首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 576 毫秒
1.
Site fidelity—the tendency to return to previously visited locations—is widespread across taxa. Returns may be driven by several mechanisms, including memory, habitat selection, or chance; however, pattern-based definitions group different generating mechanisms under the same label of ‘site fidelity’, often assuming memory as the main driver. We propose an operational definition of site fidelity as patterns of return that deviate from a null expectation derived from a memory-free movement model. First, using agent-based simulations, we show that without memory, intrinsic movement characteristics and extrinsic landscape characteristics are key determinants of return patterns and that even random movements may generate substantial probabilities of return. Second, we illustrate how to implement our framework empirically to establish ecologically meaningful, system-specific null expectations for site fidelity. Our approach provides a conceptual and operational framework to test hypotheses on site fidelity across systems and scales.  相似文献   

2.
We present theoretical developments of the multi-scaled random walk (MRW) model for cognitive map-influenced space use by animals. The extensions include a unified space–time scaling function, and further details with respect to statistical properties of the spatial distribution of a set of locations. Supported by numeric simulations we show how memory effects may open for a complex, multi-scaled and self-organized – i.e., intrinsically driven – habitat utilization pattern with fractal dimensional properties. These properties allow for testing for MRW compliance by using parameters from classic movement models like Brownian motion, correlated random walk and Levy walks as null models. In terms of applied ecology, empirical confirmation of memory-influenced space use by individuals will have consequences for interpretation and statistical analyses of habitat utilization. For example, under memory map influence, re-visits to intra-home range locations do not represent independent events. Further, the MRW formulation specifically implies home range movements over a continuum of process rates, spanning a range of spatio-temporal scales in parallel, in violation of the traditional low order Markovian (scale-specific) model architecture. The MRW approach requires an extension of classic Boltzmann–Gibbs statistical mechanics, which rests on the premise that spatio-temporal memory effects are averaged out beyond micro-scales. We suggest that the emergent coherence between spatial and temporal scaling from the MRW approach may open for a more realistic statistical mechanics theory for population processes under terms of memory-influenced space use by individuals.  相似文献   

3.
This study investigates the validity of current theory for predicting ecological and allometric effects on space use, social structure and mating systems of poorly known solitary cervids, based on a comparative analysis of radio-telemetry data on hog deer Axis porcinus (N=32) and Indian muntjac Muntiacus muntjak (N=28). The larger and sexually size-dimorphic hog deer inhabit highly productive alluvial floodplains, where resource distribution is patchy and spatiotemporally unpredictable. As predicted for this species, site fidelity was low and range sizes varied among sex and age groups and among seasons. Hog deer were probably non-territorial, as home range sizes seemed too large to be exclusive when taking into account their high population density. Extensive movements of adult males during the rut implied "roaming" as a mating strategy. The smaller, forest-dwelling and sexually size-monomorphic muntjacs inhabit a more uniform and stable habitat. As predicted, muntjacs exhibited higher site fidelity than hog deer, and no seasonal variations in home range sizes. Adults exhibited relatively large home range overlap, both inter- and intrasexually. Hence, strict territoriality did not occur, but their well-defined home ranges and high site fidelity indicated some form of site-specific dominance. In conclusion, habitat characteristics were appropriate predictors of home range sizes and site fidelity. Body mass appeared to be a suitable predictor of intraspecific patterns in space use but a poor predictor of interspecific patterns, probably due to a confounding effect of habitat productivity.  相似文献   

4.
Abstract: Regional wildlife-habitat models are commonly developed but rarely tested with truly independent data. We tested a published habitat model for black bears (Ursus americanus) with new data collected in a different site in the same ecological region (i.e., Ouachita Mountains of Arkansas and Oklahoma, USA). We used a Mahalanobis distance model developed from relocations of black bears in Arkansas to produce a map layer of Mahalanobis distances on a study area in neighboring Oklahoma. We tested this modeled map layer with relocations of black bears on the Oklahoma area. The distributions of relocations of female black bears were consistent with model predictions. We conclude that this modeling approach can be used to predict regional suitability for a species of interest.  相似文献   

