首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As grassland habitats become degraded, declines in juvenile and adult food resources may limit populations of rare insects. Fender's blue butterfly (Icaricia icarioides fenderi), a species proposed for listing as endangered under the US Endangered Species Act, survives in remnants of upland prairie in western Oregon. We investigated the effects of limited larval hostplants and adult nectar sources on butterfly population size at four sites that encompass a range of resource densities. We used coarse and detailed estimates of resource abundance to test hypotheses relating resource quantity to population size. Coarse estimates of resources (percent cover of hostplant and density of nectar flowers) suggest that butterfly population size is not associated with resource availability. However, more detailed estimates of resources (density of hostplant leaves and quantity of nectar from native nectar sources) suggest that butterfly population size is strongly associated with resource availability. The results of this study suggest that restoring degraded habitat by augmenting adult and larval resources will play an important role in managing populations of this rare butterfly. Received: 20 June 1998 / Accepted: 25 November 1998  相似文献   

2.
Ove Eriksson 《Ecography》1997,20(6):559-568
The objective of this study was to examine how population recruitment depends on seed size, and if relative abundance depends on colonization, in three plant species inhabiting dry semi-natural grasslands All three species, Antennaria dioica, Hieracium pitosella and Hvpochoeris maculata belong to the same family, Asteraceae, and possess similarly structured wind-dispersed fruits, achenes with pappus They occupy the same range of habitats, but are not equally abundant The seed size hierarchy is Hypochoeris Hieracium Antennaria Results from experiments suggest that recruitment is promoted by small disturbances, but limited also by seed availability Seed size differences explain interactions during recruitment, Hypochoeris "wins" over the other two species, and Hteracium wins over Antennaria Seed arrival order did not alter this hierarchy A model of relative abundance of the species was developed, based on observed differences in recruitment and seed output from local populations The model was able to predict observed relative abundance patterns at a large spatial scale, especially at marginal sites along road verges ( Hieracium Hypochoeris Aniermaria ), but not at smaller scales, where Antennaria was more frequent than Hypochoeris The results support a metapopulation approach to abundance patterns in landscapes, and, more specifically, they support the hypothesis that species abundance reflects colonizing ability An additional implication is that single source populations may be of great importance for species persistence in landscapes, a conclusion which has bearing on development of conservation and management plans for endangered habitats  相似文献   

3.
Some efforts to reduce invasive populations have paradoxically led to population increases. This phenomenon, referred to as overcompensation, occurs when reduced intraspecific pressures increase juvenile survival or maturation rates, leading to increased population size. Overcompensation in response to eradication efforts could derail management efforts, so it would be beneficial to evaluate the likelihood of overcompensation prior to removal. We conducted a series of experiments to examine the potential for overcompensation of a non-native population of the European green crab, Carcinus maenas, which was being removed in Bodega Harbor, California. First, we examined the impact of adults on juvenile survival by measuring adult cannibalism on juveniles in the presence and absence of alternative prey, and the survival of tethered juveniles at varying adult densities. Second, we examined how adult presence affected juvenile short-term foraging and growth rates. Although adult presence reduced juvenile short-term foraging, we detected only minimal cannibalism and found no evidence that adults greatly reduce juvenile growth or survivorship. These results suggest that overcompensation is not likely to occur in this population in response to removal. We assessed this prediction using pre- and post-removal surveys of juvenile recruitment in Bodega Harbor compared to nearby populations, testing for evidence of overcompensation. Relative juvenile abundance did not statistically increase in removal compared to reference populations, consistent with our conclusion from the experiments. This experimental approach which focuses on an organism’s population biology provides a tool to assess capacity for assessing the capacity for overcompensation in management strategies for invasive species.  相似文献   

