首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the progression of vascular dysfunction associated with the metabolic syndrome with and without hyperglycemia in lean, Zucker obese, and Zucker diabetic fatty (ZDF) rats. Responses of aorta and small coronary and mesenteric arteries were measured to endothelium-dependent and -independent vasodilators. Indices of oxidative stress were increased in serum from ZDF rats throughout the study, whereas values were increased in Zucker obese rats later in the study [thiobarbituric acid reactive substances: 0.45 +/- 0.02, 0.59 +/- 0.03 (P < 0.05), and 0.58 +/- 0.03 (P < 0.05) mug/ml in serum from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. Acetylcholine (ACh)-induced relaxation was not altered in vessels from lean animals from 8-40 wk. ACh-induced relaxation was nearly abolished in coronary arteries from 28- to 36-wk-old Zucker obese rats and by 16-36 wk in ZDF rats and was attenuated in aorta and mesenteric vessels from ZDF rats [%relaxation to 10 muM ACh: 72.2 +/- 7.1, 17.9 +/- 5.9 (P < 0.05), and 23.0 +/- 4.5 (P < 0.05) in coronary vessels; and 67.9 +/- 9.2, 50.1 +/- 5.5, and 42.3 +/- 4.7 (P < 0.05) in mesenteric vessels from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. The attenuated ACh-induced relaxation was improved when vessels were incubated with tiron, suggesting superoxide as a mechanism of endothelial dysfunction. Sodium nitroprusside-induced relaxation was not altered in aorta or coronary arteries and was potentiated in mesenteric arteries from Zucker obese rats. Our data suggest that diabetes enhances the progression of vascular dysfunction. Increases in indices of oxidative stress precede the development of dysfunction and may serve as a marker of endothelial damage.  相似文献   

2.
Recent studies in our laboratory using the Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rat models resulted in unexpectedly high mortality rates in all genotypes including healthy homozygous lean Zucker rats, possibly because of renal dysfunction. Therefore, we evaluated left ventricular (LV) and kidney morphology and function in young ZO, Zucker diabetic fatty obese (ZDFO), homozygous Zucker/ZDF lean (ZL), and Sprague-Dawley (SD) rats. Hydronephrosis was evident in ZL, ZO, and ZDFO but not SD kidneys. ZDFO rats exhibited impaired LV shortening and relaxation with increased arterial stiffness. LV wall thickness was lower and LV end-systolic wall stress was higher in ZDFO compared with SD rats. Plasma ANG II was lower in ZO and ZDFO rats, which may be a result of reduced renal parenchyma with hydronephrosis; norepinephrine was higher in ZDFO rats than SD controls. Covariate analysis indicated that LV end-systolic wall stress was associated with renal dysfunction. The presence of hydronephrosis and its association with LV dysfunction potentially limits the ZDF model for study of the effects of diabetes on renal and cardiovascular function.  相似文献   

3.
Objective: Obese Zucker rats, animal model for the metabolic syndrome, develop a diabetes‐like neuropathy that is independent of hyperglycemia. The purpose of this study was to determine whether drugs used to treat cardiovascular dysfunction in metabolic syndrome also protect nerve function. Methods and Procedures: Obese Zucker rats at 20 weeks of age were treated for 12 weeks with enalapril or rosuvastatin. Lean rats were used as controls. Vasodilation in epineurial arterioles was measured by videomicroscopy. Endoneurial blood flow (EBF) was measured by hydrogen clearance and nerve conduction velocity was measured following electrical stimulation of motor or sensory nerves. Results: Enalapril treatment decreased serum angiotensin‐converting enzyme (ACE) activity and both drugs reduced serum cholesterol levels. In obese Zucker rats at 32 weeks of age superoxide levels were elevated in the aortas and epineurial arterioles, which were reduced by treatment with either drug. Nitrotyrosine levels were increased in epineurial arterioles and reduced with enalapril treatment. EBF was decreased and corrected by treatment with either drug. Motor nerve conduction velocity was decreased and significantly improved with enalapril treatment. Obese Zucker rats were hypoalgesic in response to a thermal stimulus and this was significantly improved with either treatment. Treatment with either enalapril or rosuvastatin significantly reversed the decrease in acetylcholine‐mediated vascular relaxation of epineurial arterioles in obese Zucker rats. Discussion: Even though obese Zucker rats have normal glycemia vascular and neural dysfunctions develop with age and can be improved by treatment with either enalapril or rosuvastatin.  相似文献   

