首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The adaptive dynamics of altruism in spatially heterogeneous populations   总被引:4,自引:0,他引:4  
Abstract.— We study the spatial adaptive dynamics of a continuous trait that measures individual investment in altruism. Our study is based on an ecological model of a spatially heterogeneous population from which we derive an appropriate measure of fitness. The analysis of this fitness measure uncovers three different selective processes controlling the evolution of altruism: the direct physiological cost, the indirect genetic benefits of cooperative interactions, and the indirect genetic costs of competition for space. In our model, habitat structure and a continuous life cycle makes the cost of competing for space with relatives negligible. Our study yields a classification of adaptive patterns of altruism according to the shape of the costs of altruism (with decelerating, linear, or accelerating dependence on the investment in altruism). The invasion of altruism occurs readily in species with accelerating costs, but large mutations are critical for altruism to evolve in selfish species with decelerating costs. Strict selfishness is maintained by natural selection only under very restricted conditions. In species with rapidly accelerating costs, adaptation leads to an evolutionarily stable rate of investment in altruism that decreases smoothly with the level of mobility. A rather different adaptive pattern emerges in species with slowly accelerating costs: high altruism evolves at low mobility, whereas a quasi-selfish state is promoted in more mobile species. The high adaptive level of altruism can be predicted solely from habitat connectedness and physiological parameters that characterize the pattern of cost. We also show that environmental changes that cause increased mobility in those highly altruistic species can beget selection-driven self-extinction, which may contribute to the rarity of social species.  相似文献   

3.
Nature abounds with a rich variety of altruistic strategies, including public resource enhancement, resource provisioning, communal foraging, alarm calling, and nest defense. Yet, despite their vastly different ecological roles, current theory typically treats diverse altruistic traits as being favored under the same general conditions. Here, we introduce greater ecological realism into social evolution theory and find evidence of at least four distinct modes of altruism. Contrary to existing theory, we find that altruistic traits contributing to "resource-enhancement" (e.g., siderophore production, provisioning, agriculture) and "resource-efficiency" (e.g., pack hunting, communication) are most strongly favored when there is strong local competition. These resource-based modes of helping are "K-strategies" that increase a social group's growth yield, and should characterize species with scarce resources and/or high local crowding caused by low mortality, high fecundity, and/or mortality occurring late in the process of resource-acquisition. The opposite conditions, namely weak local competition (abundant resource, low crowding), favor survival (e.g., nest defense) and fecundity (e.g., nurse workers) altruism, which are "r-strategies" that increase a social group's growth rate. We find that survival altruism is uniquely favored by a novel evolutionary force that we call "sunk cost selection." Sunk cost selection favors helping that prevents resources from being wasted on individuals destined to die before reproduction. Our results contribute to explaining the observed natural diversity of altruistic strategies, reveal the necessary connection between the evolution and the ecology of sociality, and correct the widespread but inaccurate view that local competition uniformly impedes the evolution of altruism.  相似文献   

4.
Altruism is generally understood to be behavior that benefits others at a personal cost to the behaving individual. However, within evolutionary biology, different authors have interpreted the concept of altruism differently, leading to dissimilar predictions about the evolution of altruistic behavior. Generally, different interpretations diverge on which party receives the benefit from altruism and on how the cost of altruism is assessed. Using a simple trait-group framework, we delineate the assumptions underlying different interpretations and show how they relate to one another. We feel that a thorough examination of the connections between interpretations not only reveals why different authors have arrived at disparate conclusions about altruism, but also illuminates the conditions that are likely to favor the evolution of altruism.  相似文献   

5.
Conditional dispersal, in which an individual’s decision over whether to disperse is a response to environmental conditions, features prominently in studies of dispersal evolution. Using models of clines, I examine how one widely discussed cost of dispersal, namely, that dispersal impedes local adaptation, changes with conditional dispersal and what this implies for dispersal evolution. I examine the consequences for dispersal evolution of the responsiveness of dispersal to the environment, the accuracy of any proximal cues that individuals rely upon to assess habitat quality, and whether dispersal responds to fitness itself or only to some fitness components (juvenile survivorship). All of the conditional dispersal behaviors that I consider weaken the indirect cost of dispersal inhibiting local adaptation. However, if individuals rely on imprecise cues to assess habitat quality and base dispersal decisions on juvenile survivorship, then conditional dispersal can incur additional costs by exacerbating overcrowding. Conditional dispersal initially leads to steeper clines in traits under direct selection, but when dispersiveness can itself evolve, conditional dispersal allows sigmoidal clines to persist long after those obtained with unconditional movement would become stepped. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
In recent years there has been a large body of theoretical work examining how local competition can reduce and even remove selection for altruism between relatives. However, it is less well appreciated that local competition favours selection for spite, the relatively neglected ugly sister of altruism. Here, we use extensions of social evolution theory that were formulated to deal with the consequences for altruism of competition between social partners, to illustrate several points on the evolution of spite. Specifically, we show that: (i) the conditions for the evolution of spite are less restrictive than previously assumed; (ii) previous models which have demonstrated selection for spite often implicitly assumed local competition; (iii) the scale of competition must be allowed for when distinguishing different forms of spite (Hamiltonian vs. Wilsonian); (iv) local competition can enhance the spread of spiteful greenbeards; and (v) the theory makes testable predictions for how the extent of spite should vary dependent upon population structure and average relatedness.  相似文献   

