首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential investment in offspring by parental and progeny gender has been discussed and periodically analyzed for the past 80 years as an evolutionary adaptive strategy. Parental investment theory suggests that parents in poor condition have offspring in poor condition. Conversely, parents in good condition give rise to offspring in good condition. As formalized in the Trivers-Willard hypothesis (TWH), investment in daughters will be greater under poor conditions while sons receive greater parental investment under good conditions. Condition is ultimately equated to offspring reproductive fitness, with parents apparently using a strategy to maximize their genetic contribution to future generations. Analyses of sex ratio have been used to support parental investment theory and in many instances, though not all, results provide support for TWH. In the present investigation, economic strategies were analyzed in the context of offspring sex ratio and survival to reproductive age in a Zapotec-speaking community in the Valley of Oaxaca, southern Mexico. Growth status of children, adult stature, and agricultural resources were analyzed as proxies for parental and progeny condition in present and prior generations. Traditional marriage practice in Mesoamerican peasant communities is patrilocal postnuptial residence with investments largely favoring sons. The alternative, practiced by ~25% of parents, is matrilocal postnuptial residence which is an investment favoring daughters. Results indicated that sex ratio of offspring survival to reproductive age was related to economic strategy and differed significantly between the patrilocal and matrilocal strategies. Variance in sex ratio was affected by condition of parents and significant differences in survival to reproductive age were strongly associated with economic strategy. While the results strongly support TWH, further studies in traditional anthropological populations are needed.  相似文献   

2.
Intergenerational effects arise when parents' actions influence the reproduction and survival of their offspring and possibly later descendants. Models suggest that intergenerational effects have important implications for both population dynamical patterns and the evolution of life-history traits. However, these will depend on the nature and duration of intergenerational effects. Here we show that manipulating parental food environments of soil mites produced intergenerational effects that were still detectable in the life histories of descendents three generations later. Intergenerational effects varied in different environments and from one generation to the next. In low-food environments, variation in egg size altered a trade-off between age and size at maturity and had little effect on the size of eggs produced in subsequent generations. Consequently, intergenerational effects decreased over time. In contrast, in high-food environments, variation in egg size predominantly influenced a trade-off between fecundity and adult survival and generated increasing variation in egg size. As a result, the persistence and significance of intergenerational effects varied between high- and low-food environments. Context-dependent intergenerational effects can therefore have complex but important effects on population dynamics.  相似文献   

3.
Life-history theory concerns the optimal spread of reproduction over an organism's life span. In variable environments, there may be extrinsic differences between breeding periods within an organism's life, affecting both offspring and parent and giving rise to intergenerational trade-offs. Such trade-offs are often discussed in terms of reproductive value for parent and offspring. Here, we consider parental life-history optimization in response to varying offspring values of a population regulated by territoriality, where the quality of the environment varies periodically. Periods are interpreted as either within-year (seasonality) or between-years variation (cyclicity). The evolutionarily stable strategy in a general model with two-phased periodicity in the environment can generate either higher or lower effort in the more favorable of the two phases; hence knowing survival prospects of offspring does not suffice for predicting reproductive effort-the future of all descendants and the parent must be tracked. We also apply our method to data on the Ural owl Strix uralensis, a species preying on cyclically fluctuating voles. The observed dynamics are best predicted by assuming delayed reproductive costs and Type II functional response. Accounting for varying offspring values can lead to cases where both reproductive effort and recruitment of offspring are higher in the phase when voles are not maximally abundant, a pattern supported by our data.  相似文献   

4.
Intergenerational effects can have either adaptive or nonadaptive impacts on offspring performance. Such effects are likely to be of ecological and evolutionary importance in animals with extended parental care, such as birds, mammals and some insects. Here, we studied the effects of exposure to microbial competition during early development on subsequent reproductive success in the burying beetle Nicrophorus vespilloides, an insect with elaborate parental care. We found that exposure to high levels of microbial competition both during a female's larval development and during her subsequent reproduction resulted in females rearing smaller broods than those exposed to lower levels of microbial competition. To determine whether these differences arose before or after offspring hatching, a cross‐fostering experiment was conducted. Our results demonstrate that the impact of larval competition with microbes for resources extends into adult life and can negatively affect subsequent generations via impacts on the quality of parental care provided after hatching. However, we also find evidence for some positive effects of previous microbial exposure on prehatch investment, suggesting that the long‐term results of competition with microbes may include altering the balance of parental investment between prehatch and post‐hatch care.  相似文献   