4.
Increasing afferent renal nerve activity decreases efferent renal nerve activity and increases urinary sodium excretion. Activation of renal pelvic mechanosensory nerves is impaired in streptozotocin (STZ)-treated rats (model of type 1 diabetes). Decreased activation of renal sensory nerves would lead to increased efferent renal nerve activity, sodium retention, and hypertension. We examined whether the reduced activation of renal sensory nerves in STZ rats was due to increased renal angiotensin activity and whether activation of the renal sensory nerves was impaired in obese Zucker diabetic fatty (ZDF) rats (model of type 2 diabetes). In an isolated renal pelvic wall preparation from rats treated with STZ for 2 wk, PGE2 failed to increase the release of substance P, from 5 +/- 1 to 6 +/- 1 pg/min. In pelvises from sham STZ rats, PGE2 increased substance P release from 6 +/- 1 to 13 +/- 2 pg/min. Adding losartan to the incubation bath increased PGE2-mediated release of substance P in STZ rats, from 5 +/- 1 to 10 +/- 2 pg/min, but had no effect in sham STZ rats. In pelvises from obese ZDF rats (22-46 wk old), PGE2 increased substance P release from 12.0 +/- 1.2 to 18.3 +/- 1.2 pg/min, which was less than that from lean ZDF rats (10.3 +/- 1.6 to 22.5 +/- 2.4 pg/min). Losartan had no effect on the PGE2-mediated substance P release in obese or lean ZDF rats. We conclude that the mechanisms involved in the decreased responsiveness of the renal sensory nerves in STZ rats involve activation of the renin angiotensin system in STZ but not in obese ZDF rats.  相似文献   

5.
Hepatic glucose fluxes and intracellular movement of glucokinase (GK) in response to increased plasma glucose and insulin were examined in 10-wk-old, 6-h-fasted, conscious Zucker diabetic fatty (ZDF) rats and lean littermates. Under basal conditions, plasma glucose (mmol/l) and glucose turnover rate (GTR; micromol.kg(-1).min(-1)) were slightly higher in ZDF (8.4 +/- 0.3 and 53 +/- 7, respectively) than in lean rats (6.2 +/- 0.2 and 45 +/- 4, respectively), whereas plasma insulin (pmol/l) was higher in ZDF (1,800 +/- 350) than in lean rats (150 +/- 14). The ratio of hepatic uridine 5'-diphosphate-glucose 3H specific activity to plasma glucose 3H specific activity ([3H]UDP-G/[3H]G; %), total hepatic glucose output (micromol.kg(-1).min(-1)), and hepatic glucose cycling (micromol.kg(-1).min(-1)) were higher in ZDF (35 +/- 5, 87 +/- 16, and 33 +/- 10, respectively) compared with lean rats (18 +/- 3, 56 +/- 6, and 11 +/- 2, respectively). [3H]glucose incorporation into glycogen (micromol glucose/g liver) was similar in lean (1.0 +/- 0.7) and ZDF (1.6 +/- 0.8) rats. GK was predominantly located in the nucleus in both rats. With elevated plasma glucose and insulin, GTR (micromol.kg(-1).min(-1)), [3H]UDP-G/[3H]G (%), and [3H]glucose incorporation into glycogen (micromol glucose/g liver) were markedly higher in lean (191 +/- 22, 62 +/- 3, and 5.0 +/- 1.4, respectively) but similar in ZDF rats (100 +/- 6, 37 +/- 3, and 1.4 +/- 0.4, respectively) compared with basal conditions. GK translocation from the nucleus to the cytoplasm occurred in lean but not in ZDF rats. The unresponsiveness of hepatic glucose flux to the rise in plasma glucose and insulin seen in prediabetic ZDF rats was associated with impaired GK translocation.  相似文献   

