首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mealybugs have an association with prokaryotic endosymbionts that are located in specialized cells called bacteriocytes. In order to compare the phylogeny of the host with that of the previously published phylogeny of the endosymbionts, 3.1 to 3.2 kilobase DNA fragments containing mitochondrial cytB (part), nd1,16S ribosomal DNA(rDNA), and 12S rDNA (part) were amplified and sequenced. A phylogenetic analysis of the data and a comparison with the trees obtained from endosymbiont genes and host 18S and 28S rDNA indicated that all the trees were similar. This result is consistent with an infection of a mealybug ancestor with a precursor of the endosymbiont followed by the vertical transmission of the endosymbiont to progeny. Comparison of the guanine + cytosine (G + C) contents of the mealybug mitochondrial genes with the same genes from other members of Sternorrhyncha and Arthropoda indicated that the mealybug genes had unusually low G + C contents in their DNAs (10.2 to 11.1 mol%).  相似文献   

2.
To infer the phylogeny of both the host and the endosymbiont of Peridinium quinquecorne Abé, the small subunit (SSU) ribosomal DNA (rDNA) from the host and two genes of endosymbiont origin (plastid‐encoded rbcL and nuclear‐encoded SSU rDNA) were determined. The phylogenetic analysis of the host revealed that the marine dinoflagellate P. quinquecorne formed a clade with other diatom‐harbouring dinoflagellates, including Kryptoperidinium foliaceum (Stein) Lindeman, Durinskia baltica (Levander) Carty et Cox and Galeidinium rugatum Tamura et Horiguchi, indicating a single endosymbiotic event for this lineage. Phylogenetic analyses of the endosymbiont in these organisms revealed that the endosymbiont of P. quinquecorne formed a clade with a centric diatom (SSU data indicated it to be closely related to Chaetoceros), whereas the endosymbionts of other three dinoflagellates formed a clade with a pennate diatom. The discrepancy between the host and the endosymbiont phylogenies suggests a secondary replacement of the endosymbiont from a pennate to a centric diatom in P. quinquecorne.  相似文献   

3.
Summary Hybridization of cytoplasmic ribosomal RNA (rRNA) to restriction endonuclease digests of nuclear DNA of Chlamydomonas reinhardii reveals two BamHI ribosomal fragments of 2.95 and 2.35×106 d and two SalI ribosomal fragments of 3.8 and 1.5×106 d. The ribosomal DNA (rDNA) units, 5.3×106 d in size, appear to be homogeneous since no hybridization of rDNA to other nuclear DNA fragments can be detected. The two BamHI and SalI ribosomal fragments have been cloned and a restriction map of the ribosomal unit has been established. The location of the 25S, 18S and 5.8S rRNA genes has been determined by hibridizing the rRNAs to digests of the ribosomal fragments and by observing RNA/DNA duplexes in the electron microscope. The data also indicate that the rDNA units are arranged in tandem arrays. The 5S rRNA genes are not closely located to the 25S and 18S rRNA genes since they are not contained within the nuclear rDNA unit. In addition no sequence homology is detectable between the nuclear and chloroplast rDNA units of C. reinhardii.Abbreviations used rRNA ribosomal RNA - rDNA ribosomal DNA d, dalton  相似文献   

4.
Eight moderately halotolerant naphthalene-degrading strains of the genus Rhodococcus isolated from soil samples and slime pit bottom sediment of the Verkhnekamsk salt mining region of Russia were characterized by PCR amplification of repetitive bacterial DNA elements (rep-PCR) and identified by 16S ribosomal RNA gene sequence analysis. The diversity of their dioxygenase (nar-like) genes was investigated as these genes are known to be involved in naphthalene-degradation. The analysis of the nar-like genes identified revealed their heterogeneity in the strains under study and identity to the known sequences of nar-like genes of previously characterized from members of the genus Rhodococcus.  相似文献   

5.
Buchnera aphidicola is a prokaryotic endosymbiont of the aphidSchizaphis graminum. With the polymerase chain reaction (PCR) and oligonucleotide primers to conserved regions, two DNA fragments of the endosymbiont -operon and L20 operon were amplified, cloned intoEscherichia coli, and their sequences were determined. The results indicated that the organization of the endosymbiont genes on these fragments was identical with that of the corresponding operons ofE. coli. The 1032 base pair (bp) fragment of the -operon contained the genes for small ribosomal subunit proteins S11 and S4, followed by the gene for the -subunit of RNA polymerase (-RNAP). The 702-bp fragment of the L20-operon contained the genes for initiation factor-3 (IF3) and large ribosomal subunit proteins L35 and L20. As in other prokaryotes, the genes of the -operon and the L20-operon were present as single copies in the genome ofB. aphidicola. Comparisons of the amino acid sequences of these proteins were consistent with the previously established close relationship betweenB. aphidicola andE. coli and a distant relationship to species ofBacillus.  相似文献   