5.
The reproductive costs associated with the upregulation of immunity have been well-documented and constitute a fundamental trade-off between reproduction and self-maintenance. However, recent experimental work suggests that parents may increase their reproductive effort following immunostimulation as a form of terminal parental investment as prospects for future reproduction decline. We tested the trade-off and terminal investment hypotheses in a wild population of house wrens (Troglodytes aedon) by challenging the immune system of breeding females with lipopolysaccharide, a potent but non-lethal antigen. Immunized females showed no evidence of reproductive costs; instead, they produced offspring of higher phenotypic quality, but in a sex-specific manner. Relative to control offspring, sons of immunized females had increased body mass and their sisters exhibited higher cutaneous immune responsiveness to phytohaemagglutinin injection, constituting an adaptive strategy of sex-biased allocation by immune-challenged females to enhance the reproductive value of their offspring. Thus, our results are consistent with the terminal investment hypothesis, and suggest that maternal immunization can induce pronounced transgenerational effects on offspring phenotypes.  相似文献   

6.
We present a biosocial model of human male parental care that allows male parental allocations to be influenced not only by changes in the fitness (welfare) of the recipient offspring, but also by their effects on the man's relationship with the child's mother. The model recognizes four classes of relationships between males and the children they parent: genetic offspring of current mates (combined relationship and parental effort), genetic offspring of previous mates (parental effort solely), step offspring of current mates (relationship effort solely), and stepchildren of previous mates (essentially no expected investment). We test the model using data on parental investments collected from adult males living in Albuquerque, New Mexico, U.S.A. Four measures of paternal investment are examined: the probability that a child attends college (2,191 offspring), the probability that a child who attends college receives money for it (N = 1,212), current financial expenditures on children (N = 635), and the amount of time per week that men spend with children ages 5 to 12 years (N = 2,589). The tests are consistent with a role for relationship effort in parental care: men invest more in the children of their current mates, even when coresidence with offspring is not a confounder.  相似文献   

7.
Allocation of resources to competing processes of growth, maintenance, or reproduction is arguably a key process driving the physiology of life history trade‐offs and has been shown to affect immune defenses, the evolution of aging, and the evolutionary ecology of offspring quality. Here, we develop a framework to investigate the evolutionary consequences of physiological dynamics by developing theory linking reproductive cell dynamics and components of fitness associated with costly resource allocation decisions to broader life history consequences. We scale these reproductive cell allocation decisions to population‐level survival and fecundity using a life history approach and explore the effects of investment in reproduction or tissue‐specific repair (somatic or reproductive) on the force of selection, reproductive effort, and resource allocation decisions. At the cellular level, we show that investment in protecting reproductive cells increases fitness when reproductive cell maturation rate is high or reproductive cell death is high. At the population level, life history fitness measures show that cellular protection increases reproductive value by differential investment in somatic or reproductive cells and the optimal allocation of resources to reproduction is moulded by this level of investment. Our model provides a framework to understand the evolutionary consequences of physiological processes underlying trade‐offs and highlights the insights to be gained from considering fitness at multiple levels, from cell dynamics through to population growth.  相似文献   

8.
In spite of the potential evolutionary importance of parental effects, many aspects of these effects remain inadequately explained. This paper explores both their causes and potential consequences for the evolution of life-history traits in plants. In a growth chamber experiment, I manipulated the pre- and postzygotic temperatures of both parents of controlled crosses of Plantago lanceolata. All offspring traits were affected by parental temperature. On average, low parental temperature increased seed weight, reduced germination and offspring growth rate, and accelerated onset of reproduction by 7%, 50%, 5%, and 47%, respectively, when compared to the effects of high parental temperature. Both pre- and postzygotic parental temperatures (i.e., prior to fertilization vs. during fertilization and seed set, respectively) influenced offspring traits but not always in the same direction. In all cases, however, the postzygotic effect was stronger. The prezygotic effects were more often transmitted paternally than maternally. Growth and onset of reproduction were influenced both directly by parental temperature as well as indirectly via the effects of parental temperature on seed weight and germination. Significant interactions between parental genotypes and prezygotic temperature treatment (G × E interactions) show that genotypes differ in their intergenerational responses to temperature with respect to germination and growth. The data suggest that temperature is involved in both genetically based and environmentally induced parental effects and that parental temperature may accelerate the rate of evolutionary change in flowering time in natural populations of P. lanceolata. The environmentally induced temperature effects, as mediated through G × (prezygotic) E interactions are not likely to affect the rate or direction of evolutionary change in the traits examined because postzygotic temperature effects greatly exceed prezygotic effects.  相似文献   