7.
The evolutionary consequences of changes in landscape dynamics for the evolution of life history syndromes are studied using a metapopulation model. We consider in turn the long-term effects of a change in the local disturbance rate, in the maximal local population persistence, in habitat productivity, and in habitat fragmentation. We examine the consequences of selective interactions between dispersal and reproductive effort by comparing the outcome of joint evolution to a situation where the species has lost the potential to evolve either its reproductive effort or its dispersal rate. We relax the classical assumption that any occupied site in the metapopulation reaches its carrying capacity immediately after recolonization. Our main conclusions are the following: (1) genetic diversity modifies the range of landscape parameters for which the metapopulation is viable, but it alters very little the qualitative evolutionary trends observed for each trait within this range. Although they are both part of a competition/colonization axis, reproductive effort and dispersal are not substitutable traits: their evolution reflects more directly the change in the landscape dynamics, than a selective interaction among them. (2) no general syndrome of covariation between reproductive effort and dispersal can be predicted: the pattern of association between the two traits depends on the type of change in landscape dynamics and on the saturation level. We review empirical evidence on colonizer syndromes and suggest lines for further empirical work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Quantitative genetic models are used to investigate the evolution of generalists and specialists in a coarse-grained environment with two habitat types when there are costs attached to being a generalist. The outcomes for soft and hard selection models are qualitatively different. Under soft selection (e.g., for juvenile or male-reproductive traits) the population evolves towards the single peak in the adaptive landscape. At equilibrium, the population mean phenotype is a compromise between the reaction that would be optimal in both habitats and the reaction with the lowest cost. Furthermore, the equilibrium is closer to the optimal phenotype in the most frequent habitat, or the habitat in which selection on the focal trait is stronger. A specialist genotype always has a lower fitness than a generalist, even when the costs are high. In contrast, under hard selection (e.g., for adult or female-reproductive traits) the adaptive landscape can have one, two, or three peaks; a peak represents a population specialized to one habitat, equally adapted to both habitats, or an intermediate. One peak is always found when the reaction with the lowest cost is not much different from the optimal reaction, and this situation is similar to the soft selection case. However, multiple peaks are present when the costs become higher, and the course of evolution is then determined by initial conditions, and the region of attraction of each peak. This implies that the evolution of specialization and phenotypic plasticity may not only depend on selection regimes within habitats, but also on contingent, historical events (migration, mutation). Furthermore, the evolutionary dynamics in changing environments can be widely different for populations under hard and soft selection. Approaches to measure costs in natural and experimental populations are discussed.  相似文献   

9.
A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits.  相似文献   

10.
It is now widely appreciated that competition between kin inhibits the evolution of altruism. In standard population genetics models, it is difficult for indiscriminate altruism towards social partners to be favoured at all. The reason is that while limited dispersal increases the kinship of social partners it also intensifies local competition. One solution that has received very little attention is if individuals disperse as groups (budding dispersal), as this relaxes local competition without reducing kinship. Budding behaviour is widespread through all levels of biological organization, from early protocellular life to cooperatively breeding vertebrates. We model the effects of individual dispersal, budding dispersal, soft selection and hard selection to examine the conditions under which altruism is favoured. More generally, we examine how these various demographic details feed into relatedness and scale of competition parameters that can be included into Hamilton's rule.  相似文献   

11.
The structure of social interactions influences many aspects of social life, including the spread of information and behavior, and the evolution of social phenotypes. After dispersal, organisms move around throughout their lives, and the patterns of their movement influence their social encounters over the course of their lifespan. Though both space and mobility are known to influence social evolution, there is little analysis of the influence of specific movement patterns on evolutionary dynamics. We explored the effects of random movement strategies on the evolution of cooperation using an agent-based prisoner’s dilemma model with mobile agents. This is the first systematic analysis of a model in which cooperators and defectors can use different random movement strategies, which we chose to fall on a spectrum between highly exploratory and highly restricted in their search tendencies. Because limited dispersal and restrictions to local neighborhood size are known to influence the ability of cooperators to effectively assort, we also assessed the robustness of our findings with respect to dispersal and local capacity constraints. We show that differences in patterns of movement can dramatically influence the likelihood of cooperator success, and that the effects of different movement patterns are sensitive to environmental assumptions about offspring dispersal and local space constraints. Since local interactions implicitly generate dynamic social interaction networks, we also measured the average number of unique and total interactions over a lifetime and considered how these emergent network dynamics helped explain the results. This work extends what is known about mobility and the evolution of cooperation, and also has general implications for social models with randomly moving agents.  相似文献   

