首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trans-Golgi network (TGN) is a major traffic hub of the cell, as it regulates membrane transport in the secretory pathway as well as receiving protein cargo by retrograde transport from endocytic compartments. Retrograde transport between endosomes and the TGN is essential for the recycling of membrane proteins which regulate a range of cellular and development functions. In addition, retrograde transport pathways are exploited by many bacterial toxins to mediate cytotoxicity and by some viral proteins to promote pathogenicity. Recent advances using a range of molecular cell biological strategies have identified multiple retrograde transport pathways each regulated by a distinct set of molecular machinery. Here we review recent advances in this field and highlight the importance of these transport pathways in a range of physiological processes.  相似文献   

2.
Evidence for a sorting endosome in Arabidopsis root cells   总被引:6,自引:0,他引:6  
In eukaryotic cells, the endocytic and secretory pathways are key players in several physiological processes. These pathways are largely inter-connected in animal and yeast cells through organelles named sorting endosomes. Sorting endosomes are multi-vesicular compartments that redirect proteins towards various destinations, such as the lysosomes or vacuoles for degradation, the trans-Golgi network for retrograde transport and the plasma membrane for recycling. In contrast, cross-talk between the endocytic and secretory pathways has not been clearly established in plants, especially in terms of cargo protein trafficking. Here we show by co-localization analyses that endosomes labelled with the AtSORTING NEXIN1 (AtSNX1) protein overlap with the pre-vacuolar compartment in Arabidopsis root cells. In addition, alteration of the routing functions of AtSNX1 endosomes by drug treatments leads to mis-routing of endocytic and secretory cargo proteins. Based on these results, we propose that the AtSNX1 endosomal compartment represents a sorting endosome in root cells, and that this specialized organelle is conserved throughout eukaryotes.  相似文献   

3.
The AP (adaptor protein) complexes are heterotetrameric protein complexes that mediate intracellular membrane trafficking along endocytic and secretory transport pathways. There are five different AP complexes: AP-1, AP-2 and AP-3 are clathrin-associated complexes; whereas AP-4 and AP-5 are not. These five AP complexes localize to different intracellular compartments and mediate membrane trafficking in distinct pathways. They recognize and concentrate cargo proteins into vesicular carriers that mediate transport from a donor membrane to a target organellar membrane. AP complexes play important roles in maintaining the normal physiological function of eukaryotic cells. Dysfunction of AP complexes has been implicated in a variety of inherited disorders, including: MEDNIK (mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis and keratodermia) syndrome, Fried syndrome, HPS (Hermansky–Pudlak syndrome) and HSP (hereditary spastic paraplegia).  相似文献   

4.
Constitutive secretion is used to deliver newly synthesized proteins to the cell surface and to the extracellular milieu. The trans-Golgi network is a key station along this route that mediates sorting of proteins into distinct transport pathways, aided in part by clathrin and adaptor proteins. Subsequent movement of proteins to the plasma membrane can occur either directly or via the endocytic pathway. Moreover, multiple, parallel pathways from the trans-Golgi network to the plasma membrane appear to exist, not only in complex, polarized cells such as epithelial cells and neurons, but also in relatively simple cells such as fibroblasts. In addition to typical secretory vesicles, these pathways involve both small, pleiomorphic transport containers and relatively large tubular-saccular carriers that travel along cytoskeletal tracks. While production and movement of these membranous structures are typically described as constitutive, recent studies have revealed that these key steps in secretion are tightly regulated by Ras-superfamily GTPases, members of the protein kinase D family and tethering complexes such as the exocyst.  相似文献   

5.
Communication between compartments of the exocytic and endocytic pathways in eukaryotic cells involves transport carriers - vesicles and tubules - that mediate the vectorial movement of cargo. Recent studies of transport-carrier formation in the early secretory pathway have provided new insights into the mechanisms of cargo selection by coat protein complex-II (COPII) adaptor proteins, the construction of cage-protein scaffolds and fission. These studies are beginning to produce a unifying molecular and structural model of coat function in the formation and fission of vesicles and tubules in endomembrane traffic.  相似文献   