9.
Summary Using a model that allows the mean and variance of investment by parents in offspring to evolve in response to change in degree of temporal environmental variation, this paper shows that both parental investment parameters should increase with increases in temporal variation. If offspring receiving greater parental investment are viable over a broader range of environmental conditions, then increased temporal environmental variation can select for increases in parental investment. The variance in parental investment also may increase with increases in temporal variation, but there is a threshold level of temporal variation that must be exceeded before variance in parental investment is adaptive. Thus phenotypic variance in parental investment is not adaptive in all temporally varying environments. Further, increased overlap among generations reduces the expected effects of temporal variation on the mean and variance in parental investment. Thus a negative correlation between length of reproductive life and both measures of investment is expected. There is support for the predictions of this model in some animal groups, but not among plants. Possible reasons for the lack of support among plants are discussed and directions for future research aimed at distinguishing adaptive and maladaptive phenotypic variance in parental investment are suggested.  相似文献   

10.
Life history theory views reproduction as an outcome of resource allocation. The allocation of resources such as parental investments of time, energy and material resources involves trade-offs between number of offspring and timing of reproduction. Within the framework of mammalian parental investment, the outstanding feature of human reproduction is the high level of paternal care. Although empirical evidence suggests that human paternal investment may have evolved as a reproductive strategy to reduce infant and child mortality rates, the effects of actual paternal investment, including allocating time to child care, on female reproductive decisions have received relatively little attention. We examined the trade-off from two perspectives using a representative sample of married South Korean women aged 20–44 in 2005 (n=977). First, paternal investment in domestic labor, including child care and housework, was expected to be associated with women's preference regarding future reproduction. Second, relative paternal investment was expected to increase women's preference for future reproduction, especially among employed women. We found that increased paternal investment in child care and housework remarkably enhanced women's intention to have a second child, especially among employed women. In addition, although family members provide a low percentage of child care in South Korea, such help is likely to be a useful resource for second childbirth among employed women. Somewhat expectedly, older age and longer time since first birth had negative effects on women's second-child intention. There is growing evidence that, in the lowest fertility societies, paternal investment may be an essential resource for promoting future reproductive behavior of women, especially employed women.  相似文献   

11.
Evolutionary conflict between parents and offspring over parental resource investment is a significant selective force on the traits of both parents and offspring. Empirical studies have shown that for some species, the amount of parental investment is controlled by the parents, whereas in other species, it is controlled by the offspring. The main difference between these two strategies is the residual reproductive value of the parents or opportunities for future reproduction. Therefore, this could explain the patterns of control of parental investment at the species level. However, the residual reproductive value of the parents will change during their lifetime; therefore, parental influence on the amount of investment can be expected to change plastically. Here, we investigated control of parental investment when parents were young and had a high residual reproductive value, compared to when they were old and had a low residual reproductive value using a cross‐fostering experiment in the burying beetle Nicrophorus quadripunctatus. We found that parents exert greater control over parental investment when they are young, but parental control is weakened as the parents age. Our results demonstrate that control of parental investment is not fixed, but changes plastically during the parent's lifetime.  相似文献   

12.
Parental effort has a direct impact on individual fitness. Theoretical models exploring how parental effort evolves to cope with offspring demand and sexual conflicts may differ in the assumptions they make in respect to the genetic heritability of parental behaviours. Only a few attempts, however, have been made to estimate the heritability of parental behaviours and their possible co‐evolution with offspring solicitation behaviour. Analysing parent and offspring behaviours in four generations of cross‐fostered broods of house sparrows, we found that parental effort (food delivery rate) was repeatable across consecutive broods and heritable across generations. In contrast, parental response to experimentally induced changes in nestling begging was neither repeatable across broods nor heritable across generations or correlated to nestling begging. Thus, the results give no indication for genetic covariance between begging intensity and parental response, but provide the first cross‐fostering‐based evidence for the heritability of parental investment levels across generations.  相似文献   