4.
Linkages between estuarine nursery areas and coastal reefs are thought to be important for sustaining populations of some reef fishes. Patterns of abundance and size structure in the blue groper, Achoerodus viridis (Pisces: Labridae), were documented at sites extending from sheltered reefs and seagrass, Zostera capricorni, habitats, in shallows of estuaries, to adjacent exposed reefs in New South Wales, Australia. Numbers of juvenile fish (< 200 mm SL) decreased from shallow to deep areas of reef within a site and from inner to outer estuarine sites within two estuaries. Increased numbers of large fish (> 400 mm SL) were found on the more exposed coastal reefs. These patterns were consistent over the 21/2 year study (May 1991–December 1993). Recruits were found in both seagrass and rocky reef habitat, and showed similar patterns of abundance to juveniles. Recruitment of A. viridis to seagrass habitat occurred in distinct seasonal pulses each year; peak recruitment occurred in September and October of each year. Patterns of abundance and size structure were consistent with a model of estuarine recruitment and movement to the open coast, but alternatives, such as differential mortality, could not be discounted.  相似文献   

5.
The foraging ecology of larval and juvenile fishes   总被引:1,自引:0,他引:1  
Knowledge of the foraging ecology of fishes is fundamental both to understanding the processes that function at the individual, population and community levels, and for the management and conservation of their populations and habitats. Furthermore, the factors that influence the acquisition and assimilation of food can have significant consequences for the condition, growth, survival and recruitment of fishes. The majority of marine and freshwater fish species are planktivorous at the onset of exogenous nutrition and have a limited ability to detect, capture, ingest and digest prey. Improvements in vision, development of fins and associated improvements in swimming performance, increases in gape size and development of the alimentary tract during ontogeny often lead to shifts in diet composition. Prey size, morphology, behaviour and abundance can all influence the prey selection of larval and juvenile fishes. Differences in feeding behaviour between fish species, individuals or during ontogeny can also be important, as can inter- and intraspecific interactions (competition, predation risk). Temporal (diel, seasonal, annual) and spatial (microhabitat, mesohabitat, macrohabitat, regional) variations in prey availability can have important implications for the prey selection, diet composition, growth, survival, condition and, ultimately, recruitment success of fishes. For fish populations to persist, habitat must be available in sufficient quality and quantity for the range of activities undertaken during all periods of development. Habitats that enhance the diversity, size ranges and abundance of zooplankton should ensure that sufficient food resources are available to larval and juvenile fishes.  相似文献   

6.
Field studies were conducted to clarify whether variation in food availability among habitats influences population density, and whether population density has a negative effect on foraging success in the orb-web spider, Nephila clavata. Lifetime food consumption per individual (i.e., foraging success) strongly correlated with mean body size of adult females and mean fecundity in populations. Also, there was a positive correlation between foraging success and population density. Since foraging success reflected potential prey availability in the habitat, food resource appeared to be a limiting factor for populations in this spider. Mean fecundity per individual correlated with population density of the following year, suggesting that decreased reproduction is a major component of food limitation on population density. Consistent defferences in mean body size between particular sites were observed over years, while such difference was less obvious in density. Thus, ranking of food abundance among habitats seems to be predictable between years. A field experiment revealed that an artificial increase in population density had no negative effect on the feeding rate of individuals, suggesting that intraspecific competition for food is not important in this species.  相似文献   

7.
Most research on ontogenetic niche shifts has focused on changes in habitat or resource use related to food resource distribution and heterospecific size-limited predation. Cannibalism, an intraspecific interaction, can also affect habitat selection or resource use by vulnerable size classes. Morphological defenses, such as spines, increase the effective size of an individual, making it more difficult to consume. The importance of such defense structures in affecting niche shifts in early life history stages is unclear. Using a combination of field observations and experiments in aquaria and wading pools, we examined the relative roles of cannibalism and morphology in determining juvenile habitat use in two populations of threespine stickleback that differ in pelvic spine morphology. Juveniles were categorized into three size classes: small (5–10 mm), medium (11–15 mm), and large (15–25 mm). In experiments assessing the relative vulnerability of juveniles to cannibalism by adults, we documented a significant difference among size classes in the number of juveniles eaten such that more large juveniles were eaten from the population lacking pelvic spines. The natural distribution of small and large juveniles in two distinct littoral microhabitats, open water and vegetation, was determined in each lake. In both populations, small juveniles were more abundant in vegetation. In the population with pelvic spines, a greater proportion of large juveniles was observed in open water than in vegetation. In the population without pelvic spines, the proportion of large juveniles did not differ between the two habitats. Experiments comparing juvenile habitat use in the presence or absence of adult conspecifics suggest that differences in habitat use may not only depend on the size of the individual, or the size of the individual relative to the size of the adult predator, but also on the degree of development or expression of defensive structures.  相似文献   

