首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim We tested an entrenched concept – that the Australian rain forest flora is essentially a Gondwanan relict. We also assessed the role of regional‐level source–sink dynamics in the assembly of this flora. Location Eastern Australia. Methods To avoid potential biases inherent in selective studies undertaken to date, we used an analytical, whole‐of‐flora approach integrated with the fossil record. We identified disjunctions between woody Australian rain forest plant taxa and relatives on other land masses. To test the strength of the fossil evidence for the regional antiquity of this flora, we evaluated the proportion of these disjunct clades represented in the Australian fossil record, and to minimize the effects of biases in this record, we compared late Quaternary (i.e. late Pleistocene and Holocene, 126–0 ka), Pliocene and late Oligocene–early Miocene Australian pollen records interpreted as tropical rain forest. Using within‐species disjunctions as a proxy, we assessed the role of recent immigration from Asia into Australia. To assess the role of source–sink dynamics, we performed comparative analyses of disjunctions in major rain forest categories representing a north–south/climatic gradient. Results Southern Australian, cool temperate (microthermal) rain forests contain many floristic disjunctions with Gondwanan fragments and most of these clades have Gondwanan fossils. Disjunct clades in Australian mesothermal rain forest mostly occur in Asia/Malesia and a low proportion of these clades show pre‐Neogene records. Many clades in lowland tropical and ‘dry’ rain forest show disjunctions with Asia/Malesia and few have Australian fossil records. Rates of recent immigration from Asia/Malesia are high in these northern forests, and outweigh rates of recent emigration approximately nine‐fold. The late Quaternary fossil record has many more rain forest angiosperms than Oligocene–Miocene and Pliocene floras, consistent with extensive late Cenozoic immigration. Main conclusions The microthermal rain forests are largely Gondwanan relicts, but there is progressively greater, and more recent contribution from Asia/Malesia into more northern, and more lowland tropical rain forests. This variation reflects a strong gradient in geographic and ecological proximity between these forests and source floras in Asia/Malesia, and is consistent with a source–sink size model of immigration driven by late Cenozoic contractions and expansions of Australian rain forest.  相似文献   

2.
This paper is intended to provide a brief review of the tropical seasonal forest, one type of the tropical moist forests in monsoon Asia. It will also focus on and summarise issues of current concern in relation to their depletion and global environmental issues. Tropical moist forests occur in the rainy tropical and monsoon tropical climate types. The tropical moist evergreen forest or the tropical rain forest, which account for two-thirds of the tropical moist forests are rich in biodiversity and contain valuable tropical hardwood. The tropical moist deciduous forest or the tropical seasonal forest which lie along the fringes of tropical rain forest, are less complex than the tropical rain forest and have more distinct wet and dry periods. Broadleaved deciduous trees of the genera Tectona, Shorea, and Dipterocarpus are predominantly in this forest type. Currently estimates have found that more than 17 million hectares of forest mainly tropical moist forests are being lost each year. There is a widespread recognition that agriculture and the burning of tropical moist forests contribute to global warming but to a much lesser extent than the combustion of fossil fuels and industrial activities in the developed world.  相似文献   

3.
Equatorial rain forests that maintain a balance between speciation and extinction are hot-spots for studies of biodiversity. Western Ghats in southern India have gained attention due to high tropical biodiversity and endemism in their southern most area. We attempted to track the affinities of the pollen flora of the endemic plants of Western Ghat area within the fossil palynoflora of late Palaeocene-early Eocene (∼55–50 Ma) sedimentary deposits of western and northeastern Indian region. The study shows striking similarity of extant pollen with twenty eight most common fossil pollen taxa of the early Palaeogene. Widespread occurrences of coal and lignite deposits during early Palaeogene provide evidence of existence of well diversified rain forest community and swampy vegetation in the coastal low lying areas all along the western and northeastern margins of the Indian subcontinent. Prevalence of excessive humid climate during this period has been seen as a result of equatorial positioning of Indian subcontinent, superimposed by a long term global warming phase (PETM and EECO) during the early Palaeogene. The study presents clear evidence that highly diversified equatorial rain forest vegetation once widespread in the Indian subcontinent during early Palaeogene times, are now restricted in a small area as a refugia in the southernmost part of the Western Ghat area. High precipitation and shorter periods of dry months seem to have provided suitable environment to sustain lineages of ancient tropical vegetation in this area of Western Ghats in spite of dramatic climatic changes subsequent to the post India-Asia collision and during the Quaternary and Recent times.  相似文献   