13.
D. S. Glazier 《Oecologia》2000,122(3):335-345
Relationships between body storage (estimated as fat content and residuals of body mass regressed against body length) and offspring investment [brood mass, brood size (number of embryos per brood) and embryo mass] were examined within and among populations of the amphipod Gammarus minus in ten cold springs in central Pennsylvania, USA. Two major hypotheses and six corollary hypotheses were tested. Total reproductive investment (brood mass and brood size) was usually strongly positively correlated with maternal body length and body storage both within and among populations. These positive associations between reproductive and somatic investments are expected if individual variation in resource acquisition exceeds that of resource allocation. That is, individuals or populations that are able to acquire more resources should also be able to allocate more resources to both reproduction and somatic reserves than those acquiring fewer resources. This hypothesis is consistent with evidence showing that individual differences in body storage in G. minus and other amphipods are related to differences in resource acquisition. Positive associations between reproductive and somatic investments do not mean that energy costs of reproduction do not exist in G. minus. Evidence for reproductive energy costs included the lower body-fat contents of brooding versus nonbrooding females and the relatively low body mass per length of females who had just deposited eggs in their brood pouch. Unlike brood mass and brood size, individual embryo mass was usually unrelated to maternal body length and body storage. This pattern is largely consistent with optimal offspring investment theory, which predicts that offspring size should be insensitive to variation in parental resource status. However, in contrast to theory, embryo mass increased in winter when brooding females were significantly ”fatter”, presumably due to the availability of autumn-shed leaf food. This seasonal change in offspring size may be a maternally mediated effect of increased resource availability, though other explanations are possible. Overall, this study suggests that ”fatter” female amphipods are fitter than ”thinner” ones, though both the costs and benefits of increased body storage and brood size require investigation to substantiate this claim. This study also suggests that effects of individual variation in resource acquisition on life-history patterns deserve more theoretical and empirical attention by ecologists than they have received. It should be recognized that positive and/or nonsignificant correlations between life-history traits are just as interesting and important as are the negative correlations predicted by many theoretical models. Received: 20 January 1999 / Accepted: 26 September 1999  相似文献   

14.
Liu J  Rotkirch A  Lummaa V 《PloS one》2012,7(4):e34898
Radical declines in fertility and postponement of first reproduction during the recent human demographic transitions have posed a challenge to interpreting human behaviour in evolutionary terms. This challenge has stemmed from insufficient evolutionary insight into individual reproductive decision-making and the rarity of datasets recording individual long-term reproductive success throughout the transitions. We use such data from about 2,000 Finnish mothers (first births: 1880s to 1970s) to show that changes in the maternal risk of breeding failure (no offspring raised to adulthood) underlay shifts in both fertility and first reproduction. With steady improvements in offspring survival, the expected fertility required to satisfy a low risk of breeding failure became lower and observed maternal fertility subsequently declined through an earlier age at last reproduction. Postponement of the age at first reproduction began when this risk approximated zero-even for mothers starting reproduction late. Interestingly, despite vastly differing fertility rates at different stages of the transitions, the number of offspring successfully raised to breeding per mother remained relatively constant over the period. Our results stress the importance of assessing the long-term success of reproductive strategies by including measures of offspring quality and suggest that avoidance of breeding failure may explain several key features of recent life-history shifts in industrialized societies.  相似文献   

15.
Individual and population sex allocation patterns   总被引:4,自引:0,他引:4  
A variety of sex allocation models is considered in which the reproductive returns on investment in males differ from the returns on investment in females, the amounts of resources available for reproduction vary in the population, the costs of making male and female reproductive structures differ, and the conception sex ratio may be fixed and there may be an initial minimum investment per offspring. Results of these models include quantitative predictions for both individual- and population-level sex allocation, an opportunity to study the magnitude of changes in predicted patterns as key variables change, and therefore an analysis of the robustness of Fisher's equal investment theory. One example is that Fisher's argument is extremely robust for high fecundity organisms, but, in low fecundity organisms, is sensitive to differences between the sexes in reproductive returns on investment per offspring, a situation that occurs in many vertebrates to which Fisher's theory is often applied. A second example is that individual- and population-level patterns often depend strongly on the distribution of resources available for reproduction among individuals in the population.  相似文献   