6.
Intracellular membrane trafficking along endocytic and secretory transport pathways plays a critical role in diverse cellular functions including both developmental and pathological processes. Briefly, proteins and lipids destined for transport to distinct locations are collectively assembled into vesicles and delivered to their target site by vesicular fusion. SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins are required for these events, during which v-SNAREs (vesicle SNAREs) interact with t-SNAREs (target SNAREs) to allow transfer of cargo from donor vesicle to target membrane. Recently, the t-SNARE family member, syntaxin-6, has been shown to play an important role in the transport of proteins that are key to diverse cellular dynamic processes. In this paper, we briefly discuss the specific role of SNAREs in various mammalian cell types and comprehensively review the various roles of the Golgi- and endosome-localized t-SNARE, syntaxin-6, in membrane trafficking during physiological as well as pathological conditions.  相似文献   

7.
The secretory and endocytic pathways within higher cells consist of multiple membrane-bound compartments, each with a characteristic composition, through which proteins move on their way to or from the cell surface. Sorting of proteins within this system is achieved by their selective incorporation into budding vesicles and the specific fusion of these with an appropriate target membrane. Cytosolic coat proteins help to select vesicle contents, while fusion is mediated by membrane proteins termed SNAREs present in both vesicles and target membranes. SNAREs are not the sole determinants of target specificity, but they lie at the heart of the fusion process. The complete set of SNAREs is known in yeast, and analysis of their locations, interactions and functions in vivo gives a comprehensive picture of the traffic routes and the ways in which organelles such as the Golgi apparatus are formed. The principles of protein and lipid sorting revealed by this analysis are likely to apply to a wide variety of eukaryotic cells.  相似文献   

8.
Sho W. Suzuki 《Autophagy》2018,14(9):1654-1655
Membrane protein recycling is a fundamental process from yeast to humans. The lysosome (or vacuole in yeast) receives membrane proteins from the secretory, endocytic, and macroautophagy/autophagy pathways. Although some of these membrane proteins appear to be recycled, the molecular mechanisms underlying this retrograde trafficking are poorly understood. Our recent study revealed that the transmembrane autophagy protein Atg27 is recycled from the vacuole membrane using a 2-step recycling process. First, the Snx4 complex recycles Atg27 from the vacuole to the endosome. Then, the retromer complex mediates endosome-to-Golgi retrograde transport. Thus, 2 distinct protein complexes facilitate the sequential retrograde trafficking for Atg27. As far as we know, Atg27 is the first physiological substrate for the vacuole-to-endosome retrograde trafficking pathway.  相似文献   

9.
Protein transport between the membranous compartments of the eukaryotic cells is mediated by the constant fission and fusion of the membrane-bounded vesicles from a donor to an acceptor membrane. While there are many membrane remodelling complexes in eukaryotes, COPII, COPI, and clathrin-coated vesicles are the three principal classes of coat protein complexes that participate in vesicle trafficking in the endocytic and secretory pathways. These vesicle-coat proteins perform two key functions: deforming lipid bilayers into vesicles and encasing selective cargoes. The three trafficking complexes share some commonalities in their structural features but differ in their coat structures, mechanisms of cargo sorting, vesicle formation, and scission. While the structures of many of the proteins involved in vesicle formation have been determined in isolation by X-ray crystallography, elucidating the proteins' structures together with the membrane is better suited for cryogenic electron microscopy (cryo-EM). In recent years, advances in cryo-EM have led to solving the structures and mechanisms of several vesicle trafficking complexes and associated proteins.  相似文献   

10.
Many receptors involved in clathrin-mediated protein transport through the endocytic and secretory pathways of yeast and animal cells share common features. They are all type I integral membrane proteins containing cysteine-rich lumenal domains and cytoplasmic tails with tyrosine-containing sorting signals. The cysteine-rich domains are thought to be involved in ligand binding, whereas the cytoplasmic tyrosine motifs interact with clathrin-associated adaptor proteins during protein sorting along these pathways. In addition, tyrosine-containing signals are required for the retention and recycling of some of these membrane proteins to the trans-Golgi network. Here we report the characterization of an approximately 80-kD epidermal growth factor receptor-like type I integral membrane protein containing all of these functional motifs from Arabidopsis thaliana (called AtELP for A. thaliana Epidermal growth factor receptor-Like Protein). Biochemical analysis indicates that AtELP is a membrane protein found at high levels in the roots of both monocots and dicots. Subcellular fractionation studies indicate that the AtELP protein is present in two membrane fractions corresponding to a novel, undefined compartment and a fraction enriched in vesicles containing clathrin and its associated adaptor proteins. AtELP may therefore serve as a marker for compartments involved in intracellular protein trafficking in the plant cell.  相似文献   

