首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogeographic analyses have revealed the importance of Pleistocene vicariance events in shaping the distribution of genetic diversity in freshwater fishes. However, few studies have examined the patterning of variation in freshwater organisms with differing dispersal syndromes and life histories. The present investigation addresses this gap, examining the phylogeography of Sida crystallina, a species whose production of diapausing eggs capable of passive dispersal was thought to constrain its regional genetic differentiation. By contrast, the present analysis has revealed deep allozyme and cytochrome oxidase I mitochondrial DNA divergence between populations from North America and Europe. Moreover, North American populations are separated into four allopatric assemblages, whose distribution suggests their derivation from different Pleistocene refugia. These lineages show higher haplotype diversity and deeper sequence divergence than those of any fish from temperate North America. Its distinctive life history traits have evidently sheltered lineages of Sida from extinction, contributing to a remarkably comprehensive and high resolution phylogeographic record.  相似文献   

2.
Although the temperate regions of South America are known to have a diverse daphniid fauna, there has been no genetic evaluation of the existing taxonomic system or of the affinities between the North and South American faunas. The present study analyses mitochondrial DNA sequences and allozyme variation to investigate species diversity in 176 Daphnia populations from Argentina. This work established the presence of at least 15 species in Argentina, six of which are either undescribed or are currently misidentified and two of which represent range extensions of North American taxa. Eleven of the Argentine species appear endemic to South America, while the remaining four also occur in North America. In the latter cases, the close genetic similarity between populations from North and South America indicates the recent exchange of propagules between the continents. While biological interactions and habitat availability have undoubtedly contributed to the observed species distributions, chance dispersal has apparently played a dominant role in structuring large-scale biogeographical patterns in this genus and probably in other passively-dispersed organisms.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 171−205.  相似文献   

3.
An integral part to understanding the biology of an invasive species is determining its origin, particularly in pest species. As one of the oldest known invasive species, the goals of this study were to evaluate the evidence of a westward expansion of Hessian fly into North America, from a potential singular introduction event, and the population genetic structure of current populations. Levels of genetic diversity and population structure in the Hessian fly were compared across North America, Europe, North Africa, Western Asia, and New Zealand. Furthermore, Old World populations were evaluated as possible sources of introduction. We tested diversity and population structure by examining 18 microsatellite loci with coverage across all four Hessian fly chromosomes. Neither genetic diversity nor population genetic structure provided evidence of a westward movement from a single introduction in North America. Introduced populations in North America did not show identity or assignment to any Old World population, likely indicating a multiple introduction scenario with subsequent gene flow between populations. Diversity and selection were assessed on a chromosomal level, with no differences in diversity or selection between chromosomes or between native and introduced populations.  相似文献   

4.
We have investigated the rates of recombination and migration in native populations of two closely related, naturally competent Bacillus species. Native soil isolates of Bacillus subtilis and Bacillus mojavensis were obtained from three continents and, within North America, from populations at a range of geographical distances from one another. The rate of recombination within populations of each species was estimated from restriction-site data for three genes. Recombination was shown to occur within each species at about the same rate as neutral mutation, whatever the geographical scale or phylogenetic scale over which strains were sampled. The rate of migration between populations was estimated by a cladistic analysis and was shown to be high (i.e., Nm > 1), even among populations on different continents. The level of migration within each species is sufficient to prevent neutral geographical divergence within species.  相似文献   

5.
We have developed and characterized 13 microsatellite loci from a group of Anodonta species in western North America, and demonstrated their utility in populations representing two major clades in this genus. Allelic diversity and polymorphic information content were high for all loci, although these characteristics varied across populations. Deviations from Hardy-Weinberg genotypic ratios were not detected, although the estimated frequency of null alleles was high in one population for one locus. This is the first set of microsatellite loci to be developed for freshwater mussels in western North America, and will be useful for describing gene flow patterns among populations.  相似文献   

