首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biogenesis of biological membranes hinges on the coordinated trafficking of membrane lipids between distinct cellular compartments. The bacterial outer membrane enzyme PagP confers resistance to host immune defenses by transferring a palmitate chain from a phospholipid to the lipid A (endotoxin) component of lipopolysaccharide. PagP is an eight-stranded antiparallel beta-barrel, preceded by an N-terminal amphipathic alpha-helix. The active site is localized inside the beta-barrel and is aligned with the lipopolysaccharide-containing outer leaflet, but the phospholipid substrates are normally restricted to the inner leaflet of the asymmetric outer membrane. We examined the possibility that PagP activity in vivo depends on the aberrant migration of phospholipids into the outer leaflet. We find that brief addition to Escherichia coli cultures of millimolar EDTA, which is reported to replace a fraction of lipopolysaccharide with phospholipids, rapidly induces palmitoylation of lipid A. Although expression of the E. coli pagP gene is induced during Mg2+ limitation by the phoPQ two-component signal transduction pathway, EDTA-induced lipid A palmitoylation occurs more rapidly than pagP induction and is independent of de novo protein synthesis. EDTA-induced lipid A palmitoylation requires functional MsbA, an essential ATP-binding cassette transporter needed for lipid transport to the outer membrane. A potential role for the PagP alpha-helix in phospholipid translocation to the outer leaflet was excluded by showing that alpha-helix deletions are active in vivo. Neither EDTA nor Mg(2+)-EDTA stimulate PagP activity in vitro. These findings suggest that PagP remains dormant in outer membranes until Mg2+ limitation promotes the migration of phospholipids into the outer leaflet.  相似文献   

2.
Palmitoylated lipid A can both protect pathogenic bacteria from host immune defences and attenuate the activation of those same defences through the TLR4 signal transduction pathway. A palmitate chain from a phospholipid is incorporated into lipid A by an outer membrane enzyme PagP, which is an 8-stranded antiparallel beta-barrel preceded by an amino-terminal amphipathic alpha-helix. The PagP barrel axis is tilted by 25 degrees with respect to the membrane normal. An interior hydrophobic pocket in the outer leaflet-exposed half of the molecule functions as a hydrocarbon ruler that allows the enzyme to distinguish palmitate from other acyl chains found in phospholipids. Internalization of a phospholipid palmitoyl group within the barrel appears to occur by lateral diffusion from the outer leaflet through non-hydrogen-bonded regions between beta-strands. The MsbA-dependent trafficking of lipids from the inner membrane to the outer membrane outer leaflet is necessary for lipid A palmitoylation in vivo. The mechanisms by which bacteria regulate pagP gene expression strikingly reflect the corresponding pathogenic lifestyle of the bacterium. Variations on PagP structure and function can be illustrated with the known homologues from Gram-negative bacteria, which include pathogens of humans and other mammals in addition to pathogens of insects and plants. The PagP enzyme is potentially a target for the development of anti-infective agents, a probe of outer membrane lipid asymmetry, and a tool for the synthesis of lipid A-based vaccine adjuvants and endotoxin antagonists.  相似文献   

3.
Regulated covalent modifications of lipid A are implicated in virulence of pathogenic Gram-negative bacteria. The Salmonella typhimurium PhoP/PhoQ-activated gene pagP is required both for biosynthesis of hepta-acylated lipid A species containing palmitate and for resistance to cationic anti-microbial peptides. Palmitoylated lipid A can also function as an endotoxin antagonist. We now show that pagP and its Escherichia coli homolog (crcA) encode an unusual enzyme of lipid A biosynthesis localized in the outer membrane. PagP transfers a palmitate residue from the sn-1 position of a phospholipid to the N-linked hydroxymyristate on the proximal unit of lipid A (or its precursors). PagP bearing a C-terminal His(6)-tag accumulated in outer membranes during overproduction, was purified with full activity and was shown by cross-linking to behave as a homodimer. PagP is the first example of an outer membrane enzyme involved in lipid A biosynthesis. Additional pagP homologs are encoded in the genomes of YERSINIA: and BORDETELLA: species. PagP may provide an adaptive response toward both Mg(2+) limitation and host innate immune defenses.  相似文献   