4.
The geological record of South American mammals is spatially biased because productive fossil sites are concentrated at high latitudes. As a result, the history of mammalian diversification in Amazonia and other tropical biomes is largely unknown. Here we report diversification analyses based on a time‐calibrated molecular phylogeny of opossums (Didelphidae), a species‐rich clade of mostly tropical marsupials descended from a Late Oligocene common ancestor. Optimizations of habitat and geography on this phylogeny suggest that (1) basal didelphid lineages inhabited South American moist forests; (2) didelphids did not diversify in dry‐forest habitats until the Late Miocene; and (3) most didelphid lineages did not enter North America until the Pliocene. We also summarize evidence for an Early‐ to Middle‐Miocene mass extinction event, for which alternative causal explanations are discussed. To the best of our knowledge, this study provides the first published molecular‐phylogenetic evidence for mass extinction in any animal clade, and it is the first time that evidence for such an event (in any plant or animal taxon) has been tested for statistical significance. Potentially falsifying observations that could help discriminate between the proposed alternative explanations for didelphid mass extinction may be obtainable from diversification analyses of other sympatric mammalian groups.  相似文献   

5.
Three types of forests were recognised (high, disturbed and open) based on the openings in the canopy in a Tropical Monsoonal Forest at the Wasgomuwa National Park, Sri Lanka. The analysis of these forests showed that the species composition varied between forest types. The shrub vegetation, not only was very characteristic but was also a major component in each forest, unlike in the tropical rain forest. The exact role of the shrubs in the dynamics of the tropical monsoon forests is not established, but is suggested that it may act as a buffer during the dry periods under a semi deciduous canopy. The sapling composition differed from the tree vegetation and indicated that the species composition may change with time in this forest. Mosaic theory or the patch dynamics may best explain the dynamics of this tropical monsoon forest which is a mixture of forest types. More studies are required before generalisations can be made of tropical monsoon forests.  相似文献   

6.
Tropical forests continue to vanish rapidly,but few long-term studies have ever examined if and how the lost forests can be restored.Based on a 45-year restoration study in south China,we found that a tropical rain forest,once completely destroyed,could not recover naturally without deliberate restoration efforts.We identified two kinds of thresholds that must be overcome with human ameliorative measures before the ecosystem was able to recover.The first threshold was imposed primarily by extreme physical conditions such as exceedingly high surface temperature and impoverished soil,while the second was characterized by a critical level of biodiversity and a landscape context that accommodates dispersal and colonization processes.Our three treatment catchments(un-restored barren land,single-species plantation,and mixed-forest stand)exhibited dramatically different changes in biodiversity and ecosystem functioning over 4 decades.The mixed forest,having the highest level of biodiversity and ecosystem functioning,possesses several major properties of tropical rain forest.These findings may have important implications for the restoration of many severely degraded or lost tropical forest ecosystems.  相似文献   

7.
Tropical forests continue to vanish rapidly, but few long-term studies have ever examined if and how the lost forests can be restored. Based on a 45-year restoration study in south China, we found that a tropical rain forest, once completely destroyed, could not recover naturally without deliberate restoration efforts. We identified two kinds of thresholds that must be overcome with human ameliorative measures before the ecosystem was able to recover. The first threshold was imposed primarily by extreme physical conditions such as exceedingly high surface temperature and impoverished soil, while the second was characterized by a critical level of biodiversity and a landscape context that accommodates dispersal and colonization processes. Our three treatment catchments (un-restored barren land, single-species plantation, and mixed-forest stand) exhibited dramatically different changes in biodiversity and ecosystem functioning over 4 decades. The mixed forest, having the highest level of biodiversity and ecosystem functioning, possesses several major properties of tropical rain forest.These findings may have important implications for the restoration of many severely degraded or lost tropical forest ecosystems.  相似文献   