6.
Understanding the dual roles of demographic and selective processes in the buildup of population divergence is one of the most challenging tasks in evolutionary biology. Here, we investigated the demographic history of Atlantic salmon across the entire species range using 2035 anadromous individuals from North America and Eurasia. By combining results from admixture graphs, geo‐genetic maps, and an Approximate Bayesian Computation (ABC) framework, we validated previous hypotheses pertaining to secondary contact between European and Northern American populations, but also identified secondary contacts in European populations from different glacial refugia. We further identified the major sources of admixture from the southern range of North America into more northern populations along with a strong signal of secondary gene flow between genetic regional groups. We hypothesize that these patterns reflect the spatial redistribution of ancestral variation across the entire North American range. Results also support a role for linked selection and differential introgression that likely played an underappreciated role in shaping the genomic landscape of species in the Northern hemisphere. We conclude that studies between partially isolated populations should systematically include heterogeneity in selective and introgressive effects among loci to perform more rigorous demographic inferences of the divergence process.  相似文献   

7.
Tubifex tubifex is a cosmopolitan freshwater oligochaete whose presence has been studied as a health indicator of the aquatic environment and as a host for several myxozoan parasites of fish. Unfortunately, current morphological criteria used to distinguish Tubifex spp. (Tubificidae) are inadequate. We therefore developed mitochondrial 16S ribosomal DNA markers to examine phylogenetic relationships among aquatic oligochaetes and to distinguish species of Tubifex that might serve as hosts for a particular myxozoan parasite, Myxobolus cerebralis. Our phylogenetic analyses of oligochaetes based on a 378-bp segment yielded one most parsimonious tree with three major groups that corresponded to the families Lumbricidae, Sparganophilidae, and Tubificidae. T. tubifex and T. ignotus formed a monophyletic assemblage, and a sister relationship between the genera Tubifex and Limnodrilus was strongly supported. A second analysis of the relationship within the genus Tubifex identified six genetically distinct lineages of T. tubifex from North America and Europe that were separated by genetic distances comparable to those found for "well-defined" species of Limnodrilus. Therefore, the existence of several morphologically indistinguishable, thus cryptic, species of Tubifex in North America and Europe is suggested.  相似文献   

8.
Phylogeographic studies are useful in reconstructing the history of species invasions, and in some instances can elucidate cryptic diversity of invading taxa. This can help in predicting or managing the spread of invasive species. Among terrestrial invasive species in North America, earthworms can have profound ecological effects. We are familiar with the centuries‐old invasions of European earthworms (Lumbricidae) and their impacts on nutrient cycling in soils. More recent invasions by Asian earthworms of the family Megascolecidae are less fully understood. We used data for two mitochondrial gene fragments, cytochrome oxidase I (COI) and 16S rRNA, to examine the relationships among populations of Asian earthworms in the megascolecid genus Amynthas in the northeast United States. Recent reports have indicated that one species in particular, Amynthas agrestis, is having detrimental effects in mixed forest ecosystems, and we were interested in understanding the invasion history for this species. We were surprised to discover three divergent mitochondrial lineages of Amynthas occurring sympatrically in upstate New York. Given the gap between intra‐ and inter‐lineage sequence divergences, we propose that these three lineages represent cryptic species of Amynthas, one of which is A. agrestis. For each of the three lineages of Amynthas, we observed shared haplotypes across broad geographic distances. This may reflect common origins for populations in each lineage, either by direct routes from native ranges or through post‐introduction spread by natural dispersal or human‐mediated transport within North America. Management efforts focused on horticultural imports from Asia, commercial nurseries within the USA, and on prohibition of bait disposal may help to reduce the further invasion success of Amynthas.  相似文献   

9.
Schaack S 《Molecular ecology》2008,17(7):1634-1635
Scientists in various subdisciplines of biology have long relied on model organisms to push the frontiers of knowledge forward as far as possible in their specific field. Today, interdisciplinary science requires model organisms that can push our understanding on multiple frontiers and help us formulate and address more complex questions. Members of the genus Daphnia represent just such an interdisciplinary model. Daphnia are aquatic microcrustaceans (also known as waterfleas) that have long been central to the study of ecology and toxicology and have recently been developed as a genomic model. A recent survey of both nuclear and mitochondrial markers in populations of the Daphnia pulex complex from high-altitude lakes in South America ( Mergeay et al . 2008, this issue ) provides an excellent example of how genetic data and ecological information can be used to push the boundaries of our understanding in molecular ecology. In this species complex, extensive hybridization has occurred resulting in polyploidization and, consequently, asexuality. Their data reveal high levels of genetic diversity, incongruence in phylogenetic signal among genomes (nuclear and mitochondrial), cryptic species in the complex, and a new model for the historical spread of the species throughout the Americas. Their data indicate that genome-level changes have occurred in this species which have profound consequences in an ecological context, the implications of which can be more fully appreciated because of our extensive knowledge of the ecology and natural history of the genus Daphnia .  相似文献   