6.
The mitochondrial pyruvate dehydrogenase complex (PDC) is inactivated in many tissues during starvation and diabetes. We investigated carbohydrate oxidation (CHO) and the regulation of the PDC in lean and obese Zucker diabetic fatty (ZDF) rats during fed and starved conditions as well as during an oral glucose load without and with pharmacologically reduced levels of free fatty acids (FFA) to estimate the relative contribution of FFA on glucose tolerance, CHO, and PDC activity. The increase in total PDC activity (20-45%) was paralleled by increased protein levels ( approximately 2-fold) of PDC subunits in liver and muscle of obese ZDF rats. Pyruvate dehydrogenase kinase-4 (PDK4) protein levels were higher in obese rats, and consequently PDC activity was reduced. Although PDK4 protein levels were rapidly downregulated (57-62%) in both lean and obese animals within 2 h after glucose challenge, CHO over 3 h as well as the peak of PDC activity (1 h after glucose load) in liver and muscle were significantly lower in obese rats compared with lean rats. Similar differences were obtained with pharmacologically suppressed FFA by nicotinic acid, but with significantly improved glucose tolerance in obese rats, as well as increased CHO and delta increases in PDC activity (0-60 min) both in muscle and liver. These results demonstrated the suppressive role of FFA acids on the measured parameters. Furthermore, the results clearly demonstrate a rapid reactivation of PDC in liver and muscle of lean and obese rats after a glucose load and show that PDC activity is significantly lower in obese ZDF rats.  相似文献   

7.
8.
We measured infarct size after coronary occlusion (30 min) and reperfusion (24 h) in genetic non-insulin-dependent Zucker diabetic fatty (ZDF) rats with and without 4-wk cholesterol feeding. Infarct size was similar in ZDF rats and lean control rats but was significantly larger in cholesterol-fed diabetic rats than in cholesterol-fed lean rats (P < 0.05). Plasma levels of glucose, insulin, and triglycerides were significantly higher in diabetic rats and were not influenced by cholesterol feeding. The increase in total plasma cholesterol induced by cholesterol feeding was significantly greater in diabetic rats than in lean rats (P < 0.05). A significant positive correlation was found between total plasma cholesterol and infarct size (P < 0.05). Myeloperoxidase activity, as an index of neutrophil accumulation, was significantly higher and expression of P-selectin was more marked in the ischemic myocardium of cholesterol-fed diabetic rats than of cholesterol-fed lean rats. Acetylcholine-induced endothelium-dependent relaxation (EDR) of aortic rings was markedly impaired in cholesterol-fed diabetic rats. Thus cholesterol feeding significantly exacerbated myocardial injury produced by coronary occlusion-reperfusion in non-insulin-dependent diabetic rats, possibly because of enhanced expression of P-selectin and impairment of EDR in the coronary bed.  相似文献   

9.
Adipose tissue (AT) inflammation is linked to the pathogenesis of diabetes in obesity. Here, we compare the AT inflammatory state of 2 animal models of obesity and obesity plus diabetes, respectively. Obese nondiabetic ZF rats exhibited a trend towards increased proportions of CD11b positive cells in the adipose tissue stroma vascular fraction suggesting a state of increased AT inflammation compared to their lean littermates, but no alterations in systemic inflammatory parameters. In contrast, obese diabetic ZDF rats exhibited systemic as well as local AT inflammation with elevated levels of circulating Regulated upon Activation, Normal T-cell Expressed and Secreted Protein (Rantes), interleukin 1β (IL-1β) and monocyte chemotactic protein 1 (MCP-1), and an increased infiltration of adipose tissue CD11b positive cells. Our data provide a novel phenotypic characterisation of 2 common metabolic animal models and suggest an association of obesity with local inflammation in adipose tissue, and an association of diabetes with local inflammation in adipose tissue plus systemic inflammation. AT inflammation in obesity might therefore initiate a process that above a certain limits finally results in systemic inflammation and diabetes.  相似文献   

10.
The diabetic Zucker fatty rat   总被引:8,自引:0,他引:8  
A noninsulin-dependent diabetes appeared in fatty rats in our Zucker rat colony. A breeding program yielded a genetic pattern of diabetes consistent with a dominant gene not closely linked to the fatty gene. Fatty males were more frequently affected than fatty females. Since no markers could be identified for heterozygous carriers and since affected fatty rats were 6 months old when diabetes appeared, the diabetic trait could not be sustained in our small colony. Glucose tolerance tests showed that the diabetic fatty rats had little increase in plasma insulin concentration after a glucose load was administered. Plasma insulin concentrations were unchanged relative to control fatty rats. Percentage body fat and plasma triglyceride values were decreased in fatty diabetic rats relative to control fatty rats, however, consistent with insulin resistance in fat and liver. The content of pancreatic insulin was markedly decreased in the diabetic fatty rat relative to either the ad libitum or diet-restricted fatty rats. The occurrence of a genetically based diabetes in a normally outbred colony underscores the importance of genetic traits that interact with obesity in determining diabetes in rodent models.  相似文献   