8.
Summary Analysis of 6 years' data on a population of free-living white-footed mice documents both phenotypic and environmental control of litter size. Litter size was positively correlated with maternal body size. Maternal size depended upon both seasonal and annual variation. Paradoxically, the proportion of small versus large litters varied among habitats independently of the effects of body size. The result is an influence of habitat on life history that yields patterns of reproduction and survival opposite to the predictions of demographic theory. The habitat producing the largest litters had a relatively high ratio of adult/juvenile survival. Litter size was small in the habitat where the adult/juvenile survival ratio was smallest. All of these anomalous patterns can be explained through density-dependent habitat selection by female white-footed mice. Life-history studies that ignore habitat and habitat selection may find spurious correlations among traits that result in serious misinterpretations about life history and its evolution.  相似文献   

9.
Reduced habitat quality after fragmentation can significantly affect population viability, but the effects of differing quality of the remaining habitat on population fitness are rarely evaluated. Here, I compared fragmented populations of the cycad Zamia melanorrhachis from habitats with different history and subject to contrasting levels of disturbance to explore potential demographic differences in populations across habitat patches that could differ in habitat quality. Secondary-forest fragments had a lower canopy cover and soil moisture than remnant-forest fragments, which may represent a harsh environment for this cycad. A smaller average plant size and lower population density in the secondary-forest fragments support the hypothesis that these fragments may be of lower quality, e.g., if plants have reduced survival and/or fecundity in these habitats. However, variation in the stage-structure of populations (i.e., the relative proportions of non-reproductive and reproductive plants) was associated with the area of the forest fragments rather than the type of habitat (remnant versus secondary forest). These results suggest that different demographic parameters may respond differently to habitat fragmentation, which may be explained if processes like adult survival and recruitment depend on different characteristics of the habitat, e.g., average light/water availability versus suitable area for plant establishment. This study shows that forest fragments may differ drastically in environmental conditions and can sustain populations that can vary in their demography. Understanding how forest fragments may represent different habitat types is relevant for evaluating population viability in a heterogeneous landscape and for designing conservation programs that account for this heterogeneity.  相似文献   

10.
Few studies have validated the use of artificial seagrass to study processes structuring faunal assemblages by comparison with natural seagrass. One metric (fish recruitment) for evaluating the use of artificial seagrass was used in the present study. Settlement and recruitment of juvenile fish was estimated in natural, Zostera capricorni Aschers, and artificial seagrass in Botany Bay, NSW, over 6 consecutive days. Tarwhine, Rhabdosargus sarba, dominated the catch from both habitats, and there was no significant difference in abundance of recruits among the habitats. This was at least partly caused by large spatial and temporal variation in abundance. Daily abundances of R. sarba recruits suggested movement between seagrass beds, but could not be confirmed without tagging individual fish. Rhabdosargus sarba settlers were less abundant than recruits, but were also patchily distributed amongst natural and artificial seagrass beds. Most other species were also found in similar abundance in the two habitats, except stripey, Microcanthus strigatus, which was more abundant in artificial seagrass. Overall, fish assemblages in natural and artificial seagrass were similar. Artificial seagrass may therefore be useful for monitoring settlement and recruitment of juvenile fishes to disturbed habitats, to predict the success of habitat remediation. However, if artificial seagrass is used to model processes occurring in natural seagrass, it is necessary to consider species-specific responses to the artificial habitat.  相似文献   

