首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cardiac fibroblast (CF) proliferation and differentiation into hypersecretory myofibroblasts can lead to excessive extracellular matrix (ECM) production and cardiac fibrosis. In turn, the ECM produced can potentially activate CFs via distinct feedback mechanisms. To assess how specific ECM components influence CF activation, isolated CFs were plated on specific collagen substrates (type I, III, and VI collagens) before functional assays were carried out. The type VI collagen substrate potently induced myofibroblast differentiation but had little effect on CF proliferation. Conversely, the type I and III collagen substrates did not affect differentiation but caused significant induction of proliferation (type I, 240.7 +/- 10.3%, and type III, 271.7 +/- 21.8% of basal). Type I collagen activated ERK1/2, whereas type III collagen did not. Treatment of CFs with angiotensin II, a potent mitogen of CFs, enhanced the growth observed on types I and III collagen but not on the type VI collagen substrate. Using an in vivo model of myocardial infarction (MI), we measured changes in type VI collagen expression and myofibroblast differentiation after post-MI remodeling. Concurrent elevations in type VI collagen and myofibroblast content were evident in the infarcted myocardium 20-wk post-MI. Overall, types I and III collagen stimulate CF proliferation, whereas type VI collagen plays a potentially novel role in cardiac remodeling through facilitation of myofibroblast differentiation.  相似文献   

3.
Pulmonary fibrosis is characterized by alterations in fibroblast phenotypes resulting in excessive extracellular matrix accumulation and anatomic remodeling. Current therapies for this condition are largely ineffective. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear hormone receptor superfamily, the activation of which produces a number of biological effects, including alterations in metabolic and inflammatory responses. The role of PPAR-gamma as a potential therapeutic target for fibrotic lung diseases remains undefined. In the present study, we show expression of PPAR-gamma in fibroblasts obtained from normal human lungs and lungs of patients with idiopathic interstitial pneumonias. Treatment of lung fibroblasts and myofibroblasts with PPAR-gamma agonists results in inhibition of proliferative responses and induces cell cycle arrest. In addition, PPAR-gamma agonists, including a constitutively active PPAR-gamma construct (VP16-PPAR-gamma), inhibit the ability of transforming growth factor-beta1 to induce myofibroblast differentiation and collagen secretion. PPAR-gamma agonists also inhibit fibrosis in a murine model, even when administration is delayed until after the initial inflammation has largely resolved. These observations indicate that PPAR-gamma is an important regulator of fibroblast/myofibroblast activation and suggest a role for PPAR-gamma ligands as novel therapeutic agents for fibrotic lung diseases.  相似文献   

4.
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) and chronic inflammation with limited therapeutic options. Psoralen, a major active component extracted from Psoralea corylifolia L. seed, has several biological effects. However, the role of psoralen in IPF is still unclear. Here, we hypothesized that psoralen played an essential role in IPF in the inhibition of fibroblast proliferation and inflammatory response. A murine model of IPF was established by injecting bleomycin (BLM) intratracheally, and psoralen was administered for 14 days from the 7th to 21st day after BLM injection. Our results demonstrated that psoralen treatment reduced body weight loss and improved the survival rate of mice with IPF. Histological and immunofluorescent examination showed that psoralen alleviated BLM‐induced lung parenchymal inflammatory and fibrotic alteration. Furthermore, psoralen inhibited proliferation and collagen synthesis of mouse fibroblasts and partially reversed BLM‐induced expression of α‐smooth muscle actin at both the tissue and cell level. Moreover, psoralen decreased the expression of transforming growth factor‐β1, interleukin‐1β, and tumor necrosis factor‐α in the lungs of BLM‐stimulated mice. Our results reveale for the first time that psoralen exerts therapeutic effects against IPF in a BLM‐induced murine model.  相似文献   