11.
Angiotensin (ANG)-(1-7) is known to attenuate diabetic nephropathy; however, its role in the modulation of renal inflammation and oxidative stress in type 2 diabetes is poorly understood. Thus in the present study we evaluated the renal effects of a chronic ANG-(1-7) treatment in Zucker diabetic fatty rats (ZDF), an animal model of type 2 diabetes and nephropathy. Sixteen-week-old male ZDF and their respective controls [lean Zucker rats (LZR)] were used for this study. The protocol involved three groups: 1) LZR + saline, 2) ZDF + saline, and 3) ZDF + ANG-(1-7). For 2 wk, animals were implanted with subcutaneous osmotic pumps that delivered either saline or ANG-(1-7) (100 ng·kg(-1)·min(-1)) (n = 4). Renal fibrosis and tissue parameters of oxidative stress were determined. Also, renal levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), ED-1, hypoxia-inducible factor-1α (HIF-1α), and neutrophil gelatinase-associated lipocalin (NGAL) were determined by immunohistochemistry and immunoblotting. ANG-(1-7) induced a reduction in triglyceridemia, proteinuria, and systolic blood pressure (SBP) together with a restoration of creatinine clearance in ZDF. Additionally, ANG-(1-7) reduced renal fibrosis, decreased thiobarbituric acid-reactive substances, and restored the activity of both renal superoxide dismutase and catalase in ZDF. This attenuation of renal oxidative stress proceeded with decreased renal immunostaining of IL-6, TNF-α, ED-1, HIF-1α, and NGAL to values similar to those displayed by LZR. Angiotensin-converting enzyme type 2 (ACE2) and ANG II levels remained unchanged after treatment with ANG-(1-7). Chronic ANG-(1-7) treatment exerts a renoprotective effect in ZDF associated with a reduction of SBP, oxidative stress, and inflammatory markers. Thus ANG-(1-7) emerges as a novel target for treatment of diabetic nephropathy.  相似文献   

12.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPARgamma in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPARgamma agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPARgamma, glucose transporter-4 and alpha-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPARgamma, glut-4, and alpha-MHC expression levels in diabetic ZDF rats. Cardiac [(18)F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPARgamma agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPARgamma expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin.  相似文献   

13.
PURPOSE: Recently, our laboratory group has reported that rats with Type 1 diabetes have decreased plasma homocysteine and cysteine levels compared to non-diabetic controls and that organic vanadium treatment increased plasma homocysteine concentrations to non-diabetic concentrations. However, to date, no studies have been done investigating the effects of organic vanadium compounds on plasma homocysteine and its metabolites in Type 2 diabetic animal model. These studies examined the effect of organic vanadium compounds [bis(maltolato)oxovanadium(IV) and bis(ethylmaltolato)oxovanadium(IV); BMOV and BEOV] administered orally on plasma concentrations of homocysteine and its metabolites (cysteine and cysteinylglycine) in lean, Zucker fatty (ZF) and Zucker diabetic fatty (ZDF) rats. ZF rats are a model of pre-diabetic Type 2 diabetes characterized by hyperinsulinemia and normoglycemia. The ZDF rat is a model of Type 2 diabetes characterized by relative hypoinsulinemia and hyperglycemia. METHODS: Zucker lean and ZF rats received BMOV in the drinking water at a dose of 0.19 +/- 0.02 mmol/kg/day. Lean and ZDF rats received BEOV by oral gavage daily at dose of 0.1 mmol/kg. The treatment period for both studies was 21 days. At termination, animals were fasted overnight (approximately 16 h) and blood samples were collected by cardiac puncture for determination of plasma glucose, insulin and homocysteine levels. Plasma homocysteine and its metabolites levels were determined using high-pressure liquid chromatography. Plasma glucose was determined using a Glucose Analyzer 2. Plasma insulin levels were determined by radioimmunoassay. Plasma triglycerides were determined by an enzymatic assay methodology. RESULTS: ZF (n = 4) and ZDF (n = 10) rats had significantly lower plasma homocysteine as compared to their respective lean groups (ZF 0.78 +/- 0.1 micromol/L vs. Zucker lean 2.19 +/- 0.7 micromol/L; ZDF 1.71 +/- 0.2 micromol/L vs. Zucker lean 3.02 +/- 0.3 micromol/L; p < 0.05). BMOV treatment in ZF rats restored plasma homocysteine levels to those observed in lean untreated rats (ZF treated: 2.04 +/- 0.2 micromol/L; lean 2.19 +/- 0.7 micromol/L). There was a modest effect of BMOV treatment on plasma glucose levels in ZF rats. BEOV treatment significantly decreased the elevated plasma glucose levels in the ZDF rats (lean 7.9 +/- 0.1 mmol/L; lean + vanadium 7.7 +/- 0.2 mmol/L; ZDF 29.9 +/- 0.4 mmol/L; ZDF + vanadium 17.4 +/- 0.3 mmol/L, p < 0.05). Organic vanadium treatment reduced cysteine levels in both ZF and ZDF rats. No differences in total plasma cysteinylglycine concentrations were observed. CONCLUSION: Plasma homocysteine levels are significantly reduced in a pre-diabetic model of Type 2 diabetes, which was restored to lean levels upon vanadium treatment; however, this restoration of plasma homocysteine levels was not seen in ZDF Type 2 diabetic rats following vanadium treatment. In the latter case vanadium treatment may not have totally overcome the insulin resistance seen in these animals.  相似文献   