10.
Agastache sect. Agastache consists of seven species in North America and one disjunct in eastern Asia. Starch-gel electrophoresis of enzymatic proteins was employed to assess genetic relationships among these species and to estimate the amount of genetic divergence between the North American and Asian populations. Species of the western United States appear to be better adapted for outcrossing than are the others and are much more genetically variable, with higher levels of heterozygosity per individual, more alleles per species, and higher percentages of polymorphic loci per population. Nonmetric multidimensional scaling of Nei's genetic distances among 32 populations partitioned the section into four discrete groups: 1) A. nepetoides (eastern North America), 2) A. scrophulariifolia and A. foeniculum (eastern and central North America), 3) the four species of the western United States (A. urticifolia, A. occidentalis, A. parvifolia and A. cusickii) and 4) A. rugosa (eastern Asia). Asian Agastache, separated from its American congeners for over twelve million years, differed from American populations at two of fifteen loci surveyed. Nei's genetic distances between Asian and North American populations ranged from 0.2877 to 0.6734.  相似文献   

11.
Pachysandra is an eastern Asian-North American disjtunct genus with three species, two in eastern Asia (Pachysandra axillaris and Pachysandra terminalis) and one in eastern North America (Pachysandra procurnbens). Although morphological and cytological studies suggest a close affinity of Pprocumbens with P axillaris, molecular data from nuclear and chloroplast DNA regions have provided conflicting signals. In this study, we tested previous phylogenetic hypotheses using sequences of nuclear ribosomal DNA internal transcribed spacers and chloroplast ndhF gene from multiple individuals of each of the three species. We also estimated the time of divergence between eastem Asia and eastern North America. Our results support the morphological and cytological conclusion that P procumbens is more closely related to P axillaris than to P terminalis. The estimated time of divergence of P axillaris and P procumbens was 14.6±5.5 mya, consistent with estimates from many other eastern Asian-North American disjunct genera. The migration of Pachysandra populations from eastern Asia to North America might have occurred by way of the North Atlantic land bridge.  相似文献   

12.
1. The restricted scale of most prior studies of genetic diversity in daphniid populations provides limited information on the geographical patterning of gene frequencies. The present study addresses this gap by examining allozymic divergence in populations of the most broadly distributed daphniid in the warm temperate regions of North America, Daphnia obtusa, across its range.
2. Local populations of this species show the gene frequency differentiation typical of other daphniids. In contrast to other daphniids with broad distributions, however, further divergence is apparent at a larger geographical scale, with North American D. obtusa fragmented into three lineages showing largely allopatric distributions. The three lineages are based primarily on allele frequency shifts at three polymorphic loci and are represented by eastern, central and south-western groupings.
3. Because of this pattern of differentiation, there is no simple monotonic relationship between geographical distance and genetic divergence. Instead, local metapopulations belonging to a specific lineage show little genetic divergence over several thousand km, while marked shifts in gene frequency occur over a few hundred km in regions where different lineages are in contact.  相似文献   

13.
Range expansions can result in founder effects, increasing genetic differentiation between expanding populations and reducing genetic diversity along the expansion front. However, few studies have addressed these effects in long-distance migratory species, for which high dispersal ability might counter the effects of genetic drift. Monarchs (Danaus plexippus) are best known for undertaking a long-distance annual migration in North America, but have also dispersed around the world to form populations that do not migrate or travel only short distances. Here, we used microsatellite markers to assess genetic differentiation among 18 monarch populations and to determine worldwide colonization routes. Our results indicate that North American monarch populations connected by land show limited differentiation, probably because of the monarch''s ability to migrate long distances. Conversely, we found high genetic differentiation between populations separated by large bodies of water. Moreover, we show evidence for serial founder effects across the Pacific, suggesting stepwise dispersal from a North American origin. These findings demonstrate that genetic drift played a major role in shaping allele frequencies and created genetic differentiation among newly formed populations. Thus, range expansion can give rise to genetic differentiation and declines in genetic diversity, even in highly mobile species.  相似文献   