6.
7.
At a time in the life cycle when a large proportion of the oocytes of Acheta incorporate 3H-thymidine into an extrachromosomal DNA body, synthesis of a satellite or minor band DNA, the density of which is greater than main band DNA, is readily detected. Synthesis of the satellite DNA is not detectable in tissues, the cells of which do not have a DNA body, or in ovaries in which synthesis of extrachromosomal DNA by the oocytes is completed. The DNA body contains the amplified genes which code for ribosomal RNA. However, less than 1 percent of the satellite DNA, all of which appears to be amplified in the oocyte, is complementary to ribosomal 18S and 28S RNA. In situ hybridization demonstrates that non-ribosomal elements, like the ribosomal elements of the satellite DNA, are localized in the DNA body.Abbreviations used rRNA ribosomal RNA, includes 18S and 28S RNA - rDNA gene sequences complementary to rRNA - cRNA complementary RNA synthesized in vitro  相似文献   

8.
Characterization of cloned rat ribosomal DNA fragments   总被引:4,自引:0,他引:4  
Summary Two Charon 4A lambda bacteriophage clones were characterized which contain all and part of the 18S ribosomal DNA of the rat. One clone contained two Eco RI fragments which include the whole 18S ribosomal RNA region and part of 28S ribosomal RNA region. The other clone contained an Eco RI fragment which covers part of 18S ribosomal RNA region. There were differences between the two clones in the non-transcribed spacer regions suggesting that there is heterogeneity in the non-transcribed spacer regions of rat ribosomal genes. The restriction map of the cloned mouse ribosomal DNA. Eco RI, Hind III, Pst I, and Bam HI sites in 18S ribosomal RNA region were in the same places in mouse and rat DNA but the restriction sites in the 5-spacer regions were different.  相似文献   

9.
Gutless pogonophorans are generally thought to live in symbiosis with methane-oxidizing bacteria (methanotrophs). We identified a 16S ribosomal RNA gene (rDNA) and a ribulose-1,5-bisphosphate carboxlase/oxygenase (RuBisCO, E.C.4.1.1.39) gene that encode the form I large subunit (cbbL) from symbiont-bearing tissue of the pogonophoran Oligobrachia mashikoi. Phylogenetic analysis of the 16S rDNA sequence suggested that the pogonophoran endosymbiont belonged to the -subdivision of Proteobacteria. The endosymbiont was most closely related to an uncultured bacterium from a hydrocarbon seep, forming a unique clade adjacent to the known methanotrophic 16S rDNA cluster. The RuBisCO gene from the pogonophoran tissue was closely related to those of the chemoautotrophic genera Thiobacillus and Hydrogenovibrio. Presence of the RuBisCO gene suggested a methanotrophic symbiosis because some methanotrophic bacteria are known to be capable of autotrophy via the Calvin cycle. In contrast, particulate and soluble methane monooxygenase genes (pmoA and mmoX) and the methanol dehydrogenase gene (mxaF), which are indicators for methanotrophs or methylotrophs, were not detected by repeated trial of polymerase chain reaction. For 16S rRNA and RuBisCO genes, endosymbiotic localizations were confirmed by in situ hybridization. These results support the possibilities that the pogonophoran host has a novel endosymbiont which belongs to the -subdivision of Proteobacteria, and that the endosymbiont has the gene of the autotrophic enzyme RuBisCO.  相似文献   

10.
A comparative study has been made of the arrangement of base sequences in the ribosomal RNA cistrons of Escherichia coliand rabbit DNA. This was accomplished by examination of the thermal stability profiles of DNA/RNA hybrids formed by the two types of ribosomal RNA under various conditions. The thermal stabilities of ribosomal RNA hybrids of rabbit origin are more dependent on the conditions of reaction during the formation and are always lower than those of E. coli RNA. It is concluded that the rabbit ribosomal RNA hybrids are formed mainly from mismatching between RNA molecules and DNA sites other than those from which they were transcribed. Thus, the cluster of ribosomal RNA cistrons in a mammalian DNA, representing a historical series of tandem duplications, exhibits intercistronic base sequence divergence. This research was supported by a research grant from the National Science Foundation (GB 6099) and a predoctoral traineeship (to R.L.M.) from the U.S. Public Health Service.  相似文献   