4.
The outer membrane (OM) of Gram-negative bacteria is an evolving antibiotic barrier composed of a glycerophospholipid (GP) inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The two-component regulatory system CrrAB has only recently been reported to confer high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Mutations in crrB have been shown to lead to the modification of the lipid A moiety of LPS through CrrAB activation. However, functions of CrrAB activation in the regulation of other lipids are unclear. Work here demonstrates that CrrAB activation not only stimulates LPS modification but also regulates synthesis of acyl-glycerophosphoglycerols (acyl-PGs), a lipid species with undefined functions and biosynthesis. Among all possible modulators of acyl-PG identified from proteomic data, we found expression of lipid A palmitoyltransferase (PagP) was significantly upregulated in the crrB mutant. Furthermore, comparative lipidomics showed that most of the increasing acyl-PG activated by CrrAB was decreased after pagP knockout with CRISPR-Cas9. These results suggest that PagP also transfers a palmitate chain from GPs to PGs, generating acyl-PGs. Further investigation revealed that PagP mainly regulates the GP contents within the OM, leading to an increased ratio of acyl-PG to PG species and improving OM hydrophobicity, which may contribute to resistance against certain cationic antimicrobial peptides resistance upon LPS modification. Taken together, this work suggests that CrrAB regulates the palmitoylation of PGs and lipid A within the OM through upregulated PagP, which functions together to form an outer membrane barrier critical for bacterial survival.  相似文献   

5.
【目的】禽致病性大肠杆菌(Avian pathogenic Escherichia coli,APEC)不仅严重影响全球的养禽业,对人类公共健康也造成巨大的潜在威胁。pag P基因在细菌的抗菌肽抗性和致病性方面发挥重要作用,但关于pag P基因在APEC中的功能尚不清楚。本文构建禽致病性大肠杆菌pag P基因缺失株,对缺失株的抗菌肽抗性和致病性进行研究。【方法】利用Red重组系统构建APEC的pag P基因缺失株,然后利用回复质粒构建回复株。研究pag P基因对细胞黏附与入侵、生物被膜形成能力、外膜渗透性、抗菌肽敏感性、致病性等方面的影响。【结果】成功构建pag P基因缺失株和回复株,抗菌肽抗性试验发现pag P基因缺失株对多粘菌素B、鸡β-防御素2(AVBD2)的敏感性显著增加(P0.01),致病性试验结果表明pag P基因缺失株的毒力显著降低(P0.01)。【结论】APEC的pag P基因对AVBD2的敏感性和APEC的致病性密切相关,为深入研究pag P基因的功能及调控作用奠定了基础。  相似文献   

6.
革兰氏阴性菌脂多糖运输系统的构成及作用机制   总被引:1,自引:0,他引:1  
莫婷  刘马峰  程安春 《微生物学报》2018,58(9):1521-1530
革兰氏阴性菌包含有两层组分不同的膜结构——内膜和外膜,对大多数革兰氏阴性菌而言,脂多糖(lipopolysaccharides,LPS)是其外膜上最主要的脂质成分,锚定在外膜小叶(the outer leaflet of the OM)上,是革兰氏阴性菌固有免疫的重要组成部分。脂多糖运输系统(lipopolysaccharide transport system,Lpt)将胞内装配完整的LPS正确装配到外膜,使得与脂多糖相关的阻渗、有机溶剂耐受性、疏水性抗生素耐受性、膜通透性等功能得以实现。该运输系统的正确作用主要依赖7个不同的脂多糖运输蛋白(Lpt ABCDEFG)协同完成,整个系统贯穿细菌内膜至外膜,由内膜上ABC转运体复合物Lpt B2FG、胞质内转运协同蛋白Lpt A/C及被许多学者称作脂多糖运输的"命门"的外膜蛋白复合物Lpt DE共同构成。本文就革兰氏阴性菌脂多糖的具体结构功能进行简介,进而综述脂多糖运输系统的7个蛋白的构成和作用机制,以期为进一步研究该系统中每个蛋白的功能提供理论基础及参考。  相似文献   

7.
The outer membranes of Gram-negative bacteria are replete with integral membrane proteins that exhibit antiparallel beta-barrel structures, but very few of these proteins function as enzymes. In Escherichia coli, only three beta-barrel enzymes are known to exist in the outer membrane; these are the phospholipase OMPLA, the protease OmpT, and the phospholipidColon, two colonslipid A palmitoyltransferase PagP, all of which have been characterized at the structural level. Structural details have also emerged for the outer membrane beta-barrel enzyme PagL, a lipid A 3-O-deacylase from Pseudomonas aeruginosa. Lipid A can be further modified in the outer membrane by two beta-barrel enzymes of unknown structure; namely, the Salmonella enterica 3'-acyloxyacyl hydrolase LpxR, and the Rhizobium leguminosarum oxidase LpxQ, which employs O(2) to convert the proximal glucosamine unit of lipid A into 2-aminogluconate. Structural biology now indicates how beta-barrel enzymes can function as sentinels that remain dormant when the outer membrane permeability barrier is intact. Host immune defenses and antibiotics that perturb this barrier can directly trigger beta-barrel enzymes in the outer membrane. The ensuing adaptive responses occur instantaneously and rapidly outpace other signal transduction mechanisms that similarly function to restore the outer membrane permeability barrier.  相似文献   