5.
The distributional ranges of many species are contracting with habitat conversion and climate change. For vertebrates, informed strategies for translocations are an essential option for decisions about their conservation management. The pygmy bluetongue lizard, Tiliqua adelaidensis, is an endangered reptile with a highly restricted distribution, known from only a small number of natural grassland fragments in South Australia. Land‐use changes over the last century have converted perennial native grasslands into croplands, pastures and urban areas, causing substantial contraction of the species' range due to loss of essential habitat. Indeed, the species was thought to be extinct until its rediscovery in 1992. We develop coupled‐models that link habitat suitability with stochastic demographic processes to estimate extinction risk and to explore the efficacy of potential climate adaptation options. These coupled‐models offer improvements over simple bioclimatic envelope models for estimating the impacts of climate change on persistence probability. Applying this coupled‐model approach to T. adelaidensis, we show that: (i) climate‐driven changes will adversely impact the expected minimum abundance of populations and could cause extinction without management intervention, (ii) adding artificial burrows might enhance local population density, however, without targeted translocations this measure has a limited effect on extinction risk, (iii) managed relocations are critical for safeguarding lizard population persistence, as a sole or joint action and (iv) where to source and where to relocate animals in a program of translocations depends on the velocity, extent and nonlinearities in rates of climate‐induced habitat change. These results underscore the need to consider managed relocations as part of any multifaceted plan to compensate the effects of habitat loss or shifting environmental conditions on species with low dispersal capacity. More broadly, we provide the first step towards a more comprehensive framework for integrating extinction risk, managed relocations and climate change information into range‐wide conservation management.  相似文献   

6.
According to the "habitat copying" hypothesis, animals use thereproductive performance of conspecifics to assess habitat suitabilityand choose their future breeding site. This is because conspecificsshare ecological needs and thus indicate habitat suitability.Here, we propose the "heterospecific habitat copying" hypothesis,which states that animals should use public information (i.e.,information derived from the performance of others) from con-and heterospecifics sharing ecological needs. In a correlationalapproach we test some assumptions and predictions of this hypothesiswith a data set from two sympatric bird populations, rollers(Coracias garrulus) and kestrels (Falco tinnunculus), usingthe same nest-boxes and exploiting similar food resources. Sincekestrels are residents and breed earlier, we assumed that theyare dominant over rollers for nest-box acquisition. The environmentappears to be patchy for both species and temporally predictablefor kestrels only. Two results suggest that the use of heterospecificpublic information in breeding habitat selection may be at work:(1) an increase in the reoccupancy probability by kestrels ofprevious roller nests with increasing nest success, and (2)an increase in roller breeding population with increasing localkestrel success. Most of the other observed patterns could beexplained by alternative mechanisms such as natal philopatry,breeding fidelity, conspecific attraction, intraspecific habitatcopying, and the effect of interspecific competition.  相似文献   

7.
Coastal regions on the Pacific north coast of North America provide important wintering habitat for many species of sea ducks. Although winter range and habitat preferences are well described for most species, fidelity to coastal wintering sites is generally undocumented. Fidelity is an important factor necessary for understanding interactions with coastal developments and activities and corresponding management strategies. We used data from Barrow's goldeneyes (Bucephala islandica), a sea duck that winters predominantly in nearshore habitats along the Pacific north coast, to investigate inter-annual fidelity to, and intra-annual fidelity within, coastal wintering sites. Between 2006 and 2015, we marked goldeneyes on breeding, molting, and wintering sites with satellite transmitters. We retained 4,931 locations in coastal habitats from 221 goldeneyes across 4 coastal regions for our analyses. These birds demonstrated high inter-annual fidelity to coastal wintering sites; 75% of selected wintering sites were within 29 km of sites used the previous winter. Inter-annual fidelity to wintering sites was similar between sex and age classes but differed by coastal region. Goldeneyes from southcentral Alaska, USA, expressed greater inter-annual fidelity relative to birds from northern or southern British Columbia, Canada, and southeast Alaska. Goldeneyes also expressed high intra-annual fidelity within wintering sites, with 75% of individuals averaging within-season movements of ≤9 km. Intra-annual fidelity was lesser for female than male goldeneyes but did not differ between hatch-year and after-hatch-year birds. We found regional variation in intra-annual fidelity, with goldeneyes from southcentral Alaska expressing greater intra-annual fidelity compared to birds from other regions. High inter- and intra-annual winter site fidelity by Barrow's goldeneyes suggests that, at a population level, habitat use is predictable and can be used to inform risk assessment or to evaluate factors affecting habitat choice. Also, low dispersal among wintering sites suggests that recovery from population perturbations, whether caused by natural or anthropogenic events, will be protracted. © 2019 The Wildlife Society.  相似文献   