8.
Aim The mesic biome, encompassing both rain forest and open sclerophyllous forests, is central to understanding the evolution of Australia’s terrestrial biota and has long been considered the ancestral biome of the continent. Our aims are to review and refine key hypotheses derived from palaeoclimatic data and the fossil record that are critical to understanding the evolution of the Australian mesic biota. We examine predictions arising from these hypotheses using available molecular phylogenetic and phylogeographical data. In doing so, we increase understanding of the mesic biota and highlight data deficiencies and fruitful areas for future research. Location The mesic biome of Australia, along the eastern coast of Australia, and in the south‐east and south‐west, including its rain forest and sclerophyllous, often eucalypt‐dominated, habitats. Methods We derived five hypotheses based on palaeoclimatic and fossil data regarding the evolution of the Australian mesic biota, particularly as it relates to the mesic biome. We evaluated predictions formulated from these hypotheses using suitable molecular phylogenies of terrestrial plants and animals and freshwater invertebrates. Results There was support for the ancestral position of mesic habitat in most clades, with support for rain forest habitat ancestry in some groups, while evidence of ancestry in mesic sclerophyllous habitats was also demonstrated for some plants and herpetofauna. Contraction of mesic habitats has led to extinction of numerous lineages in many clades and this is particularly evident in the rain forest component. Species richness was generally higher in sclerophyllous clades than in rain forest clades, probably due to higher rates of net speciation in the former and extinction in the latter. Although extinction has been prominent in rain forest communities, tropical rain forests appear to have experienced extensive immigration from northern neighbours. Pleistocene climatic oscillations have left genetic signatures at multiple levels of divergence and with complex geographical structuring, even in areas with low topographical relief and few obvious geographical barriers. Main conclusions Our review confirms long‐held views of the ancestral position of the Australian mesic biome but also reveals new insights into the complexity of the processes of contraction, fragmentation, extinction and invasion during the evolution of this biome.  相似文献   

9.
Hunting and Gathering in Tropical Rain Forest: Is It Possible?   总被引:1,自引:0,他引:1  
Hunters and gatherers living in tropical forests represent an important part of the total range of variation among contemporary hunting and gathering societies. Studies of tropical forest hunting and gathering peoples have contributed to our perceptions of the foraging way of life. Yet no peoples have ever been directly observed living independently of agriculture in tropical rain forest. This article tests the hypothesis that humans do not exist nor have ever existed independently of agriculture in tropical rain forest. We find no convincing ethnographic evidence and, with the possible exception of Malaysia, no archeological evidence for pure foragers in undisturbed tropical rain forests. Negative evidence cannot be conclusive, but it suggests that we need to carefully reexamine common assumptions concerning the recent history of tropical forest dwellers, the adaptability of preagricultural humans, the geographic and environmental range of hominids, and the form and consequences of selection pressures acting on humans in warm, humid environments. The overriding purpose of this article is to stimulate further ecological and archeological research in the neglected tropical forest areas of the world.  相似文献   

10.
11.
附生兰科植物是热带林附生植物的主要类群之一,对于维持热带林生态系统的物种多样性及生态功能具有重要的作用。以海南岛霸王岭国家级自然保护区内的6种热带原始林类型(热带季雨林、低地雨林、热带针叶林、山地雨林、山地常绿林及山顶矮林)中的附生兰科植物为研究对象,通过样带调查(每个森林类型设置12个10m×50m的样带,记录每个样带内胸径(DBH)≥5cm的树木及藤本上附生兰科植物的物种名称、株数及附生位置)分析了附生兰科植物的物种多样性、附生位置及其在不同森林类型中的分布规律。结果表明:1)3.6hm2森林调查样带内共记录到附生兰科植物9634株,分属于26属60种;2)除趋势对应分析(DCA)结果表明,6种森林类型中的附生兰科植物可分成5组(其中,山地常绿林与山顶矮林内的附生兰科植物归为一组);3)分布海拔范围相临近的森林类型的附生兰科植物具有较高的相似性,山地常绿林和山顶矮林附生兰科植物的相似性最高(88.9%);4)6种森林类型中,较高海拔的3种森林类型(山地雨林、山地常绿林和山顶矮林)中,附生兰科植物的丰富度和多度均显著高于其在较低海拔的3种森林类型(热带季雨林、低地雨林和热带针叶林),其中,附生兰科植物在山地常绿林内的丰富度和多度均最高;5)热带季雨林、低地雨林、热带针叶林及山地雨林内,宿主冠区附生兰科植物的多度均高于干区;山地常绿林内两者之间无显著差异;而山顶矮林干区的附生兰科植物的多度高于冠区;6)调查木上附生兰科植物的发生率在高海拔森林类型均高于其在低海拔森林类型,各森林类型内附生兰科植物的多度及物种丰富度与宿主胸径均存在显著正相关关系。  相似文献   