12.
Understanding the evolution of altruism requires knowledge of both its constraints and its drivers. Here we show that, paradoxically, ecological constraints on altruism may ultimately be its strongest driver. We construct a two-trait, coevolutionary adaptive dynamics model of social evolution in a genetically structured population with local resource competition. The intensity of local resource competition, which influences the direction and strength of social selection and which is typically treated as a static parameter, is here allowed to be an evolvable trait. Evolution of survival/fecundity altruism, which requires weak local competition, increases local competition as it evolves, creating negative environmental feedback that ultimately inhibits its further evolutionary advance. Alternatively, evolution of resource-based altruism, which requires strong local competition, weakens local competition as it evolves, also ultimately causing its own evolution to stall. When evolving independently, these altruistic strategies are intrinsically self-limiting. However, the coexistence of these two altruism types transforms the negative ecoevolutionary feedback generated by each strategy on itself into positive feedback on the other, allowing the presence of one trait to drive the evolution of the other. We call this feedback conversion "reciprocal niche construction." In the absence of constraints, this process leads to runaway coevolution of altruism types. We discuss applications to the origins and evolution of eusociality, division of labor, the inordinate ecological success of eusocial species, and the interaction between technology and demography in human evolution. Our theory suggests that the evolution of extreme sociality may often be an autocatalytic process.  相似文献   

13.
Although the prisoner's dilemma (PD) has been used extensively to study reciprocal altruism, here we show that the n-player prisoner's dilemma (NPD) is also central to two other prominent theories of the evolution of altruism: inclusive fitness and multilevel selection. An NPD model captures the essential factors for the evolution of altruism directly in its parameters and integrates important aspects of these two theories such as Hamilton's rule, Simpson's paradox, and the Price covariance equation. The model also suggests a simple interpretation of the Price selection decomposition and an alternative decomposition that is symmetrical and complementary to it. In some situations this alternative shows the temporal changes in within- and between-group selection more clearly than the Price equation. In addition, we provide a new perspective on strong vs. weak altruism by identifying their different underlying game structures (based on absolute fitness) and showing how their evolutionary dynamics are nevertheless similar under selection (based on relative fitness). In contrast to conventional wisdom, the model shows that both strong and weak altruism can evolve in periodically formed random groups of non-conditional strategies if groups are multigenerational. An integrative approach based on the NPD helps unify different perspectives on the evolution of altruism.  相似文献   

14.
Phenotypic evolution in sympatric species can be strongly impacted by species interactions, either mutualistic or antagonistic. Heterospecific reproductive behaviours between sympatric species have been shown to favour phenotypic divergence of traits used as sexual cues. Those traits may also be involved in local adaptation or in other types of species interactions and, as a result, undergo complex evolutions across sympatric species. Here we focus on mimicry and study how reproductive interference may impair phenotypic convergence between species with various levels of defence. We use a deterministic model assuming two sympatric species where individuals can display two different warning colour patterns. This eco-evolutionary model explores how ecological interactions shape phenotypic evolution within sympatric species. We investigate the effect of 1) the opposing density-dependent selections exerted on colour patterns by predation and reproductive behaviour and 2) the impact of relative species and phenotype abundances on the fitness costs faced by each individual depending on their species and phenotype. Our model shows that reproductive interference may limit the convergent effect of mimetic interactions and may promote phenotypic divergence between Müllerian mimics. The divergent and convergent evolution of traits also strongly depends on the relative species and phenotype abundances and levels of trophic competition, highlighting how the eco-evolutionary feedbacks between phenotypic evolution and species abundances may result in strikingly different evolutionary routes.  相似文献   

15.
Species that exist in heterogeneous environments experience selection for specialization that is opposed by the homogenizing forces of migration and recombination. Migration tends to reduce associations between alleles and habitats, whereas recombination tends to break down associations among loci. The idea that heterogeneity should favor the evolution of isolating mechanisms has motivated evolutionary studies of reduced migration, habitat preference, and assortative mating. However, costly female choice of high-quality males can also evolve in heterogeneous populations and is not hindered by either recombination or migration. When information on male fitness is available through indicator traits, female choice based on these traits increases associations between female choice alleles and locally adapted alleles. Not only does female choice evolve in a heterogeneous environment, it acts to enhance the level of genetic variation and is thus self-reinforcing. The amount of female choice at equilibrium depends on how well mixed the habitats are, how much information on male genotype is available, and how different the habitats are. Female choice reaches the highest levels for intermediate levels of heterogeneity, because at such levels of heterogeneity there is both a high risk and high cost of mismating.  相似文献   