8.
Ecological theory suggests that habitat disturbance differentially influences distributions of habitat generalist and specialist species. While well-established for macroorganisms, this theory has rarely been explored for microorganisms. Here we tested these principles in permeable (sandy) sediments, ecosystems with much spatiotemporal variation in resource availability and physicochemical conditions. Microbial community composition and function were profiled in intertidal and subtidal sediments using 16S rRNA gene amplicon sequencing and metagenomics, yielding 135 metagenome-assembled genomes. Community composition and metabolic traits modestly varied with sediment depth and sampling date. Several taxa were highly abundant and prevalent in all samples, including within the orders Woeseiales and Flavobacteriales, and classified as habitat generalists; genome reconstructions indicate these taxa are highly metabolically flexible facultative anaerobes and adapt to resource variability by using different electron donors and acceptors. In contrast, obligately anaerobic taxa such as sulfate reducers and candidate lineage MBNT15 were less abundant overall and only thrived in more stable deeper sediments. We substantiated these findings by measuring three metabolic processes in these sediments; whereas the habitat generalist-associated processes of sulfide oxidation and fermentation occurred rapidly at all depths, the specialist-associated process of sulfate reduction was restricted to deeper sediments. A manipulative experiment also confirmed habitat generalists outcompete specialist taxa during simulated habitat disturbance. Together, these findings show metabolically flexible habitat generalists become dominant in highly dynamic environments, whereas metabolically constrained specialists are restricted to narrower niches. Thus, an ecological theory describing distribution patterns for macroorganisms likely extends to microorganisms. Such findings have broad ecological and biogeochemical ramifications.Subject terms: Microbial ecology, Microbial communities  相似文献   

9.
The degree of consistency with which groups of animals use the landscape is determined by a variety of ecological processes that influence their movements and patterns of habitat use. We developed a technique termed Distributional Consistency that uses survey data of unmarked individuals to quantify temporal consistency in their spatial distribution, while accounting for changes in population size. Distributional consistency is quantified by comparing the observed distribution patterns to all theoretically possible distribution patterns of observed individuals, leading to a proportional score between 0 and 1, reflecting increasingly consistent use of sites within a region. The technique can be applied to survey data for any taxa across a range of spatial and temporal scales. We suggest ways in which distributional consistency could provide inferences about the dispersal and habitat decisions of individuals, and the scales at which these decisions operate. Distributional consistency integrates spatial and temporal processes to quantify an important characteristic of different habitats and their use by populations, which in turn will be particularly useful in complimenting and interpreting other ecological measures such as population density and stability. The technique can be applied to many existing data sets to investigate and evaluate a range of important ecological questions using simple survey data.  相似文献   

10.
Understanding and predicting the distribution of organisms in heterogeneous environments lies at the heart of ecology, and the theory of density-dependent habitat selection (DDHS) provides ecologists with an inferential framework linking evolution and population dynamics. Current theory does not allow for temporal variation in habitat quality, a serious limitation when confronted with real ecological systems. We develop both a stochastic equivalent of the ideal free distribution to study how spatial patterns of habitat use depend on the magnitude and spatial correlation of environmental stochasticity and also a stochastic habitat selection rule. The emerging patterns are confronted with deterministic predictions based on isodar analysis, an established empirical approach to the analysis of habitat selection patterns. Our simulations highlight some consistent patterns of habitat use, indicating that it is possible to make inferences about the habitat selection process based on observed patterns of habitat use. However, isodar analysis gives results that are contingent on the magnitude and spatial correlation of environmental stochasticity. Hence, DDHS is better revealed by a measure of habitat selectivity than by empirical isodars. The detection of DDHS is but a small component of isodar theory, which remains an important conceptual framework for linking evolutionary strategies in behavior and population dynamics.  相似文献   