12.
Marantaceae forests are tropical rainforests characterized by a continuous understory layer of perennial giant herbs and a near absence of tree regeneration. Although widespread in West-Central Africa, Marantaceae forests have rarely been considered in the international literature. Yet, they pose key challenges and opportunities for theoretical ecology that transcend the borders of the continent. Specifically, we ask in this review whether open Marantaceae forests and dense closed-canopy forests can be considered as one of the few documented examples of alternative stable states in tropical forests. First, we introduce the different ecological factors that have been posited to drive Marantaceae forests (climate, soil, historical and recent anthropogenic pressures, herbivores) and develop the different hypotheses that have been suggested to explain how Marantaceae forests establish in relation with other vegetation types (understory invasion, early succession after disturbance, and intermediate successional stage). Then, we review the underlying ecological mechanisms that can explain the stability of Marantaceae forests in the long term (tree recruitment inhibition, promotion of and resilience to fire, adaptive reproduction, maintenance by megaherbivores). Although some uncertainties remain and call for further empirical and theoretical research, we found converging evidence that Marantaceae forests are associated with an ecological succession that has been deflected or arrested. If verified, Marantaceae forests may provide a useful model to understand critical transitions in forest ecosystems, which is of particular relevance to achieve sustainable forest management and mitigate global climate change.  相似文献   

13.
Abstract. The identification and radiocarbon dating of charcoal collected under tropical rain forest indicated that sclerophyll forests dominated by Eucalyptus occupied parts of the wet tropical lowlands in the Daintree region of North Queensland at least intermittently from 12,000 yr bp until very recently. The results extend the late Pleistocene expansion of pyrophytic, sclerophyll forests which occurred in the upland rain forests to a humid, megathermic coastal lowlands region. Unlike the early Holocene re-expansion of rain forests which occurred generally on the uplands, the sclerophyll forests in the lowland study area were present until at least 1400 yr bp. Changes in coastal geomorphology and coastline positions during the late Quaternary were examined in the study area by superimposing sea levels derived from published curves on sea-bed contours. The results indicate that a very rapid decrease in the extent of the coastal plain occurred during the late Pleistocene. Between 12,000 and 9000 yr bp, 26 km of the coastal plain was submerged and this would have inevitably resulted in concentrations of Aboriginal populations in the area of the present coastline. It is suggested that burning activities by Aborigines in the coastal lowlands were sufficient to reestablish sclerophyll forests during the latter part of the Holocene from approximately 4000 yr bp following a wanner and wetter period which would have been conducive to rain forest re-expansion. Although the evidence suggests that the most recent rain forest recolonization occurred in the study area more than 1000 years ago, the process is still continuing elsewhere in the wet tropical lowlands in North Queensland. The process of eucalypt forest replacement by rain forest may have accelerated since the arrival of Europeans and the concomitant decrease in Aboriginal management.  相似文献   

14.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

15.
中国热带森林植被类型研究历史和划分探讨   总被引:1,自引:0,他引:1  
热带森林是我国森林植被的重要组成部分,明确其森林植被类型分类对于生物多样性维持机制研究和保护管理等都具有重要意义。该文以中国热带森林植被分类研究中存在的问题为出发点,通过阐述我国各省区植被类型分类的研究历史,在综合考虑多种生物和非生物影响因素的基础上,提出一个新的热带森林植被类型分类框架以供探讨。结果表明:(1)尽管针对我国热带森林的分布范围和群落特征等都已开展了诸多研究,但对我国热带森林植被类型的划分依据和分类体系仍存在争议。(2)尽管我国的热带森林都处于季风气候区带内,但许多热带地区的森林植被类型并不只是受季风影响,而是气候带、关键气候因子、地形、土壤反馈和物种适应等多种因素共同作用的结果。(3)我国的热带森林植被包括5个植被型,即非典型性热带雨林、热带季雨林、热带山地雨林、热带山顶苔藓矮林(热带云雾林)和热带针叶林,其中热带季雨林植被型包含4种植被亚型[热带落叶季雨林、热带半落叶(半常绿)季雨林、热带常绿季雨林和热带石灰岩(石山)季雨林]。(4)阐明了上述热带森林植被型和植被亚型在我国各省区的分布情况,并提出未来有必要对人工恢复后的热带森林进行评估和植被类型划分。综上所述,该文提出一个新的热带森林植被类型分类框架,以期为今后基于不同地区开展热带森林比较研究提供参考。  相似文献   