14.
Arachidonic acid (AA) is a precursor of important vasoactive metabolites, but the role of AA-mediated vasodilation in Type 2 diabetes is not known. Using Zucker diabetic fatty (ZDF) rats, we examined the effects of AA in small mesenteric arteries preconstricted with endothelin. In ZDF rat mesenteric arteries, 1 microM AA produced only one-third the amount of dilation as in vessels from lean control animals. In lean control rats, the effect of AA was significantly and predominantly inhibited by the lipoxygenase inhibitors baicalein and cinnamyl-3,4-dihydroxy-cyanocinnamate (CDC). However, baicalein and CDC had no effect on AA-mediated dilation in ZDF rat mesenteric arteries. The major [3H]AA metabolite produced by isolated mesenteric arteries in both lean and ZDF rats was 12-hydroxyeicosatetraenoic acid (12-HETE), but the amount of [3H]12-HETE produced by ZDF rat vessels was only 36% of that of control vessels. In addition, 12-HETE produced similar amounts of dilation in lean and ZDF rat mesenteric arteries. Immunoblot analysis showed an 81% reduction in 12-lipoxygenase protein in ZDF rat mesenteric arteries. Immunofluorescence labeling showed strong nitrotyrosine signals in ZDF rat mesenteric arteries that colocalized with 12-lipoxygenase in endothelium, and 12-lipoxygenase coprecipitation with anti-nitrotyrosine antibodies was enhanced in ZDF rat vessels. We conclude that AA-mediated relaxation in ZDF rat small mesenteric arteries is impaired due to reduced 12-lipoxygenase protein and activity. Increased oxidative stress and nitration of 12-lipoxygenase may underlie the impairment of AA-mediated relaxation in small mesenteric arteries of diabetic rats.  相似文献   

15.
The appropriate animal model of diabetes mellitus type 2 is Zucker diabetic fatty (ZDF) rats. The goal of this study was to analyse the effect of chronic high-energy diet on diabetes mellitus (DM) complications in ZDF rats. Male ZDF rats (n?=?20) and their lean controls (non-diabetic, n?=?10) in the age of 3 months were involved in the experiment. Rats were provided with water and diet on ad libitum base. Animals were divided into three groups as follows: lean untreated rats (C) fed by KKZ-P/M (10 MJ/kg), obese rats fed by KKZ-P/M (10 MJ/kg, E1) and obese rats fed by enriched high energy diet (E2, enriched KKZ-P/M, 20 MJ/kg). Glucose, ketones levels, the consumption of feed, water and the live weight was measured weekly during the whole experiment. At the end of the experiment rats were anesthetized and selected haematological parameters were measured. ZDF rats in E1 and E2 group developed obesity, hyperglycaemia, non-insulin dependent diabetes, aggravations in haematological parameters and accumulation of sorbitol in sciatic nerve and lens of rats. High-energy diet immediately induced hyperglycaemia followed by accelerating the secondary symptoms of diabetes complications expressed by disturbed haematology parameters. High-energy diet caused ketoacidosis what meant two cases of death. Extended research on diabetes is needed.  相似文献   