8.
Lipopolysaccharide (LPS), a component of Gram-negative bacterial outer membranes, comprises three regions: lipid A, core oligosaccharide, and O-antigen polysaccharide. Using the CHARMM36 lipid and carbohydrate force fields, we have constructed a model of an Escherichia coli R1 (core) O6 (antigen) LPS molecule. Several all-atom bilayers are built and simulated with lipid A only (LIPA) and varying lengths of 0 (LPS0), 5 (LPS5), and 10 (LPS10) O6 antigen repeating units; a single unit of O6 antigen contains five sugar residues. From 1H,1H-NOESY experiments, cross-relaxation rates are obtained from an O-antigen polysaccharide sample. Although some experimental deviations are due to spin-diffusion, the remaining effective proton-proton distances show generally very good agreement between NMR experiments and molecular dynamics simulations. The simulation results show that increasing the LPS molecular length has an impact on LPS structure and dynamics and also on LPS bilayer properties. Terminal residues in a LPS bilayer are more flexible and extended along the membrane normal. As the core and O-antigen are added, per-lipid area increases and lipid bilayer order decreases. In addition, results from mixed LPS0/5 and LPS0/10 bilayer simulations show that the LPS O-antigen conformations at a higher concentration of LPS5 and LPS10 are more orthogonal to the membrane and less flexible. The O-antigen concentration of mixed LPS bilayers does not have a significant effect on per-lipid area and hydrophobic thickness. Analysis of ion and water penetration shows that water molecules can penetrate inside the inner core region, and hydration is critical to maintain the integrity of the bilayer structure.  相似文献   

9.
Lipopolysaccharide (LPS), a component of Gram-negative bacterial outer membranes, comprises three regions: lipid A, core oligosaccharide, and O-antigen polysaccharide. Using the CHARMM36 lipid and carbohydrate force fields, we have constructed a model of an Escherichia coli R1 (core) O6 (antigen) LPS molecule. Several all-atom bilayers are built and simulated with lipid A only (LIPA) and varying lengths of 0 (LPS0), 5 (LPS5), and 10 (LPS10) O6 antigen repeating units; a single unit of O6 antigen contains five sugar residues. From 1H,1H-NOESY experiments, cross-relaxation rates are obtained from an O-antigen polysaccharide sample. Although some experimental deviations are due to spin-diffusion, the remaining effective proton-proton distances show generally very good agreement between NMR experiments and molecular dynamics simulations. The simulation results show that increasing the LPS molecular length has an impact on LPS structure and dynamics and also on LPS bilayer properties. Terminal residues in a LPS bilayer are more flexible and extended along the membrane normal. As the core and O-antigen are added, per-lipid area increases and lipid bilayer order decreases. In addition, results from mixed LPS0/5 and LPS0/10 bilayer simulations show that the LPS O-antigen conformations at a higher concentration of LPS5 and LPS10 are more orthogonal to the membrane and less flexible. The O-antigen concentration of mixed LPS bilayers does not have a significant effect on per-lipid area and hydrophobic thickness. Analysis of ion and water penetration shows that water molecules can penetrate inside the inner core region, and hydration is critical to maintain the integrity of the bilayer structure.  相似文献   

10.
The antimicrobial activity of nisin against outer membrane lipopolysaccharide mutants of Salmonella typhimurium LT2 was investigated. Nisin sensitivity was associated with the extent of saccharide deletions from the outer membrane core oligosaccharide. The results indicated that the core oligosaccharide in lipopolysaccharide plays a role in nisin sensitivity.  相似文献   

11.
The antimicrobial activity of nisin against outer membrane lipopolysaccharide mutants of Salmonella typhimurium LT2 was investigated. Nisin sensitivity was associated with the extent of saccharide deletions from the outer membrane core oligosaccharide. The results indicated that the core oligosaccharide in lipopolysaccharide plays a role in nisin sensitivity.  相似文献   