16.
Abstract. Ecological and biogeographic analyses of the tropical rain forest in south Yunnan were made using data from seventeen sample plots and floristic inventories of about 1000 species of seed plants. The rain forest is shown to be a type of true tropical rain forest because it has almost the same profile, physiognomic characteristics, species richness per unit area, numbers of individuals in each tree species and diameter classes of trees as classic lowland tropical rain forests. As the area is at the northern margin of monsoonal tropics, the rain forest differs from equatorial lowland rain forests in having some deciduous trees in the canopy layer, fewer megaphanaerophytes and epiphytes but more species of lianas as well as more species of microphylls. In its floristic composition, about 80% of total families. 94% of total genera and more than 90% of total species are tropical, of which about 38% of genera and 74% of species are tropical Asian. Furthermore, the rain forest has not only almost the same families and genera, but also the same families rank in the top ten both in species richness and in dominance of stems, as lowland forests in southeast Asia. It is indisputable that the flora of the rain forest is part of the tropical Asian flora. However, most of the tropical families and genera have their northern limits in south Yunnan and most have their centre of species diversity in Malesia. More strictly tropical families and genera have relatively lower species richness and importance compared with lowland rain forests in tropical southeast Asia. Thus, the flora also shows characteristics of being at the margin of the tropics. Based mainly on physiognomy and floristic composition the tropical rain forest of Yunnan is classified into two types, i.e. seasonal rain forest and wet seasonal rain forest, the latter is further divided into two subtypes, i.e. mixed rain forest and dipterocarp rain forest. From analysis of geographic elements it is also shown that the tropical rain forest of Yunnan occurs at a geographical nexus with its flora coming mainly from four sources, i.e. Malesia, south Himalayas, Indochina and China.  相似文献   

17.
A soil charcoal survey was undertaken across 60,000 ha of closed-canopy tropical forest in central Guyana to determine the occurrence, ubiquity, and age of past forest fires across a range of terra firme soil types. Samples were clustered around six centers consisting of spatially nested sample stations. Most charcoal was found between 40 and 60 cm depth with fewest samples yielding material at 0–20 cm depth. The first core yielded charcoal at most stations. Charcoal ages of a random subsample ranged from less than 200 YBP to 9500 YBP with a noticeable peak between 1000 and 1250 YBP. Results reinforce a view that most closed-canopy tropical forests in eastern Amazonia have been subject to palaeo-fire events of unknown severity with a peak in charcoal age consistently appearing between 1000 and 2000 YBP. The two samples dated to the early Holocene represent some of the oldest indicators of paleo-fire known from upland Neotropical forest soils. Ubiquitous soil charcoal in central Guyana further indicate both forest resilience to fire and the widespread propensity for regional forests to burn, particularly during anomalous periods of drought.  相似文献   

18.
Climate change is predicted to impact tropical rain forests, with droughts becoming more frequent and more severe in some regions. We currently have a poor understanding of how increased drought will change the functioning of tropical rain forest. In particular, tropical rain forest invertebrates, which are numerous and biologically important, may respond to drought in different ways across trophic levels. Ants are a diverse group that carry out important ecosystem processes, shaping ecosystem structure and function through predation and competition, which can influence multiple trophic levels. Hemiptera are a mega-diverse order, abundant in tropical rain forests and are ecologically important. To understand the roles of ants in exerting predation and competition pressure on invertebrates in tropical rain forests during drought and a post-drought period, we established a large-scale ecosystem manipulation experiment in Maliau Basin Conservation Area in Malaysian Borneo, suppressing the activity of ants on four 0.25 ha plots over a two-year period. We sampled hemipterans found in the leaf litter during a drought (July 2015) and a post-drought period (September 2016) period. We found significant shifts in the assemblage of hemipterans sampled from the leaf litter following ant suppression. Specifically, for ant-suppression plots, the species richness and abundance of herbivorous hemipterans increased only during the post-drought period. For predatory hemipterans, abundance increased with ant-suppression regardless of drought conditions, and we found marginal evidence for a species richness increase during the post-drought period with little or no change in the drought period. These results illustrate how ants in tropical forests structure invertebrate communities and how these effects may vary with climatic variation.  相似文献   