5.
Accumulation of profibrotic myofibroblasts is involved in the process of fibrosis development during idiopathic pulmonary fibrosis (IPF) pathogenesis. TGFB (transforming growth factor β) is one of the major profibrotic cytokines for myofibroblast differentiation and NOX4 (NADPH oxidase 4) has an essential role in TGFB-mediated cell signaling. Azithromycin (AZM), a second-generation antibacterial macrolide, has a pleiotropic effect on cellular processes including proteostasis. Hence, we hypothesized that AZM may regulate NOX4 levels by modulating proteostasis machineries, resulting in inhibition of TGFB-associated lung fibrosis development. Human lung fibroblasts (LF) were used to evaluate TGFB-induced myofibroblast differentiation. With respect to NOX4 regulation via proteostasis, assays for macroautophagy/autophagy, the unfolded protein response (UPR), and proteasome activity were performed. The potential anti-fibrotic property of AZM was examined by using bleomycin (BLM)-induced lung fibrosis mouse models. TGFB-induced NOX4 and myofibroblast differentiation were clearly inhibited by AZM treatment in LF. AZM-mediated NOX4 reduction was restored by treatment with MG132, a proteasome inhibitor. AZM inhibited autophagy and enhanced the UPR. Autophagy inhibition by AZM was linked to ubiquitination of NOX4 via increased protein levels of STUB1 (STIP1 homology and U-box containing protein 1), an E3 ubiquitin ligase. An increased UPR by AZM was associated with enhanced proteasome activity. AZM suppressed lung fibrosis development induced by BLM with concomitantly reduced NOX4 protein levels and enhanced proteasome activation. These results suggest that AZM suppresses NOX4 by promoting proteasomal degradation, resulting in inhibition of TGFB-induced myofibroblast differentiation and lung fibrosis development. AZM may be a candidate for the treatment of the fibrotic lung disease IPF.  相似文献   

6.
Inhalation and deposition of crystalline silica particles in the lung can cause pulmonary fibrosis, then leading to silicosis. Given the paucity of effective drugs for silicosis, new insights for understanding the mechanisms of silicosis, including lung fibroblast activation and myofibroblast differentiation, are essential to explore therapeutic strategies. Our previous research showed that the up‐regulation of miR‐503 alleviated silica‐induced pulmonary fibrosis in mice. In this study, we investigated whether miR‐503 can regulate the TGF‐β1‐induced effects in lung fibroblasts. Mimic‐based strategies aiming at up‐regulating miR‐503 were used to discuss the function of miR‐503 in vivo and in vitro. We found that the expression level of miR‐503 was decreased in fibroblasts stimulated by TGF‐β1, and the up‐regulation of miR‐503 reduced the release of fibrotic factors and inhibited the migration and invasion abilities of fibroblasts. Combined with the up‐regulation of miR‐503 in a mouse model of silica‐induced pulmonary fibrosis, we revealed that miR‐503 mitigated the TGF‐β1‐induced effects in fibroblasts by regulating VEGFA and FGFR1 and then affecting the MAPK/ERK signalling pathway. In conclusion, miR‐503 exerted protective roles in silica‐induced pulmonary fibrosis and may represent a novel and potent candidate for therapeutic strategies in silicosis.  相似文献   

7.
To elucidate mechanisms involved in the regulation of lung collagen content we studied hamsters with bleomycin-induced pulmonary fibrosis. Lung collagen in this model is increased as the result of greatly increased lung collagen synthesis rates. However, collagen synthesis rates are subsequently restored to normal. Hamster lung explants from both normal and bleomycin-exposed hamsters were cultured, and the effects of explant conditioned medium (CM) on lung fibroblast (IMR-90) proliferation and collagen production in vitro were determined. Lung explant CM increased fibroblast prostaglandin (PG)E2 production and intracellular cAMP, and decreased both fibroblast proliferation and collagen production in a dose-dependent manner. Greater activity was observed with lung explant CM from bleomycin-exposed lungs. Incubation of fibroblasts with indomethacin prior to addition of CM blocked CM-mediated changes in PGE2 and cAMP and inhibited changes in fibroblast proliferation and collagen production. Exogenous PGE2 or dibutyryl cAMP also suppressed fibroblast proliferation and collagen production. The suppressive activity in lung-conditioned medium is nondialyzable, has an apparent molecular weight of 15,000-20,000 by gel filtration, and is heat-stable. It is not species-restricted since CM from hamster lung affected human and hamster lung fibroblasts similarly. Activity is present preformed in lung and bronchoalveolar lavage fluid, although bronchoalveolar macrophages produce a nondialyzable factor in culture which suppresses fibroblast proliferation. The suppressive activity identified in fibrotic lung may represent a means for limiting collagen accumulation following tumor injury.  相似文献   

8.
9.

Background

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal illness whose pathogenesis remains poorly understood. Recent evidence suggests oxidative stress as a key player in the establishment/progression of lung fibrosis in animal models and possibly in human IPF. The aim of the present study was to characterize the cellular phenotype of fibroblasts derived from IPF patients and identify underlying molecular mechanisms.