11.
Divergent natural selection driven by competition for limited resources can promote speciation, even in the presence of gene flow. Reproductive isolation is more likely to result from divergent selection when the partitioned resource is closely linked to mating. Obligate symbiosis and host fidelity (mating on or near the host) can provide this link, creating ideal conditions for speciation in the absence of physical barriers to dispersal. Symbiotic organisms often experience competition for hosts, and host fidelity ensures that divergent selection for a specific host or host habitat can lead to speciation and strengthen pre‐existing reproductive barriers. Here, we present evidence that diversification of a sympatric species complex occurred despite the potential for gene flow and that partitioning of host resources (both by species and by host habitat) has contributed to this diversification. Four species of snapping shrimps (Alpheus armatus, A. immaculatus, A. polystictus and A. roquensis) are distributed mainly sympatrically in the Caribbean, while the fifth species (A. rudolphi) is restricted to Brazil. All five species are obligate commensals of sea anemones with a high degree of fidelity and ecological specificity for host species and habitat. We analysed sequence data from 10 nuclear genes and the mitochondrial COI gene in 11–16 individuals from each of the Caribbean taxa and from the only available specimen of the Brazilian taxon. Phylogenetic analyses support morphology‐based species assignments and a well‐supported Caribbean clade. The Brazilian A. rudolphi is recovered as an outgroup to the Caribbean taxa. Isolation–migration coalescent analysis provides evidence for historical gene flow among sympatric sister species. Our data suggest that both selection for a novel host and selection for host microhabitat may have promoted diversification of this complex despite gene flow.  相似文献   

12.
Life-history characteristics of marine invertebrates exhibit broad diversity across taxa as well as considerable variation within species. Although such variation is widely recognized, comparisons of the magnitude of variability as an outcome of evolutionary processes are relatively rare. Theory predicts, for example, that patterns of variability within and between clutches can arise as a consequence of population genetic structure, environmental variability, and the uncertainty of future ecological conditions. We review the strengths and weaknesses of several statistical methods for comparing variability across distributions, including Levene's test, use of the coefficient of variation in F-tests, and analysis of covariance. We then use four case studies from our own work and from the literature to illustrate adaptive patterns of variability related to metamorphosis, habitat differentiation, physiological stress, and life-history mode. These examples demonstrate the value of comparing variability for a range of questions associated with reproductive ecology, life-history biology, and genotype-by-environment interactions. We encourage researchers studying larval ecology and life-history evolution to explicitly consider the causes and consequences of variances in traits along with their means in models, experimental designs, analyses, and interpretations.  相似文献   

13.
What biological traits distinguish taxa susceptible to extinction from less susceptible taxa? Substantiated island biogeographic theory suggests that after insularization, small islands lose more species than do large islands. Thus, susceptible taxa are those now found on only large islands. The traits of susceptible taxa can thus be found by comparing the biology of species found only on large islands with those also found on small islands. The islands examined here are those of the Sunda Shelf, created as a result of the Holocene rise in sea levels of 120 m. We use four statistical comparisons: comparative analysis by (phylogenetically) independent contrasts (N = 8 contrasts at the subgeneric or deeper level), Spearman correlations, stepwise regression, and principle components analysis (N = 9 subgenera/genera). The genera and one subgenus considered are: Hylobates, Macaca, Nasalis, Nycticebus, Pongo, Presbytis, Symphalangus, Tarsius, and Trachypithecus. Traits of risk appear to be large body mass, low density, large annual home range, and low maximum latitude. Expected traits that did not correlate with susceptibility were low interbirth interval, high percent frugivory, high group mass, low altitudinal range, and small geographic range. The risky traits also apply to just the anthropoids (i.e., prosimians excluded). The risky traits are explained if susceptibility is induced by requirements for a large extent of habitat, a small population size, and specialization. These findings, which indicate that efficiency and plasticity of use of the environment separate susceptible from successful primate taxa, might be relevant to an understanding of hominoid evolution.  相似文献   