14.
1. The restricted scale of most prior studies of genetic diversity in daphniid populations provides limited information on the geographical patterning of gene frequencies. The present study addresses this gap by examining allozymic divergence in populations of the most broadly distributed daphniid in the warm temperate regions of North America, Daphnia obtusa, across its range.
2. Local populations of this species show the gene frequency differentiation typical of other daphniids. In contrast to other daphniids with broad distributions, however, further divergence is apparent at a larger geographical scale, with North American D. obtusa fragmented into three lineages showing largely allopatric distributions. The three lineages are based primarily on allele frequency shifts at three polymorphic loci and are represented by eastern, central and south-western groupings.
3. Because of this pattern of differentiation, there is no simple monotonic relationship between geographical distance and genetic divergence. Instead, local metapopulations belonging to a specific lineage show little genetic divergence over several thousand km, while marked shifts in gene frequency occur over a few hundred km in regions where different lineages are in contact.  相似文献   

15.
Aquatic and semi-aquatic plants comprise few species worldwide, yet the introduction of non-indigenous plants represents one of the most severe examples of biological invasions. My goal is to compare the distribution and the biology of aquatic and semi-aquatic plants in their introduced ranges and in their native ranges. The primary objective of this study is to test the hypothesis that invasive species have evolved traits likely to increase their success in the new range. I made two reciprocal comparisons, i.e. I compared European species in France and in North America, and North American species in France and in North America. Twenty-seven species were classified according to their invasiveness in their introduced area. I␣found six invasive macrophyte species in France native to North America and 17 invasive species in North America native to Europe. Four species are invasive in both areas. There is no general tendency for macrophytes to be more vigorous in their introduced ranges. Most non-indigenous aquatic and semi-aquatic species are potentially invasive or widespread and well-established in their introduced country, while few species seem to be restricted in their distribution.  相似文献   

16.
Aim The European green crab (Carcinus maenas) expanded dramatically after its introduction to the west coast of North America, spreading over 1000 km in < 10 years. We use samples of Carcinus maenas collected over time and space to investigate the genetic patterns underlying the species’ initial establishment and spread, and discuss our findings in the context of the species’ life history characteristics and demography. Location The central west coast of North America, encompassing California, Oregon, and Washington (USA) and British Columbia (Canada). Methods We collected 1040 total samples from 21 sites representing the major episodes of population establishment and expansion along the west coast of North America. Microsatellite markers were used to assess genetic diversity and structure at different time points in the species’ spread, to investigate connectivity between embayments and to estimate both short‐term effective population sizes and the number of original founders. Assignment testing was performed to determine the likely source of the introduction. Results Carcinus maenas in western North America likely derived from a single introduction of a small number of founders to San Francisco Bay, CA from the east coast of North America. Throughout its western North American range, the species experiences periodic migration between embayments, resulting in a minor loss of genetic diversity in more recently established populations versus the populations in the area of initial establishment. Main conclusions Low genetic diversity has not precluded the ability of C. maenas to successfully establish and spread on the west coast of North America. An efficient oceanographic transport mechanism combined with highly conducive life history traits are likely the major drivers of C. maenas spread. Evidence for a single introduction underscores the potential utility of early detection and eradication of high‐risk invasive species.  相似文献   

