首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The evolution of genetic canalization under fluctuating selection   总被引:6,自引:0,他引:6  
Abstract.— If the direction of selection changes from generation to generation, the ability to respond to selection is maladaptive: the response to selection in one generation leads to reduced fitness in the next. Because the response is determined by the amount of genetic variance expressed at the phenotypic level, rapidly fluctuating selection should favor modifier genes that reduce the phenotypic effect of alleles segregating at structural loci underlying the trait. Such reduction in phenotypic expression of genetic variation has been named "genetic canalization." I support this argument with a series of two- and multilocus models with alternating linear selection and Gaussian selection with fluctuating optimum. A canalizing modifier gene affects the fitness of its carriers in three ways: (1) it reduces the phenotypic consequences of genetic response to previous selection; (2) it reduces the genetic response to selection, which is manifested as linkage disequilibrium between the modifier and structural loci; and (3) it reduces the phenotypic variance. The first two effects reduce fitness under directional selection sustained for several generations, but improve fitness when the direction of selection has just been reversed. The net effect tends to favor a canalizing modifier under rapidly fluctuating selection regimes (period of eight generations or less). The third effect improves fitness of the modifier allele if the fitness function is convex and reduces it if the function is concave. Under fluctuating Gaussian selection, the population is more likely to experience the concave portion of the fitness function when selection is stronger. Therefore, only weak to moderately strong fluctuating Gaussian selection favors genetic canalization. This paper considerably broadens the conditions that favor genetic canalization, which so far has only been postulated to evolve under long-term stabilizing selection.  相似文献   

2.
《Trends in genetics : TIG》2023,39(8):602-608
Behaviors are components of fitness and contribute to adaptive evolution. Behaviors represent the interactions of an organism with its environment, yet innate behaviors display robustness in the face of environmental change, which we refer to as ‘behavioral canalization’. We hypothesize that positive selection of hub genes of genetic networks stabilizes the genetic architecture for innate behaviors by reducing variation in the expression of interconnected network genes. Robustness of these stabilized networks would be protected from deleterious mutations by purifying selection or suppressing epistasis. We propose that, together with newly emerging favorable mutations, epistatically suppressed mutations can generate a reservoir of cryptic genetic variation that could give rise to decanalization when genetic backgrounds or environmental conditions change to allow behavioral adaptation.  相似文献   

3.
There is growing interest in the evolutionary dynamics of molecular genetic pathways and networks, and the extent to which the molecular evolution of a gene depends on its position within a pathway or network, as well as over-all network topology. Investigations on the relationships between network organization, topological architecture and evolutionary dynamics provide intriguing hints as to how networks evolve. Recent studies also suggest that genetic pathway and network structures may influence the action of evolutionary forces, and may play a role in maintaining phenotypic robustness in organisms.  相似文献   

4.
5.
6.
An evolutionary model of genetic regulatory networks is developed, based on a model of network encoding and dynamics called the Artificial Genome (AG). This model derives a number of specific genes and their interactions from a string of (initially random) bases in an idealized manner analogous to that employed by natural DNA. The gene expression dynamics are determined by updating the gene network as if it were a simple Boolean network. The generic behaviour of the AG model is investigated in detail. In particular, we explore the characteristic network topologies generated by the model, their dynamical behaviours, and the typical variance of network connectivities and network structures. These properties are demonstrated to agree with a probabilistic analysis of the model, and the typical network structures generated by the model are shown to lie between those of random networks and scale-free networks in terms of their degree distribution. Evolutionary processes are simulated using a genetic algorithm, with selection acting on a range of properties from gene number and degree of connectivity through periodic behaviour to specific patterns of gene expression. The evolvability of increasingly complex patterns of gene expression is examined in detail. When a degree of redundancy is introduced, the average number of generations required to evolve given targets is reduced, but limits on evolution of complex gene expression patterns remain. In addition, cyclic gene expression patterns with periods that are multiples of shorter expression patterns are shown to be inherently easier to evolve than others. Constraints imposed by the template-matching nature of the AG model generate similar biases towards such expression patterns in networks in initial populations, in addition to the somewhat scale-free nature of these networks. The significance of these results on current understanding of biological evolution is discussed.  相似文献   

7.
Canalization describes the process by which phenotypic variation is reduced by developmental mechanisms. A trait can be canalized against environmental or genetic perturbations. Stabilizing selelction should favor improved canalization, and the degree of a trait's canalization should be positively correlated with its impact on fitness. Here we report, for Drosophila melanogaster, measurements of environmental canalization for five fitness components. We compare them with measurements of genetic canalization, and we discuss the impact of inbreeding on both. In three experiments we measured the variation of fitness components within lines nested within temperature, treatment, and experiment. Lines differed in the position of a P element insert or in genetic background. Within lines flies were genetically nearly identical. We designated trait variation within lines as environmental canalization. The canalization of the traits increased with their impact on fitness, and the pattern was similar to that found for the canalization of fitness components against genetic differences, measured as the variation among lines nested within temperature, treatment, and experiment. This suggests that developmental mechanisms buffer the phenotype against both genetic and environmental disturbance. The results also suggest, less strongly, that inbreeding weakens canalization.  相似文献   