14.
The identification of high-performance indicator taxa that combine practical feasibility and ecological value requires an understanding of the costs and benefits of surveying different taxa. We present a generic and novel framework for identifying such taxa, and illustrate our approach using a large-scale assessment of 14 different higher taxa across three forest types in the Brazilian Amazon, estimating both the standardized survey cost and the ecological and biodiversity indicator value for each taxon. Survey costs varied by three orders of magnitude, and dung beetles and birds were identified as especially suitable for evaluating and monitoring the ecological consequences of habitat change in our study region. However, an exclusive focus on such taxa occurs at the expense of understanding patterns of diversity in other groups. To improve the cost-effectiveness of biodiversity research we encourage a combination of clearer research goals and the use of an objective evidence-based approach to selecting study taxa.  相似文献   

15.
Theory of Lineage Organizations   总被引:1,自引:0,他引:1  
  相似文献   

16.
Individual foraging specialization occurs when organisms use a small subset of the resources available to a population. This plays an important role in population dynamics since individuals may have different ecological functions within an ecosystem related to habitat use and prey preferences. The foraging habitat fidelity and degree of specialization of California sea lions (Zalophus californianus) were evaluated by analyzing the stable isotopes values of carbon and nitrogen in vibrissae collected from 16 adult females from the reproductive colony on Santa Margarita Island, Magdalena Bay, Mexico, in 2012 and 2013. Based on the degree of individual specialization in δ15N, 62.5% of the females assessed can be considered specialist consumers focusing on the same prey or different prey from the same trophic level. The degree of individual specialization in δ13C indicated that 100% of the individuals showed fidelity to their foraging habitat as some fed in the lagoon, others foraged along the coast, and a third group preferred prey from the pelagic environment during both the breeding and nonbreeding seasons, suggesting diversification of foraging areas. Foraging area fidelity persisted despite the 2°C increase in the sea surface temperature over the course of the study period.  相似文献   

17.
Many wetlands harbour highly diverse biological communities and provide extensive ecosystem services; however, these important ecological features are being altered, degraded and destroyed around the world. Despite a wealth of research on how animals respond to anthropogenic changes to natural wetlands and how they use created wetlands, we lack a broad synthesis of these data. While some altered wetlands may provide vital habitat, others could pose a considerable risk to wildlife. This risk will be heightened if such wetlands are ecological traps – preferred habitats that confer lower fitness than another available habitat. Wetlands functioning as ecological traps could decrease both local and regional population persistence, and ultimately lead to extinctions. Most studies have examined how animals respond to changes in environmental conditions by measuring responses at the community and population levels, but studying ecological traps requires information on fitness and habitat preferences. Our current lack of knowledge of individual‐level responses may therefore limit our capacity to manage wetland ecosystems effectively since ecological traps require different management practices to mitigate potential consequences. We conducted a global meta‐analysis to characterise how animals respond to four key drivers of wetland alteration: agriculture, mining, restoration and urbanisation. Our overarching goal was to evaluate the ecological impacts of human alterations to wetland ecosystems, as well as identify current knowledge gaps that limit both the current understanding of these responses and effective wetland management. We extracted 1799 taxon‐specific response ratios from 271 studies across 29 countries. Community‐ (e.g. richness) and population‐level (e.g. density) measures within altered wetlands were largely comparable to those within reference wetlands. By contrast, individual fitness measures (e.g. survival) were often lower, highlighting the potential limitations of using only community‐ and population‐level measures to assess habitat quality. Only four studies provided habitat‐preference data, preventing investigation of the potential for altered wetlands to function as ecological traps. This is concerning because attempts to identify ecological traps may detect previously unidentified conservation risks. Although there was considerable variability amongst taxa, amphibians were typically the most sensitive taxon, and thus, may be a valuable bio‐indicator of wetland quality. Despite suffering reduced survival and reproduction, measures such as time to and mass at metamorphosis were similar between altered and reference wetlands, suggesting that quantifying metamorphosis‐related measures in isolation may not provide accurate information on habitat quality. Our review provides the most detailed evaluation to date of the ecological impacts of human alterations to wetland ecosystems. We emphasise that the role of wetlands in human‐altered ecosystems can be complex, as they may represent important habitat but also pose potential risks to animals. Reduced availability of natural wetlands is increasing the importance of altered wetlands for aquatic animals. Consequently, we need to define what represents habitat quality from the perspective of animals, and gain a greater understanding of the underlying mechanisms of habitat selection and how these factors could be manipulated. Furthermore, strategies to enhance the quality of these wetlands should be implemented to maximise their conservation potential.  相似文献   

