarbonyltantalate(1−) reacts with PMe3, PPh3, P(OMe)3, AsPh3, SbPh3, CNtBu and CN at about 0°C in NH3/THF to give exclusively the corresponding [Ta(CO)5L]z. These have been isolated as tetraethylammonium salts in 54–84% yields.  相似文献   

20.
[PPN][Se5Fe(NO)2] (1) and [K-18-crown-6-ether][S5Fe(NO)2] (2′) were synthesized and characterized by IR, UV-Vis, EPR spectroscopy, magnetic susceptibility, and X-ray structure. [PPN][Se5Fe(NO)2] easily undergoes ligand exchange with S8 and (RS)2 (R = C7H4SN (5), o-C6H4NHCOCH3 (6), C4H3S (7)) to form [PPN][S5Fe(NO)2] and [PPN][(SR)2Fe(NO)2]. The reaction displays that [E5Fe(NO)2] (E = Se (3), S (4)) facilely converts to [Fe4E3(NO)7] by adding acid HBF4 or oxidant [Cp2Fe][BF4] in THF, respectively. Obviously, complexes 1 and 2′ serve as the precursors of the Roussin’s black salts 3 and 4. The electronic structure of {Fe(NO)2}9 core of [Se5Fe(NO)2] is best described as a dynamic resonance hybrid of {Fe+1(NO)2}9 and {Fe−1(NO+)2}9 modulated by the coordinated ligands. The findings, EPR signal of g = 2.064 for 1 at 298 K, implicate that the low-molecular-weight DNICs and protein-bound DNICs may not exist with selenocysteine residues of proteins as ligands, since the existence of protein-bound DNICs and low-molecular-weight DNICs in vitro has been characterized with a characteristic EPR signal at g = 2.03. In addition, complex 2′ treated human erythroleukemia K562 cancer cells exposed to UV-A light greatly decreased the percentage survival of the cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号