8.
Modular variation, whereby the relative degree of connectivity varies within a system, is thought to evolve through a process of selection that favors the integration of certain traits and the decoupling of others. In this way, modularity may facilitate the pace of evolution and determine evolvability. Alternatively, conserved patterns of modularity may act to constrain the rate and direction of evolution by preventing certain functions from evolving. A comprehensive understanding of the potential interplay between these phenomena will require knowledge of the inheritance and the genetic basis of modularity. Here we explore these ideas in the cichlid mandible by investigating patterns of modularity at the clade and species levels and through the introduction of a new approach, the individual level. Specifically, we assessed patterns of covariation in Lake Malawi cichlid species that employ alternate "biting" and "suction-feeding" modes of feeding and in a hybrid cross between these two ecotypes. Across the suction-feeding clade, patterns of modularity were largely conserved and reflected a functionally based pattern. In contrast, the biting species displayed a pattern of modularity that more closely matched developmental modules. The pattern of modularity present in our F2 population was very similar to the pattern exhibited by the biter, suggesting a role for dominant inheritance. We demonstrate that our individual-level metric of modularity (IMM) is a valid quantitative trait that has a nonlinear relationship with shape. IMMs for each model were used as quantitative characters to map quantitative trait loci (QTL) that underlie modularity. Our QTL analysis offers new insights into the genetic basis of modularity in these fishes that may eventually lead to the discovery of the genetic processes that delineate particular modules. In all, our findings suggest that modularity is both a constraining and an evolvable force in cichlid evolution, as distinct patterns occur between species and variation exists among individuals.  相似文献   

9.
Homology can have different meanings for different kinds of biologists. A phylogenetic view holds that homology, defined by common ancestry, is rigorously identified through phylogenetic analysis. Such homologies are taxic homologies (=synapomorphies). A second interpretation, "biological homology" emphasizes common ancestry through the continuity of genetic information underlying phenotypic traits, and is favored by some developmental geneticists. A third kind of homology, deep homology, was recently defined as "the sharing of the genetic regulatory apparatus used to build morphologically and phylogenetically disparate features." Here we explain the commonality among these three versions of homology. We argue that biological homology, as evidenced by a conserved gene regulatory network giving a trait its "essential identity" (a Character Identity Network or "ChIN") must also be a taxic homology. In cases where a phenotypic trait has been modified over the course of evolution such that homology (taxic) is obscured (e.g. jaws are modified gill arches), a shared underlying ChIN provides evidence of this transformation. Deep homologies, where molecular and cellular components of a phenotypic trait precede the trait itself (are phylogenetically deep relative to the trait), are also taxic homologies, undisguised. Deep homologies inspire particular interest for understanding the evolutionary assembly of phenotypic traits. Mapping these deeply homologous building blocks on a phylogeny reveals the sequential steps leading to the origin of phenotypic novelties. Finally, we discuss how new genomic technologies will revolutionize the comparative genomic study of non-model organisms in a phylogenetic context, necessary to understand the evolution of phenotypic traits.  相似文献   

10.
11.

Background  

Sexual reproduction has classically been considered as a barrier to the buildup of discrete phenotypic differentiation. This notion has been confirmed by models of sympatric speciation in which a fixed genetic architecture and a linear genotype phenotype mapping were assumed. In this paper we study the influence of a flexible genetic architecture and non-linear genotype phenotype map on differentiation under sexual reproduction.  相似文献   

12.
Evolutionary genetics has recently made enormous progress in understanding how genetic variation maps into phenotypic variation. However why some traits are phenotypically invariant despite apparent genetic and environmental changes has remained a major puzzle. In the 1940s, Conrad Hal Waddington coined the concept and term "canalization" to describe the robustness of phenotypes to perturbation; a similar concept was proposed by Waddington's contemporary Ivan Ivanovich Schmalhausen. This paper reviews what has been learned about canalization since Waddington. Canalization implies that a genotype's phenotype remains relatively invariant when individuals of a particular genotype are exposed to different environments (environmental canalization) or when individuals of the same single- or multilocus genotype differ in their genetic background (genetic canalization). Consequently, genetic canalization can be viewed as a particular kind of epistasis, and environmental canalization and phenotypic plasticity are two aspects of the same phenomenon. Canalization results in the accumulation of phenotypically cryptic genetic variation, which can be released after a "decanalizing" event. Thus, canalized genotypes maintain a cryptic potential for expressing particular phenotypes, which are only uncovered under particular decanalizing environmental or genetic conditions. Selection may then act on this newly released genetic variation. The accumulation of cryptic genetic variation by canalization may therefore increase evolvability at the population level by leading to phenotypic diversification under decanalizing conditions. On the other hand, under canalizing conditions, a major part of the segregating genetic variation may remain phenotypically cryptic; canalization may therefore, at least temporarily, constrain phenotypic evolution. Mechanistically, canalization can be understood in terms of transmission patterns, such as epistasis, pleiotropy, and genotype by environment interactions, and in terms of genetic redundancy, modularity, and emergent properties of gene networks and biochemical pathways. While different forms of selection can favor canalization, the requirements for its evolution are typically rather restrictive. Although there are several methods to detect canalization, there are still serious problems with unambiguously demonstrating canalization, particularly its adaptive value.  相似文献   