18.
In the Pacific, rough-toothed dolphins ( Steno bredanensis ) are typically found in the open ocean and in deep waters around oceanic islands. We examined habitat use, site fidelity, movements, and association patterns of this species in the main Hawaiian Islands. Sighting rates were highest in depths >1,500 m. There were frequent within- and between-year resightings off the island of Hawai'i, indicating a small population size with high site fidelity. Resighting rates were lower off Kaua'i/Ni'ihau, indicating a larger population size, but with some site fidelity. Two individuals were documented moving from Kaua'i to Hawai'i, a distance of 480 km, but were not seen to associate with dolphins off Hawai'i. Observed movements were consistent with at most 2% dispersal per year between these two areas. Differences in group sizes, habitat use, and behavior imply that movements among the islands may be limited. Little is known about the diet of rough-toothed dolphins in Hawai'i, but they are thought to feed primarily on near-surface species. High fidelity to deep-water areas off the island of Hawai'i likely reflects an increase in the predictability of prey associated with upwelling due to the island mass effect, wind stress curl and cyclonic eddies that form off the island.  相似文献   

19.
Species abundance data are critical for testing ecological theory, but obtaining accurate empirical estimates for many taxa is challenging. Proxies for species abundance can help researchers circumvent time and cost constraints that are prohibitive for long‐term sampling. Under simple demographic models, genetic diversity is expected to correlate with census size, such that genome‐wide heterozygosity may provide a surrogate measure of species abundance. We tested whether nucleotide diversity is correlated with long‐term estimates of abundance, occupancy and degree of ecological specialization in a diverse lizard community from arid Australia. Using targeted sequence capture, we obtained estimates of genomic diversity from 30 species of lizards, recovering an average of 5,066 loci covering 3.6 Mb of DNA sequence per individual. We compared measures of individual heterozygosity to a metric of habitat specialization to investigate whether ecological preference exerts a measurable effect on genetic diversity. We find that heterozygosity is significantly correlated with species abundance and occupancy, but not habitat specialization. Demonstrating the power of genomic sampling, the correlation between heterozygosity and abundance/occupancy emerged from considering just one or two individuals per species. However, genetic diversity does no better at predicting abundance than a single day of traditional sampling in this community. We conclude that genetic diversity is a useful proxy for regional‐scale species abundance and occupancy, but a large amount of unexplained variation in heterozygosity suggests additional constraints or a failure of ecological sampling to adequately capture variation in true population size.  相似文献   

20.
Aim A better understanding of the processes driving local species richness and of the scales at which they operate is crucial for conserving biodiversity in cultivated landscapes. Local species richness may be controlled by ecological processes acting at larger spatial scales. Very little is known about the effect of landscape variables on soil biota. The aim of our study was to partly fill this gap by relating the local variation of surface‐dwelling macroarthropod species richness to factors operating at the habitat scale (i.e. land use and habitat characteristics) and the landscape scale (i.e. composition of the surrounding matrix). Location An agricultural landscape with a low‐input farming system in Central Hesse, Germany. Methods We focused on five taxa significantly differing in mobility and ecological requirements: ants, ground beetles, rove beetles, woodlice, and millipedes. Animals were caught with pitfall traps in fields of different land use (arable land, grassland, fallow land) and different habitat conditions (insolation, soil humidity). Composition of the surrounding landscape was analysed within a radius of 250 m around the fields. Results Factors from both scales together explained a large amount of the local variation in species richness, but the explanatory strength of the factors differed significantly among taxa. Land use particularly affected ground beetles and woodlice, whereas ants and rove beetles were more strongly affected by habitat characteristics, namely by insolation and soil characteristics. Local species richness of diplopods depended almost entirely on the surrounding landscape. In general, the composition of the neighbouring landscape had a lower impact on the species richness of most soil macroarthropod taxa than did land use and habitat characteristics. Main conclusions We conclude that agri‐environment schemes for the conservation of biodiversity in cultivated landscapes have to secure management for both habitat quality and heterogeneous landscape mosaics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号