16.
17.
Static exercise causes activation of the sympathetic nervous system, which results in increased blood pressure (BP) and renal vascular resistance (RVR). The question arises as to whether renal vasoconstriction that occurs during static exercise is due to sympathetic activation and/or related to a pressure-dependent renal autoregulatory mechanism. To address this issue, we monitored renal blood flow velocity (RBV) responses to two different handgrip (HG) exercise paradigms in 7 kidney transplant recipients (RTX) and 11 age-matched healthy control subjects. Transplanted kidneys are functionally denervated. Beat-by-beat analyses of changes in RBV (observed via duplex ultrasound), BP, and heart rate were performed during HG exercise in all subjects. An index of RVR was calculated as BP/RBV. In protocol 1, fatiguing HG exercise (40% of maximum voluntary contraction) led to significant increases in RVR in both groups. However, at the end of exercise, RVR was more than fourfold higher in control subjects than in the RTX group (88 vs. 20% increase over baseline; interaction, P < 0.001). In protocol 2, short bouts of HG exercise (15 s) led to significant increases in RVR at higher workloads (50 and 70% of maximum voluntary contraction) in the control subjects (P < 0.001). RVR did not increase in the RTX group. In conclusion, we observed grossly attenuated renal vasoconstrictor responses to exercise in RTX subjects, in whom transplanted kidneys were considered functionally denervated. Our results suggest that renal vasoconstrictor responses to exercise in conscious humans are mainly dependent on activation of a neural mechanism.  相似文献   

18.
19.
To elucidate the pathogenesis of diabetic neuropathy, synthesis and secretion of apolipoprotein E (apo E) from sciatic nerves after injury was studied in normal and streptozotocin-induced diabetic rats. Seven, 14, 28, 45 and 59 days after making crush injury on sciatic nerves with concomitant administration of streptozotocin (50 mg/kg body weight), the nerves were taken out and incubated with [35S]methionine. The [35S]labeled apo E was precipitated with specific antiserum. The amounts of apo E secreted into medium by nerves of diabetic rats were 7 times greater than those of non-diabetic rats 7 days after injury. This enhanced secretion of apo E was relatively selective for this protein, since the ratio of the immunoprecipitable apo E to the TCA preciptitable protein in the medium increased in diabetic rats. Intriguing possibility deduced from these results is that the secretion of apo E is involved in the development of diabetic neuropathy.  相似文献   

20.
The Zucker diabetic fatty (ZDF) rat is a model of type II diabetes and metabolic syndrome based on impaired glucose tolerance caused by the inherited insulin-resistance gene. The ZDF rat exhibits progressive nephropathy; however, the detailed mechanisms have remained unclear. This study was performed to examine the possible involvement of enhanced intrarenal angiotensinogen in the development of renal injury in ZDF rats. Genetic pairs of male ZDF rats and control lean rats (N=6 each) were maintained from 12 to 17 weeks of age. At 17 weeks of age, fasting blood glucose and urinary 8-isoprostane levels were significantly higher in ZDF rats compared with the controls. Systolic blood pressure progressively increased in ZDF rats from 120+/-1 to 137+/-1 mmHg during this period. In contrast, systolic blood pressure did not increase in the controls. Kidney angiotensinogen protein levels were significantly increased in ZDF rats compared with the controls (1.83+/-0.34 vs. 1.00+/-0.17, relative ratio). Expression of angiotensin II type 1a receptor mRNA was similar between these groups. The measured indices of renal damage in the present study (glomerular sclerosis, interstitial expansion, glomerular macrophage infiltration, and renal arterial proliferation) were not significantly increased at this stage in ZDF rats. However, we previously showed that the increased reactive oxygen species-related angiotensinogen enhancement plays an important role in the development of renal injury in a genetic salt-sensitive hypertension. Thus, the present data suggest that elevated reactive oxygen species and reactive oxygen species-associated augmentation of intrarenal angiotensinogen may initiate the development of renal injury in ZDF rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号