13.
SUMMARY Paleontologists and neontologists have long looked to development to understand the homologies of the dermal bones that form the "armor" of turtles, crocodiles, armadillos, and other vertebrates. This study shows molecular evidence supporting a dermomyotomal identity for the mesenchyme of the turtle carapacial ridge. The mesenchyme of the carapace primordium expresses Pax3 , Twist1 , Dermo1 , En1 , Sim1 , and Gremlin at early stages and before overt ossification expresses Pax1 . A hypothesis is proposed that this mesenchyme forms dermal bone in the turtle carapace. A comparison of regulatory gene expression in the primordia of the turtle carapace, the vertebrate limb, and the vertebral column implies the exaptation of key genetic networks in the development of the turtle shell. This work establishes a new role for this mesodermal compartment and highlights the importance of changes in genetic regulation in the evolution of morphology.  相似文献   

14.
15.
16.
17.
Although it is well known that many mutations influence phenotypic variability as well as the mean, the underlying mechanisms for variability effects are very poorly understood. The brachymorph (bm) phenotype results from an autosomal recessive mutation in the phosphoadenosine-phosphosulfate synthetase 2 gene (Papps2). A major cranial manifestation is a dramatic reduction in the growth of the chondrocranium which results from undersulfation of glycosaminoglycans (GAGs) in the cartilage matrix. We found that this reduction in the growth of the chondrocranium is associated with an altered pattern of craniofacial shape variation, a significant increase in phenotypic variance and a dramatic increase in morphological integration for craniofacial shape. Both effects are largest in the basicranium. The altered variation pattern indicates that the mutation produces developmental influences on shape that are not present in the wildtype. As the mutation dramatically reduces sulfation of GAGs, we infer that this influence is variation among individuals in the degree of sulfation, or variable expressivity of the mutation. This variation may be because of genetic variation at other loci that influence sulfation, environmental effects, or intrinsic effects. We infer that chondrocranial development exhibits greater sensitivity to variation in the sulfation of chondroitin sulfate when the degree of sulfation is low. At normal levels, sulfation probably contributes minimally to phenotypic variation. This case illustrates canalization in a particular developmental-genetic context.  相似文献   

18.
The stratigraphically earliest and the most primitive examples of vertebrate skeletal mineralization belong to lineages that are entirely extinct. Therefore, palaeontology offers a singular opportunity to address the patterns and mechanisms of evolution in the vertebrate mineralized skeleton. We test the two leading hypotheses for the emergence of the four skeletal tissue types (bone, dentine, enamel, cartilage) that define the present state of skeletal tissue diversity in vertebrates. Although primitive vertebrate skeletons demonstrate a broad range of tissues that are difficult to classify, the first hypothesis maintains that the four skeletal tissue types emerged early in vertebrate phylogeny and that the full spectrum of vertebrate skeletal tissue diversity is explained by the traditional classification system. The opposing hypothesis suggests that the early evolution of the mineralized vertebrate skeleton was a time of plasticity and that the four tissue types did not emerge until later. On the basis of a considerable, and expanding, palaeontological dataset, we track the stratigraphic and phylogenetic histories of vertebrate skeletal tissues. With a cladistic perspective, we present findings that differ substantially from long-standing models of tissue evolution. Despite a greater diversity of skeletal tissues early in vertebrate phylogeny, our synthesis finds that bone, dentine, enamel and cartilage do appear to account for the full extent of this variation and do appear to be fundamentally distinct from their first inceptions, although why a higher diversity of tissue structural grades exists within these types early in vertebrate phylogeny is a question that remains to be addressed. Citing recent evidence that presents a correlation between duplication events in secretory calcium-binding phosphoproteins (SCPPs) and the structural complexity of mineralized tissues, we suggest that the high diversity of skeletal tissues early in vertebrate phylogeny may result from a low diversity of SCPPs and a corresponding lack of constraints on the mineralization of these tissues.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号