16.
Life-history theory predicts that selection will favor optimal levels of parental effort that balance benefits of current reproduction with costs to survival and future reproduction. The optimal level of effort depends on parental traits, offspring traits, and provisioning strategy. Additionally, how these factors influence effort may differ depending on the stage of reproduction. The relative importance of maternal and offspring traits on energy allocation to offspring was investigated in known-age Antarctic fur seals Arctocephalus gazella across four stages of reproduction, using birth mass and milk-consumption measurements. Maternal traits were important during three of the four stages investigated, with larger females giving birth to larger pups and investing more in pups during perinatal and molt stages. Pup mass influenced maternal effort during the premolt stage, and provisioning strategy influenced postnatal maternal effort at all stages. Energy provided to the offspring during an attendance visit was positively related to the duration of the foraging-trip/visit cycle; however, when investment was controlled for trip/visit cycle duration, the overall rate of energy transfer was similar across trip durations. In addition to strong effects of maternal mass, pup traits affected energy allocation, suggesting that pup demand is important in determining maternal care. These findings emphasize the importance of considering state variables in life-history studies and suggest that timing of measurements of effort in species with long provisioning periods may influence conclusions and our ability to make comparisons of reproductive effort among species.  相似文献   

17.
One of the common assumptions in the study of the evolution of parental care is that trade-offs exist between parental investment and other fitness-related traits. In general, this body of work follows the traditional definition that parental investment (in the current offspring) decreases that individual's ability to invest in future reproduction ( Trivers 1972 ). However, examination of the empirical evidence shows that assuming a trade-off between parental and mating effort is not always appropriate. This overemphasis on a trade-off between mating and parental effort has arisen in part because of an oversimplification of female reproductive strategies, a failure to consider interactions between the sexes, and a tendency to consider behaviours as unifunctional, thereby ignoring the more complex relationship between mating and parental effort in many species. Here, we first examine the empirical evidence for trade-offs between mating and parental effort in males and females to ask when trade-offs occur and what pattern they take. By highlighting a number of exemplar species, we then explore how the presence or absence of trade-offs relates to mate choice and sexual selection in both sexes. Finally, we highlight the importance of considering individual variation, which has been particularly overlooked in examinations of female investment, and how preferences in one sex may influence the existence and our interpretation of apparent trade-offs in the other sex.  相似文献   

18.
Human menopause is ubiquitous among women and is uninfluenced by modernity. In addition, it remains an evolutionary puzzle: studies have largely failed to account for diminishing selection on reproduction beyond 50 years. Using a 200‐year dataset on pre‐industrial Finns, we show that an important component is between‐generation reproductive conflict among unrelated women. Simultaneous reproduction by successive generations of in‐laws was associated with declines in offspring survivorship of up to 66%. An inclusive fitness model revealed that incorporation of the fitness consequences of simultaneous intergenerational reproduction between in‐laws, with those of grandmothering and risks of dying in childbirth, were sufficient to generate selection against continued reproduction beyond 51 years. Decomposition of model estimates suggested that the former two were most influential in generating selection against continued reproduction. We propose that menopause evolved, in part, because of age‐specific increases in opportunities for intergenerational cooperation and reproductive competition under ecological scarcity.  相似文献   

19.
Natural selection can favour health at youth or middle age (high reproductive value) over health at old age (low reproductive value). This means, all else being equal, selection for cancer suppression should dramatically drop after reproductive age. However, in species with significant parental investment, the capacity to enhance inclusive fitness may increase the reproductive value of older individuals or even those past reproductive age. Variation in parental investment levels could therefore contribute to variation in cancer susceptibility across species. In this article, we describe a simple model and framework for the evolution of cancer suppression with varying levels of parental investment and use this model to make testable predictions about variation in cancer suppression across species. This model can be extended to show that selection for cancer suppression is stronger in species with cooperative breeding systems and intergenerational transfers. We consider three cases that can select for cancer suppression into old age: (i) extended parental care that increases the survivorship of their offspring, (ii) grandparents contributing to higher fecundity of their children and (iii) cooperative breeding where helpers forgo reproduction or even survivorship to assist parents in having higher fecundity.  相似文献   

20.
The change in reproductive mode from parthenogenesis to gametogenesis in Cladocera is controlled by multiple environmental cues. Maternal effects are involved in the control of reproductive switching. In this study, we estimated the readiness of Moina macrocopa females to change reproduction mode under the effect of conspecific chemicals on maternal and offspring generations. The results demonstrated that information about the chemical environment was not transmitted between generations (none of the females produced diapausing eggs in the control medium irrespective of their mothers' environment). Differences in maternal energetic investments were not significant, hence the maternal environment did not affect the fecundity. However, tested animals adapted to the effect of the diapause inducing factor. When offspring of mothers cultured in crowded water were also cultured in crowded water (the constant effect of conspecific chemicals), they switched less readily to gametogenesis than offsprings of mothers cultured in fresh medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号