11.
Altered river flows and fragmented habitats often simplify riverine communities and favor non‐native fishes, but their influence on life‐history expression and survival is less clear. Here, we quantified the expression and ultimate success of diverse salmon emigration behaviors in an anthropogenically altered California river system. We analyzed two decades of Chinook salmon monitoring data to explore the influence of regulated flows on juvenile emigration phenology, abundance, and recruitment. We then followed seven cohorts into adulthood using otolith (ear stone) chemical archives to identify patterns in time‐ and size‐selective mortality along the migratory corridor. Suppressed winter flow cues were associated with delayed emigration timing, particularly in warm, dry years, which was also when selection against late migrants was the most extreme. Lower, less variable flows were also associated with reduced juvenile and adult production, highlighting the importance of streamflow for cohort success in these southernmost populations. While most juveniles emigrated from the natal stream as fry or smolts, the survivors were dominated by the rare few that left at intermediate sizes and times, coinciding with managed flows released before extreme summer temperatures. The consistent selection against early (small) and late (large) migrants counters prevailing ecological theory that predicts different traits to be favored under varying environmental conditions. Yet, even with this weakened portfolio, maintaining a broad distribution in migration traits still increased adult production and reduced variance. In years exhibiting large fry pulses, even marginal increases in their survival would have significantly boosted recruitment. However, management actions favoring any single phenotype could have negative evolutionary and demographic consequences, potentially reducing adaptability and population stability. To recover fish populations and support viable fisheries in a warming and increasingly unpredictable climate, coordinating flow and habitat management within and among watersheds will be critical to balance trait optimization versus diversification.  相似文献   

12.
Megan Ward  Steven D. Johnson 《Oikos》2005,108(2):253-262
The ecological consequences of disruptions in plant-pollinator mutualisms are poorly understood. We examined how seed production and recruitment of juveniles in populations of the spectacular grassland geophyte Brunsvigia radulosa (Amaryllidaceae) correlate with various indices of habitat fragmentation, including habitat fragment area, population size and population isolation. The species was found to be self-incompatible and adapted for pollination primarily by the long-proboscid fly Philoliche aethiopica (Tabanidae). In places where this fly is locally extinct, carpenter bees appear to act as substitute, though less effective, pollinators. Seed production in B. radulosa showed a significant positive relationship with population size, but not with habitat fragment area or spatial isolation of populations when all three indices of habitat fragmentation were included as predictor variables in multiple regression models. Reduced seed production in small populations was attributable to pollen limitation, as supplemental hand pollinations resulted in proportionally greater increases in seed production in these populations. Pollen limitation appears to have demographic consequences; specifically, the proportion of juvenile plants in populations showed significant positive relationships with current levels of seed production per plant and size of populations. Thus the long term persistence of small B. radulosa populations in habitat fragments may be threatened by a pollination deficit.  相似文献   

13.
Many coral reef fishes exhibit distinct ontogenetic shifts in habitat use while some species settle directly in adult habitats, but there is not any general explanation to account for these differences in settlement strategies among coral reef fishes. This study compared distribution patterns and habitat associations of juvenile (young of the year) butterflyfishes to those of adult conspecifics. Three species, Chaetodon auriga, Chaetodon melannotus, and Chaetodon vagabundus, all of which have limited reliance on coral for food, exhibited marked differences in habitat association of juvenile versus adult individuals. Juveniles of these species were consistently found in shallow-water habitats, whereas adult conspecifics were widely distributed throughout a range of habitats. Juveniles of seven other species (Chaetodon aureofasciatus, Chaetodon baronessa, Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon plebeius, Chaetodon rainfordi, and Chaetodon trifascialis), all of which feed predominantly on live corals, settled directly into habitat occupied by adult conspecifics. Butterflyfishes with strong reliance on corals appear to be constrained to settle in habitats that provide access to essential prey resources, precluding their use of distinct juvenile habitats. More generalist butterflyfishes, however, appear to utilize distinct juvenile habitats and exhibit marked differences in the distribution of juveniles versus adults.  相似文献   