Methodology/Principal Findings

We first analyzed the baseline differentiation features and growth ability of primary lung fibroblasts derived from 7 histology proven IPF patients and 4 control subjects at different culture passages. Then, we focused on the redox state and related molecular pathways of IPF fibroblasts and investigated the impact of oxidative stress in the establishment of the IPF phenotype. IPF fibroblasts were differentiated into alpha-smooth muscle actin (SMA)-positive myofibroblasts, displayed a pro-fibrotic phenotype as expressing type-I collagen, and proliferated lower than controls cells. The IPF phenotype was inducible upon oxidative stress in control cells and was sensitive to ROS scavenging. IPF fibroblasts also contained large excess of reactive oxygen species (ROS) due to the activation of an NADPH oxidase-like system, displayed higher levels of tyrosine phosphorylated proteins and were more resistant to oxidative-stress induced cell death. Interestingly, the IPF traits disappeared with time in culture, indicating a transient effect of the initial trigger.

Conclusions/Significance

Robust expression of α-SMA and type-I collagen, high and uniformly-distributed ROS levels, resistance to oxidative-stress induced cell death and constitutive activation of tyrosine kinase(s) signalling are distinctive features of the IPF phenotype. We suggest that this phenotype can be used as a model to identify the initial trigger of IPF.  相似文献   

10.

Background

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by the histopathological pattern of usual interstitial pneumonia and is associated with a high mortality rate. Recently, lung resident mesenchymal stem cells (LR-MSCs) have been identified as an important contributor to myofibroblast activation in pulmonary fibrosis. Macrophages are also believed to play a critical role in pulmonary fibrosis. However, the underlying connections between LR-MSCs and macrophages in the pathogenesis of pulmonary fibrosis are still elusive.

Methods

In this study, we investigated the interaction between LR-MSCs and macrophages using a bleomycin-induced mouse pulmonary fibrosis model and a coculture system.

Results

Here, we show that blocking pulmonary macrophage infiltration attenuated bleomycin-induced pulmonary fibrosis. In addition, as determined by flow cytometry, we discovered that the recruited macrophages in fibrotic lungs of bleomycin-treated mice were mainly M2 macrophages. In particular, we found that M2, rather than M1 macrophages, promoted myofibroblast differentiation of LR-MSCs. Moreover, we demonstrated that suppression of the Wnt/β-catenin signaling pathway could attenuate myofibroblast differentiation of LR-MSCs induced by M2 macrophages and bleomycin-induced pulmonary fibrosis. Tissue samples from IPF patients confirmed the infiltration of M2 macrophages and activation of Wnt/β-catenin signaling pathway.

Conclusion

In summary, this study furthered our understanding of the pulmonary fibrosis pathogenesis and highlighted M2 macrophages as a critical target for treating pulmonary fibrosis.
  相似文献   

11.
Therapies halting the progression of fibrosis are ineffective and limited. Activated myofibroblasts are emerging as important targets in the progression of fibrotic diseases. Previously, we performed a high-throughput screen on lung fibroblasts and subsequently demonstrated that the inhibition of myofibroblast activation is able to prevent lung fibrosis in bleomycin-treated mice. High-throughput screens are an ideal method of repurposing drugs, yet they contain an intrinsic limitation, which is the size of the library itself. Here, we exploited the data from our “wet” screen and used “dry” machine learning analysis to virtually screen millions of compounds, identifying novel anti-fibrotic hits which target myofibroblast differentiation, many of which were structurally related to dopamine. We synthesized and validated several compounds ex vivo (“wet”) and confirmed that both dopamine and its derivative TS1 are powerful inhibitors of myofibroblast activation. We further used RNAi-mediated knock-down and demonstrated that both molecules act through the dopamine receptor 3 and exert their anti-fibrotic effect by inhibiting the canonical transforming growth factor β pathway. Furthermore, molecular modelling confirmed the capability of TS1 to bind both human and mouse dopamine receptor 3. The anti-fibrotic effect on human cells was confirmed using primary fibroblasts from idiopathic pulmonary fibrosis patients. Finally, TS1 prevented and reversed disease progression in a murine model of lung fibrosis. Both our interdisciplinary approach and our novel compound TS1 are promising tools for understanding and combating lung fibrosis.Subject terms: Drug discovery, Respiratory tract diseases  相似文献   