12.
The outermost layer of Gram negative bacteria is composed of a lipopolysaccharide (LPS) network that forms a dense protective hydrophilic barrier against entry of hydrophobic drugs. At low μM concentrations, a large family of cationic polypeptides known as antimicrobial peptides (AMPs) are able to penetrate the LPS layer and permeabilize the outer membrane (OM) and the cytoplasmic membrane (CM), causing cell death. Cecropin A is a well-studied cationic AMP from moth. Here a battery of time-resolved, single-cell microscopy experiments explores how deletion of sugar layers and/or phosphoryl negative charges from the core oligosaccharide layer (core OS) of K12 E. coli alters the timing of OM and CM permeabilization induced by Cecropin A. Deletion of sugar layers, or phosphoryl charges, or both from the core OS shortens the time to the onset of OM permeabilization to periplasmic GFP and also the lag time between OM permeabilization and CM permeabilization. Meanwhile, the 12-h minimum inhibitory concentration (MIC) changes only twofold with core OS alterations. The results suggest a two-step model in which the core oligosaccharide layers act as a kinetic barrier to penetration of Cecropin A to the lipid A outer leaflet of the OM. Once a threshold concentration has built up at the lipid A leaflet, nucleation occurs and the OM is locally permeabilized to GFP and, by inference, to Cecropin A. Whenever Cecropin A permeabilizes the OM, CM permeabilization always follows, and cell growth subsequently halts and never recovers on the 45 min observation timescale.  相似文献   

13.
In most members of the Enterobacteriaceae, including Escherichia coli and Salmonella, the lipopolysaccharide core oligosaccharide backbone is modified by phosphoryl groups. The negative charges provided by these residues are important in maintaining the barrier function of the outer membrane. Mutants lacking the core heptose region and the phosphate residues display pleiotrophic defects collectively known as the deep-rough phenotype, characterized by changes in outer membrane structure and function. Klebsiella pneumoniae lacks phosphoryl residues in its core, but instead contains galacturonic acid. The goal of this study was to determine the contribution of galacturonic acid as a critical source of negative charge. A mutant was created lacking all galacturonic acid by targeting UDP-galacturonic acid precursor synthesis through a mutation in gla(KP). Gla(KP) is a K. pneumoniae UDP-galacturonic acid C4 epimerase providing UDP-galacturonic acid for core synthesis. The gla(KP) gene was inactivated and the structure of the mutant lipopolysaccharide was determined by mass spectrometry. The mutant displayed characteristics of a deep-rough phenotype, exhibiting a hypersensitivity to hydrophobic compounds and polymyxin B, an altered outer membrane profile, and the release of the periplasmic enzyme beta-lactamase. These results indicate that the negative charge provided by the carboxyl groups of galacturonic acid do play an equivalent role to the core oligosaccharide phosphate residues in establishing outer membrane integrity in E. coli and Salmonella.  相似文献   

14.
The ability of enzymes to distinguish between fatty acyl groups can involve molecular measuring devices termed hydrocarbon rulers, but the molecular basis for acyl-chain recognition in any membrane-bound enzyme remains to be defined. PagP is an outer membrane acyltransferase that helps pathogenic bacteria to evade the host immune response by transferring a palmitate chain from a phospholipid to lipid A (endotoxin). PagP can distinguish lipid acyl chains that differ by a single methylene unit, indicating that the enzyme possesses a remarkably precise hydrocarbon ruler. We present the 1.9 A crystal structure of PagP, an eight-stranded beta-barrel with an unexpected interior hydrophobic pocket that is occupied by a single detergent molecule. The buried detergent is oriented normal to the presumed plane of the membrane, whereas the PagP beta-barrel axis is tilted by approximately 25 degrees. Acyl group specificity is modulated by mutation of Gly88 lining the bottom of the hydrophobic pocket, thus confirming the hydrocarbon ruler mechanism for palmitate recognition. A striking structural similarity between PagP and the lipocalins suggests an evolutionary link between these proteins.  相似文献   

15.
Membrane biogenesis in Escherichia coli: effects of a secA mutation   总被引:4,自引:0,他引:4  
In Escherichia coli K-12, temperature-sensitive mutations in the secA gene have been shown to interfere with protein export. Here we show that the effect of a secA mutation is strongly pleiotropic on membrane biogenesis. Freeze-fracture experiments as well as cryosections of the cells revealed the appearance of intracytoplasmic membranes upon induction of the SecA phenotype. The permeability barrier of the outer membrane to detergents was lost. Two alterations in the outer membrane may be responsible for this effect, namely the reduced amounts of outer membrane proteins, or the reduction of the length of the core oligosaccharide of the lipopolysaccharide, which was observed in phage-sensitivity experiments and by SDS-polyacrylamide gel electrophoresis. Phospholipid analysis of the secA mutant, grown under restrictive conditions, revealed a lower content of the negatively charged phospholipid cardiolipin and of 18:1 fatty acid compared to those of the parental strain grown under identical conditions. These results are in line with the hypothesis that protein export and lipid metabolism are coupled.  相似文献   