14.
Social behaviors can significantly affect population viability, and some behaviors might reduce extinction risk. We used population viability analysis to evaluate effects of past and proposed habitat loss on the White-breasted Thrasher (Ramphocinclus brachyurus), a cooperatively breeding songbird with a global population size of <2000 individuals. We used an individual-based approach to build the first demographic population projection model for this endangered species, parameterizing the model with data from eight years of field study before and after habitat loss within the stronghold of the species’ distribution. The recent habitat loss resulted in an approximately 18% predicted decline in population size; this estimate was mirrored by a separate assessment using occupancy data. When mortality rates remained close to the pre-habitat loss estimate, quasi-extinction probability was low under extant habitat area, but increased with habitat loss expected after current plans for resort construction are completed. Post-habitat loss mortality rate estimates were too high for projected populations to persist. Vital rate sensitivity analyses indicated that population growth rate and population persistence were most sensitive to juvenile mortality. However, observed values for adult mortality were closest to the threshold value above which populations would crash. Adult mortality, already relatively low, may have the least capacity to change compared to other vital rates, whereas juvenile mortality may have the most capacity for improvement. Results suggest that improving mortality estimates and determining the cause(s) of juvenile mortality should be research priorities. Despite predictions that aspects of cooperative systems may result in variation in reproduction or juvenile mortality being the most sensitive vital rates, adult mortality was the most sensitive in half of the demographic models of other avian cooperative breeders. Interestingly, vital rate sensitivity differed by model type. However, studies that explicitly modeled the species’ cooperative breeding system found reproduction to be the most sensitive rate.  相似文献   

15.
We sought to understand how the separation of habitats into spatially isolated fragments influences the abundance of organisms. Using a simple, deterministic model of population growth, we compared analytically exact solutions predicting abundance of consumers in two isolated patches with abundance of consumers in a single large patch where the carrying capacity of the large patch is the sum of the carrying capacities of the isolated ones. For the deterministic model, the effect of fragmentation was to slow the rate of population growth in the fragmented habitat relative to the intact one. We also analyzed a stochastic version of the model to examine the effect of fragmentation on population abundance when resources vary randomly in time. For the stochastic model, the effect of fragmentation was to reduce population abundance. We proved in closed-form, that for a non-equilibrium population exhibiting logistic population growth, fragmentation will reduce population size even when the total carrying capacity is not affected by fragmentation. We provide a theoretical basis for the prediction that habitat fragmentation amplifies the effect of habitat loss on the abundance of mobile organisms.  相似文献   

16.
Phillip S. Levin 《Oecologia》1993,94(2):176-185
Pronounced spatial variation in recruitment occurs in many marine invertebrate and fish populations and is thought to be critical to the demography of these species. In this study I examined the importance of habitat structure and the presence of conspecific residents to spatial variation in larval settlement and recruitment in a temperate fish Tautogolabrus adspersus. I define settlement as the movement of individuals from the water column to the benthic habitat, while I refer to recruitment as numbers of individuals surviving some arbitrary period of time after settlement. Experiments in which standard habitats were stocked with conspecifics showed that resident conspecifics were not an important factor contributing to small-scale variability in recruitment. Further correlative analyses demonstrated that large-scale variation in recruitment could not be explained by variability in older age classes. By contrast, manipulations of macroalgal structure within a kelp bed demonstrated that recruitment was significantly higher in habitats with a dense understory of foliose and filamentous algae than in habitats with only crustose algae. Understory algae varied in their pattern of disperison among sites, and the dispersion of fish matched that of the plants. In order to determine the effects of differences in patterns of algal dispersion on the demography of associated T. adspersus populations, I used experimental habitat units to manipulate patterns of dispersion. Settlement was significantly greater to randomly placed versus clumped habitats; however, no differences in recruitment between random and clumped habitats were detected. Because recruitment is a function of the numbers of settlers minus the subsequent loss of settlers, rates of mortality or migration must have been higher in the randomly placed habitats. These results are counter to the current paradigm for reef fishes which suggests that larval settlement is the crucial demographic process producing variability in population abundance. In this experiment patterns of settlement were modified by varying the patch structure of the habitat.Contribution number 278 from the Center for Marine Biology, University of New Hampshire  相似文献   