17.
Phylogeographic studies often infer historical demographic processes underlying species distributions based on patterns of neutral genetic variation, but spatial variation in functionally important genes can provide additional insights about biogeographic history allowing for inferences about the potential role of adaptation in geographic range evolution. Integrating data from neutral markers and genes involved in oxygen (O2)‐transport physiology, we test historical hypotheses about colonization and gene flow across low‐ and high‐altitude regions in the Ruddy Duck (Oxyura jamaicensis), a widely distributed species in the New World. Using multilocus analyses that for the first time include populations from the Colombian Andes, we also examined the hypothesis that Ruddy Duck populations from northern South America are of hybrid origin. We found that neutral and functional genes appear to have moved into the Colombian Andes from both North America and southern South America, and that high‐altitude Colombian populations do not exhibit evidence of adaptation to hypoxia in hemoglobin genes. Therefore, the biogeographic history of Ruddy Ducks is likely more complex than previously inferred. Our new data raise questions about the hypothesis that adaptation via natural selection to high‐altitude conditions through amino acid replacements in the hemoglobin protein allowed Ruddy Ducks to disperse south along the high Andes into southern South America. The existence of shared genetic variation with populations from both North America and southern South America as well as private alleles suggests that the Colombian population of Ruddy Ducks may be of old hybrid origin. This study illustrates the breadth of inferences one can make by combining data from nuclear and functionally important loci in phylogeography, and underscores the importance of complete range‐wide sampling to study species history in complex landscapes.  相似文献   

18.
The success of a biological invasion and the ability to control an invader may partially depend on the genetic diversity of the invasive species and the amount of dispersal and gene flow occurring throughout its introduced range. Here, we used nuclear microsatellites to analyze genetic diversity and structure and whole mitogenomic sequences to analyze the phylogeography of Silver Carp (SC; Hypophthalmichthys molitrix) and Bighead Carp (BHC; H. nobilis) across their North American ranges. Our objectives were to assess: (1) the number of mitochondrial haplotypes that were introduced and how they are distributed in North America, which may provide insight into the history of the invasion, (2) how genetic diversity compares between the native Asian and introduced North American populations, (3) how genetic variation is structured across the North American ranges of SC and BHC as well as between the two species, and (4) whether patterns of genetic diversity and structure are likely to affect success of environmental DNA programs for monitoring these species. In both species, we found relatively few mitochondrial haplotypes, and most were present throughout the range. For both SC and BHC, unique haplotypes were found only in a portion of the species’ range, possibly indicating the location of additional, more recent introductions. In both species, genetic diversity was moderately lower in North American populations (i.e., 75–90% of that found in Asian populations), but genetic diversity still remained high. We found very little population genetic structure, consistent with a rapidly spreading invasive species, and did not find evidence of cryptic interspecific hybrids. The markers developed for eDNA monitoring will be effective for detecting the majority of individuals of these species in North America. The relatively high level of genetic variation and lack of population structure of SC and BHC in North America indicate that genetic diversity likely will not limit their persistence and that high connectivity will likely complicate efforts to control these invasive species.  相似文献   

19.
Three species of cactophilic Drosophila endemic to the Sonoran Desert of North America, D. nigrospiracula, D. pachea and D. mettleri, experience marked differences in spatial resource availability, and the first two of these display significant differences in dispersal behaviour. We employed starch gel and cellulose acetate electrophoresis for eight allozyme loci to test for a relationship between these variables and genetic differentiation among geographical populations of each species. No evidence was found for population structure in any of the three species, populations of which were separated by geographical distances of up to 475 km. Allele frequencies for two loci, Mdh-1 and Est-2, in D. nigrospiracula and D. pachea were very similar to those obtained approximately 30 years ago by other workers, indicating that the polymorphisms are remarkably stable under the stressful and variable conditions of the desert environment. High longevity, dispersal and multiple female remating are likely to contribute to the apparent high level of gene flow in all three species.  相似文献   

20.
The origin of introduction of the cabbage root fly, Delia radicum Linnaeus to the north-eastern coast of North America in the 19th century has been assumed to be from Europe. From that point of introduction, D. radicum gradually spread westward to occupy available ecological niches. DNA fingerprinting and egg micromorphology were used to determine the most likely geographical origin of the North American populations of this species. Forty-five informative RAPD loci obtained from ten primers and three criteria for egg micromorphology were studied. These characters indicated a common origin for the North American populations and a high similarity between populations from North America and north-western Europe. The results suggest a single entrance point of D. radicum into North America, probably via the north-eastern coast (New York area) from north-western Europe. The implications of this study in assisting selection of natural enemies of this important agricultural pest are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号