19.
论滇南西双版纳的森林植被分类   总被引:3,自引:0,他引:3  
朱华 《云南植物研究》2007,29(4):377-387
本文基于多年研究成果的总结,对西双版纳森林植被的分类、主要植被类型及其特征进行了系统归纳,并讨论了它们与世界类似热带森林植被的关系。以群落的生态外貌与结构、种类组成和生境特征相结合作为植被分类的原则和依据,可以将西双版纳的热带森林植被分类为热带雨林、热带季节性湿润林、热带季雨林和热带山地常绿阔叶林四个主要的植被型,包括有至少二十个群系。热带雨林包括热带季节雨林和热带山地(低山)雨林二个植被亚型。热带季节雨林具有与赤道低地热带雨林几乎一样的群落结构和生态外貌特征,是亚洲热带雨林的一个类型,但由于发生在季风热带北缘纬度和海拔的极限条件下,受到季节性干旱和热量不足的影响,在其林冠层中有一定比例的落叶树种存在,大高位芽植物和附生植物较逊色而藤本植物和在叶级谱上的小叶型植物更丰富,这些特征又有别于赤道低地的热带雨林。热带山地雨林是热带雨林的山地亚型,是该地区热带山地较湿润生境的一种森林类型,它在植物区系组成和生态外貌特征上类似于热带亚洲的低山雨林,隶属于广义热带雨林植被型下的低山雨林亚型。热带季节性湿润林分布在石灰岩山坡中、上部,在群落外貌上类似热带山地常绿阔叶林但在植物区系组成上与后者不同,它是石灰岩山地垂直带上的一种植被类型。热带季雨林是分布在该地区开阔河谷盆地及河岸受季风影响强烈的生境的一种热带落叶森林,是介于热带雨林与萨王纳之间的植被类型。热带山地常绿阔叶林(季风常绿阔叶林)是西双版纳的主要山地植被类型,它分布在热带季节雨林带之上偏干的山地生境。它在植物区系组成上不同于该地区的热带季节雨林,在生态外貌特征上亦不同于热带山地雨林,是发育在受地区性季风气候强烈影响的热带山地的一种森林植被类型。  相似文献   

20.
ZHU Hua 《Plant Diversity》2007,29(4):377-387
Xishuangbanna of southern Yunnan is a region of extremely interest to biologists and also a hotspot for biodiversity conservation . It is located in a transitional zone from tropical Southeast Asia to temperate East Asia biogeographically. The present paper reviewed vegetation types of Xishuangbanna and suggested a revised classification system based on theupdated study results over the last two decades . By combining physiognomic and floristic characteristics with ecological performances and habitats , the primary forest vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes , i. e. tropical seasonal rain forest in the lowlands and tropical montane rain forest on higher elevations. The tropical seasonal rain forest in this region shows similar forest profile and physiognomic characteristics to those of equatorial lowland rain forests and is a type of world tropical rain forest. Because of conspicuous similarity on floristic composition , the tropical seasonal rain forest in Xishuangbanna is a type of tropical Asian rain forest . However , since the tropical seasonal rain forest occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in maintaining some deciduous trees in the canopy layer , fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll . It is a type of semi-evergreen rain forest at the northern edge of the tropical zone . The tropical montane rain forest occurs in wet montane habitats and is similar to the lower montane rain forests in equatorial Asia in floristic composition and physiognomy . It is a variety of lower montane rain forests at the northern tropical edges of tropical rain forests . The tropical seasonal moist forest occurs on middle and upper limestone mountains and is similar to the tropical montane evergreen broad-leaved forest of the region in physiognomy, but it differs from the latter in floristic composition. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad- leaved forest is the main vegetation type in mountain areas . It is dominated by the tree species of Fagaceae , Euphorbiaceae , Theaceae and Lauraceae in majority. It differs from the tropical montane rain forests in lack of epiphytes and having more abundant lianas and plants with compound leaves . It is considered to be a distinct vegetation type in the northern margin of mainland southeastern Asia controlling by a strong monsoon climate, based on its floristic and physiognomic characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号