17.
Mean juvenile fish abundance and fish frequency in a large lowland river during low discharge largely differed among the unvegetated and three morphologically contrasted macrophyte habitats. Single separate models revealed that juvenile fish distribution was largely influenced by trophic variables. With the exception of Leuciscus cephalus , which responded mainly to physical variables (depth and substratum), multiple regression models emphasized the importance of trophic variables for fish distribution. For Blicca bjoerkna , L. cephalus and Lepomis gibbosus , habitat shifts with respect to prey size were apparent; small juvenile fishes mainly responded to small zooplankton abundance, whereas large individuals were more influenced by the abundance of large zooplankton. Whatever the species, predictions from multiple regression models were always better for large individuals. Small juvenile fishes appeared to be less affected by the habitat variables measured, and exhibited more uniform spatial distribution. The relative importance of trophic resources and habitat physical structure among macrophyte types for fish-habitat relationships is discussed, and the necessity of quantifying habitat structural complexity is emphasized.  相似文献   

18.
19.
Wildfire and mountain pine beetle infestations are naturally occurring disturbances in western North American forests. Black-backed woodpeckers (Picoides arcticus) are emblematic of the role these disturbances play in creating wildlife habitat, since they are strongly associated with recently-killed forests. However, management practices aimed at reducing the economic impact of natural disturbances can result in habitat loss for this species. Although black-backed woodpeckers occupy habitats created by wildfire, prescribed fire, and mountain pine beetle infestations, the relative value of these habitats remains unknown. We studied habitat-specific adult and juvenile survival probabilities and reproductive rates between April 2008 and August 2012 in the Black Hills, South Dakota. We estimated habitat-specific adult and juvenile survival probability with Bayesian multi-state models and habitat-specific reproductive success with Bayesian nest survival models. We calculated asymptotic population growth rates from estimated demographic rates with matrix projection models. Adult and juvenile survival and nest success were highest in habitat created by summer wildfire, intermediate in MPB infestations, and lowest in habitat created by fall prescribed fire. Mean posterior distributions of population growth rates indicated growing populations in habitat created by summer wildfire and declining populations in fall prescribed fire and mountain pine beetle infestations. Our finding that population growth rates were positive only in habitat created by summer wildfire underscores the need to maintain early post-wildfire habitat across the landscape. The lower growth rates in fall prescribed fire and MPB infestations may be attributed to differences in predator communities and food resources relative to summer wildfire.  相似文献   

20.
Linking temporal variations of genetic diversity, including allelic richness and heterozygosity, and spatio-temporal fluctuations in population abundance has emerged as an important tool for understanding demographic and evolutionary processes in natural populations. This so-called genetic monitoring was conducted across 12 consecutive years (1996-2007) at three sites for the feral cat, introduced onto the Kerguelen archipelago fifty years ago. Temporal changes in allelic richness and heterozygosity at 18 microsatellite DNA loci were compared with temporal changes in the adult population abundance index, obtained by typical demographic monitoring. No association was found at the island spatial scale, but we observed an association between genetic diversity and adult population indices from year to year within each study site. More particularly, the magnitude of successive increases or decreases in the adult population abundance index appeared to be the major factor linking the trajectories of genetic diversity and adult population abundance indices. Natal dispersal and/or local recruitment, both facilitated by high juvenile survival when the adult population size is small, is proposed as the major demographic processes contributing to such an observed pattern. Finally, we suggested avoiding the use of the harmonic mean as an estimator of long-term population size to study the relationships between demographic fluctuations and heterozygosity in populations characterized by strong multiannual density fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号