16.
Lipopolysaccharide (LPS) is one of the main constituents of the Gram-negative bacterial outer membrane. It usually consists of a highly variable O-antigen, a less variable core oligosaccharide, and a highly conserved lipid moiety, designated lipid A. Several bacteria are capable of modifying their lipid A architecture in response to external stimuli. The outer membrane-localized lipid A 3-O-deacylase, encoded by the pagL gene of Salmonella enterica serovar Typhimurium, removes the fatty acyl chain from the 3 position of lipid A. Although a similar activity was reported in some other Gram-negative bacteria, the corresponding genes could not be identified. Here, we describe the presence of pagL homologs in a variety of Gram-negative bacteria. Although the overall sequence similarity is rather low, a conserved domain could be distinguished in the C-terminal region. The activity of the Pseudomonas aeruginosa and Bordetella bronchiseptica pagL homologs was confirmed upon expression in Escherichia coli, which resulted in the removal of an R-3-hydroxymyristoyl group from lipid A. Upon deacylation by PagL, E. coli lipid A underwent another modification, which was the result of the activity of the endogenous palmitoyl transferase PagP. Furthermore, we identified a conserved histidine-serine couple as active site residues, suggesting a catalytic mechanism similar to serine hydrolases. The biological function of PagL remains unclear. However, because PagL homologs were found in both pathogenic and nonpathogenic species, PagL-mediated deacylation of lipid A probably does not have a dedicated role in pathogenicity.  相似文献   

17.
Initial attachment of bacteriophage P22 to the Salmonella host cell is known to be mediated by interactions between lipopolysaccharide (LPS) and the phage tailspike proteins (TSP), but the events that subsequently lead to DNA injection into the bacterium are unknown. We used the binding of a fluorescent dye and DNA accessibility to DNase and restriction enzymes to analyze DNA ejection from phage particles in vitro. Ejection was specifically triggered by aggregates of purified Salmonella LPS but not by LPS with different O-antigen structure, by lipid A, phospholipids, or soluble O-antigen polysaccharide. This suggests that P22 does not use a secondary receptor at the bacterial outer membrane surface. Using phage particles reconstituted with purified mutant TSP in vitro, we found that the endorhamnosidase activity of TSP degrading the O-antigen polysaccharide was required prior to DNA ejection in vitro and DNA replication in vivo. If, however, LPS was pre-digested with soluble TSP, it was no longer able to trigger DNA ejection, even though it still contained five O-antigen oligosaccharide repeats. Together with known data on the structure of LPS and phage P22, our results suggest a molecular model. In this model, tailspikes position the phage particles on the outer membrane surface for DNA ejection. They force gp26, the central needle and plug protein of the phage tail machine, through the core oligosaccharide layer and into the hydrophobic portion of the outer membrane, leading to refolding of the gp26 lazo-domain, release of the plug, and ejection of DNA and pilot proteins.  相似文献   

18.
The outer membranes of Gram-negative bacteria are replete with integral membrane proteins that exhibit antiparallel β-barrel structures, but very few of these proteins function as enzymes. In Escherichia coli, only three β-barrel enzymes are known to exist in the outer membrane; these are the phospholipase OMPLA, the protease OmpT, and the phospholipid∷lipid A palmitoyltransferase PagP, all of which have been characterized at the structural level. Structural details have also emerged for the outer membrane β-barrel enzyme PagL, a lipid A 3-O-deacylase from Pseudomonas aeruginosa. Lipid A can be further modified in the outer membrane by two β-barrel enzymes of unknown structure; namely, the Salmonella enterica 3′-acyloxyacyl hydrolase LpxR, and the Rhizobium leguminosarum oxidase LpxQ, which employs O2 to convert the proximal glucosamine unit of lipid A into 2-aminogluconate. Structural biology now indicates how β-barrel enzymes can function as sentinels that remain dormant when the outer membrane permeability barrier is intact. Host immune defenses and antibiotics that perturb this barrier can directly trigger β-barrel enzymes in the outer membrane. The ensuing adaptive responses occur instantaneously and rapidly outpace other signal transduction mechanisms that similarly function to restore the outer membrane permeability barrier.  相似文献   

19.
Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo2Hex6GalA3Fuc3NAcRha4 and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response.  相似文献   

20.
The following cell surface physicochemical characteristics were investigated inKlebsiella pneumoniae: surface charge, surface hydrophobicity by different methods, and accessibility of the lipid fraction of the outer membrane. The capsular polysaccharide, as well as the O-antigen repeating units of the lipopolysaccharide (LPS), conferred a hydrophilic, negatively charged surface to the bacterium, and a barrier to the dye congo red, which binds sites within the lipid fraction of the outer membrane (OM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号