11.
A fundamental feature of eukaryotic cells is the presence of distinct membrane‐bound compartments having unique protein and lipid composition. These compartments are interconnected by active trafficking mechanisms that must direct macromolecules to defined locations, and at the same time maintain the protein and lipid composition of each organelle. It is well accepted that Rab proteins play a central role in intracellular transport regulating the recognition, fusion and fission of organelles. However, how the transport is achieved is not completely understood. We propose a model whereby a soluble component in the luminal compartment is transported along different Rab‐containing organelles that interact according to the following simple principles: (i) only organelles with the same or compatible Rab membrane domains can fuse; (ii) after fusion, an asymmetric fission occurs producing a tubule and a round‐shaped vesicle; and (iii) Rab membrane domains distribute asymmetrically between the two resulting organelles. When this model was tested in a simulation, efficient unidirectional transport was observed, while the compartment identity was preserved. All three principles were absolutely necessary for transport. The model is compatible with Rab association/dissociation dynamics and with Rab conversion. In simulations mimicking a simplified endocytic pathway, soluble and membrane‐associated markers were efficiently transported preserving the identity of the interacting compartments.  相似文献   

12.
Tracking down the elusive early endosome   总被引:7,自引:0,他引:7  
Despite significant progress in understanding protein trafficking and compartmentation in plants, the identification and protein compartmentalization for organelles that belong to both the secretory and endocytic pathways have been difficult because protein trafficking has generally been studied separately in these two pathways. However, recent data indicate that the trans-Golgi network serves as an early endosome merging the secretory and endocytic pathways in plant cells. Here, we discuss the proteins identified as markers for post-Golgi compartments in these two pathways and propose that the trans-Golgi network is a pivotal organelle with multiple sorting domains for post-Golgi protein trafficking in plant cells.  相似文献   

13.
Membrane trafficking is essential to maintain the spatiotemporal control of protein and lipid distribution within membrane systems of eukaryotic cells. To achieve their functional destination proteins are sorted and transported into lipid carriers that construct the secretory and endocytic pathways. It is an emerging theme that lipid diversity might exist in part to ensure the homeostasis of these pathways. Sphingolipids, a chemical diverse type of lipids with special physicochemical characteristics have been implicated in the selective transport of proteins. In this review, we will discuss current knowledge about how sphingolipids modulate protein trafficking through the endomembrane systems to guarantee that proteins reach their functional destination and the proposed underlying mechanisms.  相似文献   

14.
The compartmental organization of eukaryotic cells has fascinated cell biologists for several decades. Detailed morphological, genetic, and biochemical studies have unraveled astonishingly complex molecular machineries involved in establishing and maintaining organelle identity and cell polarization. Many of the transport steps in the secretory and endocytic pathways are subject to manifold regulatory mechanisms, which in turn are interconnected with a plethora of signaling pathways. It therefore does not seem surprising that the cell biology of intracellular protein and lipid transport continues to thrive. The topics covered at the recent meeting on "Protein Transport in the Secretory Pathway" reflect the enormous complexity of how compartmentalization in eukaryotic cells is achieved.  相似文献   

15.
The intraerythrocytic location of the malaria parasite necessitates modification of the host cell. These alterations are mediated either directly or indirectly by parasite proteins exported to specific compartments within the host cell. However, little is known about how the parasite specifically targets proteins to locations beyond its plasma membrane. Mark Wiser, Norbert Lanners and Richard Bafford here propose an alternative secretory pathway for the export of parasite proteins into the host erythrocyte. The first step of this pathway is probably an endoplasmic reticulum (ER)-like organelle that is distinct from the normal ER. Possible mechanisms of protein trafficking in the infected erythrocyte are also discussed. The proposed ER-like organelle and alternative secretory pathway raise many questions about the cell biology of protein export and trafficking in Plasmodium.  相似文献   