12.
LPS hyporesponsiveness is characterized by a diminished production of proinflammatory cytokines which can be caused by pretreatment with either LPS (=LPS desensitization) or the combination of the anti-inflammatory cytokines IL-10 and TGF-beta. However, the resulting hyporesponsive states differ regarding their reversibility by the IFN-gamma-inducing cytokine IL-12. Therefore, we aimed at studying the reasons for this differential IL-12 responsiveness of IFN-gamma-producing cells and its consequences for LPS hyporesponsiveness in more detail. In an in vitro IL-12/IL-18 responsiveness model, we demonstrated that IL-10, if permanently present, does not directly inhibit IL-12/IL-18 responsiveness in T/NK cells but indirectly interferes with IFN-gamma production in the presence of monocytes. In contrast, TGF-beta acted directly on IFN-gamma-producing cells by interfering with IL-12/IL-18 responsiveness. After removal of IL-10 but not of TGF-beta, LPS hyporesponsiveness can be reverted by IL-12/IL-18. Consequently, the addition of recombinant TGF-beta during LPS desensitization rendered PBMCs hyporesponsive to a reversal by IL-12/IL-18. Our data suggest that the persistence of IL-10 and the presence of TGF-beta determine the level of IFN-gamma inhibition and may result in different functional phenotypes of LPS desensitization and LPS hyporesponsiveness in vitro and in vivo.  相似文献   

13.
Extracellular nucleotides are among the most potent mediators of mucociliary clearance (MCC) in human lungs. However, clinical trials revealed that aerosolized nucleotides provide only a transient improvement of MCC to patients diagnosed with cystic fibrosis (CF). In this study, we identified the mechanism that eliminates extracellular nucleotides from human airways. Polarized primary cultures of human bronchial epithelial cells were impermeable to extracellular nucleotides but rapidly dephosphorylated ATP into ADP, AMP, and adenosine. The half-life of a therapeutic ATP concentration (0.1 mm) was approximately 20 s within the periciliary liquid layer. The mucosal epithelial surface eliminated P2 receptor agonists (ATP = UTP > ADP > UDP) at 3-fold higher rates than the serosal surface. We also showed that mucosal (not serosal) ectoATPase activity increases toward areas most susceptible to airway obstruction (nose < bronchi < bronchioles). Bronchial cultures from patients with CF, primary ciliary dyskinesia, or alpha1-antitrypsin deficiency exhibited 3-fold higher mucosal (not serosal) ectoATPase activity than normal cultures. Time course experiments indicated that CF enhances ATP elimination and adenosine accumulation on the mucosal surface. Furthermore, nonspecific alkaline phosphatase was identified as the major regulator of airway nucleotide concentrations in CF, primary ciliary dyskinesia, and alpha1-antitrypsin deficiency. The ectoAT-Pase activity and mRNA expression of mucosally restricted nonspecific alkaline phosphatase were 3-fold higher on bronchial cultures from these patients than from healthy subjects. This study demonstrates that the duration of nucleotide-mediated MCC is limited by epithelial ectonucleotidases throughout human airways, with the efficiency of this mechanism enhanced in chronic inflammatory lung diseases, including CF.  相似文献   

14.
H Xu  F Yang  Y Sun  Y Yuan  H Cheng  Z Wei  S Li  T Cheng  D Brann  R Wang 《PloS one》2012,7(7):e40301

Background

Myofibroblast differentiation, characterized by α-smooth muscle actin (α-SMA) expression, is a key process in organ fibrosis, and is induced by TGF-β. Here we examined whether an anti-fibrotic agent, N-acetyl-seryl-aspartyl-lysylproline (Ac-SDKP), can regulate induction of TGF-β signaling and myofibroblast differentiation as a potential key component of its anti-fibrotic mechanism in vivo and in vitro.