16.
Because it increases relatedness between interacting individuals, population viscosity has been proposed to favour the evolution of altruistic helping. However, because it increases local competition between relatives, population viscosity may also act as a brake for the evolution of helping behaviours. In simple models, the kin selected fecundity benefits of helping are exactly cancelled out by the cost of increased competition between relatives when helping occurs after dispersal. This result has lead to the widespread view, especially among people working with social organisms, that special conditions are required for the evolution of altruism. Here, we re-examine this result by constructing a simple population genetic model where we analyse whether the evolution of a sterile worker caste (i.e. an extreme case of altruism) can be selected for by limited dispersal. We show that a sterile worker caste can be selected for even under the simplest life-cycle assumptions. This has relevant consequences for our understanding of the evolution of altruism in social organisms, as many social insects are characterized by limited dispersal and significant genetic population structure.  相似文献   

17.
One of the enduring puzzles in biology and the social sciences is the origin and persistence of intraspecific cooperation and altruism in humans and other species. Hundreds of theoretical models have been proposed and there is much confusion about the relationship between these models. To clarify the situation, we developed a synthetic conceptual framework that delineates the conditions necessary for the evolution of altruism and cooperation. We show that at least one of the four following conditions needs to be fulfilled: direct benefits to the focal individual performing a cooperative act; direct or indirect information allowing a better than random guess about whether a given individual will behave cooperatively in repeated reciprocal interactions; preferential interactions between related individuals; and genetic correlation between genes coding for altruism and phenotypic traits that can be identified. When one or more of these conditions are met, altruism or cooperation can evolve if the cost-to-benefit ratio of altruistic and cooperative acts is greater than a threshold value. The cost-to-benefit ratio can be altered by coercion, punishment and policing which therefore act as mechanisms facilitating the evolution of altruism and cooperation. All the models proposed so far are explicitly or implicitly built on these general principles, allowing us to classify them into four general categories.  相似文献   

18.
In fragmented landscapes, mobility is an important trait for population persistence but the predictions on the relationship between habitat fragmentation and extinction risk are contradictory. Here, we test the effects of the two main aspects of fragmentation, patch area and isolation, on the species richness of groups of butterflies associated with semi-natural grasslands, differing in mobility. Total species richness increased with increasing patch area and with decreasing isolation, but the strength of these effects differed between mobility classes. The effect of patch area was strongest for the sedentary species, while the effect of isolation was only statistically significant for the mobile species. We interpret these results as evidence for a predominant influence of local processes on sedentary species, and an increasing influence of regional compared to local processes with increasing mobility. When groups of species respond differently to habitat loss and fragmentation this affects community composition, with potential implications for ecosystem processes. Similar effects can be expected for other traits than mobility, and this should be an important question for future studies.  相似文献   

19.
Adam L. Cronin 《Oikos》2001,94(2):337-343
Many species of social animals are known to exhibit intraspecific variation in social traits between different populations. In the social insects, geographically separate populations may show wide-ranging forms of social behaviour, presumably because of variation in environmental parameters such as climate. For example, several bee species are known to exhibit eusocial or solitary behaviour depending on the latitude or altitude of the population. However, there is little or no empirical evidence to determine if this variation is a result of behavioural plasticity or long-term adaptation to local conditions, both of which have implications for the evolution of sociality. In this study, colonies of the allodapine bees Exoneura robusta and E. nigrescens were translocated between a montane and heathland habitat in southern Australia to assess the effect of habitat change on social behaviour. Results indicate that brood development in translocated colonies of both species differed from control colonies, leading to opportunities for different forms of social behaviour. However, there was also a high degree of variation within each habitat, suggesting an influence of both within and between habitat factors.  相似文献   

20.
Karin Enfjäll  Olof Leimar 《Oikos》2009,118(2):291-299
The evolution of mobility patterns and dispersal strategies depend on different population, habitat and life history characteristics. The ability to perceive and make use of information about the surrounding environment for dispersal decisions will also differ between organisms. To investigate the evolutionary consequences of such differences, we have used a simulation model with nearest-neighbour dispersal in a metapopulation to study how variation in the ability to obtain and make use of information about habitat quality and conspecific density affects the evolution of dispersal strategies. We found a rather strong influence of variation in information on the overall rate of dispersal in a metapopulation. The highest emigration rate evolved in organisms with no information about either density or habitat quality and the lowest rate was found in organisms with information about both the natal and the neighbouring patches. For organisms that can make use of information about conspecific density, positively density-dependent dispersal evolved in the majority of cases, with the strongest density dependence occurring when an individual only has information about density in the natal patch. However, we also identified situations, involving strong local population fluctuations and frequent local extinctions, where negatively density-dependent dispersal evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号