16.
Many neural and endocrine cells possess two pathways of secretion: a regulated pathway and a constitutive pathway. Peptide hormones are stored in granules which undergo regulated release whereas other surface-bound proteins are externalized constitutively via a distinct set of vesicles. An important issue is whether proper function of these pathways requires continuous protein synthesis. Wieland et al. (Wieland, F.T., Gleason, M.L., Serafini, T.A., and Rothman, J.E. (1987) Cell 50, 289-300) have shown that a tripeptide containing the sequence Asn-Tyr-Thr can be glycosylated in intracellular compartments and secreted efficiently from Chinese hamster ovary and HepG2 cells, presumably via the constitutive secretory pathway. Secretion is not affected by cycloheximide, suggesting that operation of this pathway does not require components supplied by new protein synthesis. In this report we determined the effects of protein synthesis inhibitor on membrane traffic to the regulated secretory pathway in the mouse pituitary AtT-20 cells. We examined transport of glycosaminoglycan chains since previous studies have shown that these chains enter the regulated secretory pathways and are packaged along with the hormone adrenocorticotropin (ACTH). We found that cycloheximide treatment severely impairs the cell's ability to store and secrete glycosaminoglycan chains by the regulated secretory pathway. In marked contrast, constitutive secretion of glycosaminoglycan chains remains unhindered in the absence of protein synthesis. The differential requirements for protein synthesis indicate differences in the mechanisms for sorting and/or transport of molecules through the constitutive and the regulated secretory pathways. We discuss the possible mechanisms by which protein synthesis may influence trafficking of glycosaminoglycan chains to the regulated secretory pathway.  相似文献   

17.
Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores   总被引:24,自引:0,他引:24  
The endocytic and secretory pathways of eukaryotic cells consist of an array of membrane-bound compartments, each of which contains a characteristic cohort of transmembrane proteins. Understanding how these proteins are targeted to and maintained within their appropriate compartments will be crucial for unravelling the mysteries of organelle biogenesis and function. A common event in the sorting of many transmembrane proteins is the interaction between a sorting signal in the cytosolic domain of the targeted protein and a component of an organellar protein coat. Here, we summarize recent findings on the mechanism of sorting by one type of signal, characterized by the presence of a critical tyrosine (Y) residue, and attempt to integrate these findings into a hypothetical model for protein sorting in the endocytic and late (post-Golgi) secretory pathways.  相似文献   

18.
The accurate distribution and recycling of transmembrane proteins amongst the membrane-bound organelles of the cell is vital to ensure its correct functioning. Transmembrane protein cargo destined for clathrin-mediated endocytosis and transport along the endocytic pathway is sorted into transport vesicles by interactions with adaptors, which simultaneously link clathrin to the membrane. Clathrin adaptors recognize a variety of signals present in the cytoplasmic portions of cargo proteins; recent structural, biophysical and cell biological studies have elucidated new types of cargo-adaptor interactions and probed the molecular mechanisms regulating cargo selection and vesicle maturation. Here, we review this recent progress in the context of our existing knowledge of endocytic sorting mechanisms.  相似文献   

19.
The best-understood mechanisms for generating transport vesicles in the secretory and endocytic pathways involve the localized assembly of cytosolic coat proteins such as clathrin, coat protein complex (COP)I and COPII onto membranes. These coat proteins can deform membranes by themselves, but accessory proteins might help to generate the tight curvature needed to form a vesicle. Enzymes that pump phospholipid from one leaflet of the bilayer to the other (flippases) can deform membranes by creating an imbalance in the phospholipid number between the two leaflets. Recent studies describe a requirement for the yeast Drs2p family of P-type ATPases in both phospholipid translocation and protein transport in the secretory and endocytic pathways. This indicates that flippases work with coat proteins to form vesicles.  相似文献   

20.
The human malaria parasite Plasmodium falciparum develops in a parasitophorous vacuolar membrane (PVM) within the mature red cell and extensively modifies structural and antigenic properties of this host cell. Recent studies shed significant new, mechanistic perspective on the underlying processes. There is finally, definitive evidence that despite the absence of endocytosis, transmembrane proteins in the host red cell membrane are imported in to the PVM. These are not major erythrocyte proteins but components that reside in detergent resistant membrane (DRM) rafts in red cell membrane and are detected in rafts in the PVM. Disruption of either erythrocyte or vacuolar rafts is detrimental to infection suggesting that raft proteins and lipids are essential for the parasitization of the red cell. On secretory export of parasite proteins: an ER secretory signal (SS) sequence is required for protein secretion to the PV. Proteins carrying an additional plastid targeting sequence (PTS) are also detected in the PV but subsequently delivered to the plastid organelle within the parasite, suggesting that the PTS may have a second function as an endocytic sorting signal. A distinct but yet undefined peptidic motif underlies protein transport across the PVM to the red cell (although all of the published data does not yet fit this model). Further multiple exported proteins transit through secretory 'cleft' structures, suggesting that clefts may be sorting compartments assembled by the parasite in the red cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号