Methodology/Principal Findings

Rat pulmonary fibroblasts were cultured in vitro and divided to 4 groups 1) control; 2) TGF-β1; 3) TGF-β1+ LY364947; 4) TGF-β1+Ac-SDKP. For in vivo studies, six groups of animals were utilized 1) control 4w; 2) silicotic 4w; 3) control 8w; 4) silicotic 8w; 5) Ac-SDKP post-treatment; 6)Ac-SDKP pre-treatment. SiO2 powders were douched in the trachea of rat to make the silicotic model. Myofibroblast differentiation was measured by examining expression of α-SMA, as well as expression of serum response factor (SRF), a key regulator of myofibroblast differentiation. The expressions of collagen, TGF-β1 and RAS signaling were also assessed. The results revealed that TGF-β1 strongly induced myofibroblast differentiation and collagen synthesis in vitro, and that pre-treatment with Ac-SDKP markedly attenuated myofibroblast activation, as well as induction of TGF-β1 and its receptor. Similar results were observed in vivo in the pathologically relevant rat model of silicosis. Ac-SDKP treatment in vivo strongly attenuated 1) silicosis-induced increased expressions of TGF-β1 and RAS signaling, 2) myofibroblast differentiation as indicated by a robust decrease of SRF and α-SMA-positive myofibroblast localization in siliconic nodules in the lung, 3) collagen deposition.

Conclusion/Significance

The results of the present study suggest a novel mechanism of action for Ac-SDKP’s beneficial effect in silicosis, which involves attenuation of TGF-β1 and its receptors, SRF and Ang II type 1 receptor (AT1) expression, collagen deposition and myofibroblast differentiation. The results further suggest that therapies targeting myofibroblast differentiation may have therapeutic efficacy in treatment of silicosis of the lung.  相似文献   

15.
16.

Background

To elucidate further the pathogenesis of sporadic, idiopathic pulmonary arterial hypertension (IPAH) and identify potential therapeutic avenues, differential gene expression in IPAH was examined by suppression subtractive hybridisation (SSH).

Methods

Peripheral lung samples were obtained immediately after removal from patients undergoing lung transplant for IPAH without familial disease, and control tissues consisted of similarly sampled pieces of donor lungs not utilised during transplantation. Pools of lung mRNA from IPAH cases containing plexiform lesions and normal donor lungs were used to generate the tester and driver cDNA libraries, respectively. A subtracted IPAH cDNA library was made by SSH. Clones isolated from this subtracted library were examined for up regulated expression in IPAH using dot blot arrays of positive colony PCR products using both pooled cDNA libraries as probes. Clones verified as being upregulated were sequenced. For two genes the increase in expression was verified by northern blotting and data analysed using Student's unpaired two-tailed t-test.

Results

We present preliminary findings concerning candidate genes upregulated in IPAH. Twenty-seven upregulated genes were identified out of 192 clones examined. Upregulation in individual cases of IPAH was shown by northern blot for tissue inhibitor of metalloproteinase-3 and decorin (P < 0.01) compared with the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase.

Conclusion

Four of the up regulated genes, magic roundabout, hevin, thrombomodulin and sucrose non-fermenting protein-related kinase-1 are expressed specifically by endothelial cells and one, muscleblind-1, by muscle cells, suggesting that they may be associated with plexiform lesions and hypertrophic arterial wall remodelling, respectively.  相似文献   

17.

Background

Lung fibrosis is a devastating pulmonary disorder characterized by alveolar epithelial injury, extracellular matrix deposition and scar tissue formation. Due to its potent collagenolytic activity, cathepsin K, a lysosomal cysteine protease is an interesting target molecule with therapeutic potential to attenuate bleomycin-induced pulmonary fibrosis in mice. We here tested the hypothesis that over-expression of cathepsin K in the lungs of mice is protective in bleomycin-induced pulmonary fibrosis.

Methods

Wild-type and cathepsin K overexpressing (cathepsin K transgenic; cath K tg) mice were challenged intratracheally with bleomycin and sacrificed at 1, 2, 3 and 4 weeks post-treatment followed by determination of lung fibrosis by estimating lung collagen content, lung histopathology, leukocytic infiltrates and lung function. In addition, changes in cathepsin K protein levels in the lung were determined by immunohistochemistry, real time RT-PCR and western blotting.

Results

Cathepsin K protein levels were strongly increased in alveolar macrophages and lung parenchymal tissue of mock-treated cathepsin K transgenic (cath K tg) mice relative to wild-type mice and further increased particularly in cath K tg but also wild-type mice in response to bleomycin. Moreover, cath K tg mice responded with a lower collagen deposition in their lungs, which was accompanied by a significantly lower lung resistance (RL) compared to bleomycin-treated wild-type mice. In addition, cath K tg mice responded with a lower degree of lung fibrosis than wild-type mice, a process that was found to be independent of inflammatory leukocyte mobilization in response to bleomycin challenge.

Conclusion

Over-expression of cathepsin K reduced lung collagen deposition and improved lung function parameters in the lungs of transgenic mice, thereby providing at least partial protection against bleomycin-induced lung fibrosis.  相似文献   

18.
抗肺纤维化药物治疗研究进展   总被引:6,自引:0,他引:6  
Cui B  Hu ZW 《生理科学进展》2008,39(3):233-238
特发性肺纤维化是严重危害生命的间质性肺疾病,诊断后半数生存率仅为3年,超过大部分恶性肿瘤.目前所有的抗肺纤维化治疗措施疗效甚微.随着对肺纤维化发病分子细胞机制研究的不断深入,已经发现并确认多种抗肺纤维化的新药靶.本文首先概述抗肺纤维化疾病的临床治疗现状、正在临床实验的新药物,然后重点介绍作用于肺泡上皮细胞、成肌纤维细胞或具有抑制血管新生、调节Th1/Th2细胞因子平衡、阻断氧化应激等作用药物治疗肺纤维化疾病的前景.  相似文献   

19.
Myofibroblasts are pathogenic in pulmonary fibrotic disease due to their exuberant production of matrix rich in collagen that interferes with gas exchange and the ability of these cells to contract and distort the alveolar space. Transforming growth factor-beta1 (TGF-beta1) is a well-known inducer of myofibroblast differentiation. TGF-beta1-induced transformation of fibroblasts to apoptosis-resistant myofibroblasts is adhesion-dependent and focal adhesion kinase (FAK)-mediated. Prostaglandin E(2) (PGE(2)) inhibits this differentiation via E prostanoid receptor 2 (EP2) signaling and cAMP elevation, but whether PGE(2) does so by interfering with TGF-beta1 signaling is unknown. Thus we examined the effects of PGE(2) in the presence and absence of TGF-beta1 stimulation on candidate signaling pathways in human lung fibroblasts. We now demonstrate that PGE(2) does not interfere with TGF-beta1-induced Smad phosphorylation or its translocation to the nucleus. Rather, PGE(2) has dramatic effects on cell shape and cytoskeletal architecture and disrupts the formation of appropriate focal adhesions. PGE(2) treatment diminishes TGF-beta1-induced phosphorylation of paxillin, STAT-3, and FAK and, in turn, limits activation of the protein kinase B (PKB/Akt) pathway. These alterations do not, however, result in increased apoptosis within the first 24 h of treatment. Interestingly, the effects of PGE(2) stimulation alone do not always mirror the effects of PGE(2) in the presence of TGF-beta1, indicating that the context for EP2 signaling is different in the presence of TGF-beta1. Taken together, our results demonstrate that PGE(2) has the potential to limit TGF-beta1-induced myofibroblast differentiation via adhesion-dependent, but Smad-independent, pathways.  相似文献   

20.
Collagen and elastin are thought to dominate the elasticity of the connective tissue including lung parenchyma. The glycosaminoglycans on the proteoglycans may also play a role because osmolarity of interstitial fluid can alter the repulsive forces on the negatively charged glycosaminoglycans, allowing them to collapse or inflate, which can affect the stretching and folding pattern of the fibers. Hence, we hypothesized that the elasticity of lung tissue arises primarily from 1) the topology of the collagen-elastin network and 2) the mechanical interaction between proteoglycans and fibers. We measured the quasi-static, uniaxial stress-strain curves of lung tissue sheets in hypotonic, normal, and hypertonic solutions. We found that the stress-strain curve was sensitive to osmolarity, but this sensitivity decreased after proteoglycan digestion. Images of immunofluorescently labeled collagen networks showed that the fibers follow the alveolar walls that form a hexagonal-like structure. Despite the large heterogeneity, the aspect ratio of the hexagons at 30% uniaxial strain increased linearly with osmolarity. We developed a two-dimensional hexagonal network model of the alveolar structure incorporating the mechanical properties of the collagen-elastin fibers and their interaction with proteoglycans. The model accounted for the stress-strain curves observed under all experimental conditions. The model also predicted how aspect ratio changed with osmolarity and strain, which allowed us to estimate the Young's modulus of a single alveolar wall and a collagen fiber. We therefore identify a novel and important role for the proteoglycans: they stabilize the collagen-elastin network of connective tissues and contribute to lung elasticity and alveolar stability at low to medium lung volumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号