11.
Summary The circular chloroplast DNA from three species of plants in the taxonomic family Leguminosae were examined using electron microscopic techniques and restriction endonuclease digestion. Chloroplast DNAs from chickpea (Cicer arietinum), mung bean (Vigna radiata), and soy bean (Glycine max) were found to range in size from 119–151 kilobase pairs by contour length measurements. Sizes of the chloroplast DNAs have been further confirmed using different restriction endonucleases. Two of the chloroplast DNAs examined, soy bean and mung bean, contain a region approximately 15.9–18% of their monomer length that is repeated in reverse polarity. This repeated region separates a small unique region that ranges in size from 18.75–20.4 kilobase pairs and a large unique region that ranges in size from 73.4–85 kbp. This feature was not found in the chloroplast DNA of chickpea. R-loop hybridizations performed using chloroplast ribosomal RNAs demonstrate that the two ribosomal gene sets of the mung been and soy bean are arranged in inverted orientation within this repeated region. In contrast, the chickpea chloroplast DNA posesses a single ribosomal RNA gene set in the circular molecule. In all three chloroplast DNAs examined, the genes encoding the chloroplast 23S and 16S ribosomal RNA genes are separated by a spacer region which ranges in size from 2.2 to 2.48 kbp.  相似文献   

12.
SYNOPSIS. We have examined various properties of DNAs from 7 dinoflagellate isolates of wide geographic distribution; all of the isolates are superficially indistinguishable from a laboratory strain of Crypthecodinium cohnii originally isolated at Woods Hole, Massachusetts (WHd strain). Two isolates, one from Puerto Rico and the other from Honduras, are clearly distinguishable from WHd and the other isolates by their DNA buoyant density values. WHd and the other 5 isolates we have examined are indistinguishable from one another in terms of DNA buoyant densities and melting temperatures. The relationship among the various isolates, including WHd, were evaluated at a finer level through restriction endonuclease cleavage and molecular hybridization to compare ribosomal RNA gene structure in the several DNAs. All the isolates could be further categorized by this method, the patterns of restriction endonuclease cleavage of ribosomal RNA genes in the isolates paralleling exactly their sexual compatibilities established from breeding experiments by Beam & Himes. The DNAs were also treated with a restriction endonuclease sensitive to the presence of the modified base 5-methylcytosine. In all isolates, cytosine residues in both total DNA and DNA specifically containing the ribosomal RNA genes were found to be extensively methylated, as was previously shown for the WHd strain.  相似文献   

13.
We determined the nearly complete DNA sequence of the mitochondrial genome of Antarctic krill Euphausia superba (Crustacea: Malacostraca), one of the most ecologically and commercially important zooplankters in Antarctic waters. All of the genome sequences were purified by gene amplification using long polymerase chain reaction (PCR), and the products were subsequently used as templates for either direct sequencing using a primer-walking strategy or nested PCR with crustacea-versatile primers. Although we were unable to determine a portion of the genome owing to technical difficulties, the sequenced position, 14,606 bp long, contained all of the 13 protein-coding genes, 19 of the 22 transfer RNA genes, and the large subunit as well as a portion of the small subunit ribosomal RNA genes. Gene rearrangement was observed for 3 transfer RNA genes (tRNACys, tRNATyr, and tRNATrp) and the 2 leucine tRNA genes.  相似文献   

14.
15.
The N2-fixing cyanobacterium Anabaena sp. PCC7120 showed an inherent capacity for desiccation tolerance. A DNA microarray covering almost the entire genome of Anabaena was used to determine the genome-wide gene expression under desiccation. RNA was extracted from cells at intervals starting from early to late desiccation. The pattern of gene expression in DNA fragments was categorized into seven types, which include four types of up-regulated and three types of down-regulated fragments. Validation of the data was carried out by RT-PCR on selected up-regulated DNA fragments and was consistent with the changes in mRNA levels. Our conclusions regarding desiccation tolerance for Anabaena sp. PCC7120 are as follows: (i) Genes for osmoprotectant metabolisms and the K+ transporting system are up-regulated from early to mid-desiccation; (ii) genes induced by osmotic, salt, and low-temperature stress are up-regulated under desiccation; (iii) genes for heat shock proteins are up-regulated after mid-desiccation; (iv) genes for photosynthesis and the nitrogen-transporting system are down-regulated during early desiccation; and (v) genes for RNA polymerase and ribosomal protein are down-regulated between the early and the middle phase of desiccation. Profiles of gene expression are discussed in relation to desiccation acclimation.  相似文献   

16.
Summary The macronuclear DNAs from 20 different species ofTetrahymena were characterized using alternating Orthogonal Field (AOF) gel electrophoresis. Each species has approximately 300 different macronuclear DNA molecules that range in size from about 100–2000 kb pairs. Although the individual macronuclear DNA molecules are not well resolved on an AOF gel, most species have a unique profile of macronuclear DNA. The sequences that hybridize with histone H4 (Tetrahymena) and ubiquitin (yeast) genes were identified on the separated macronuclear DNA molecules of the different species. All species have 2 histone H4 genes located on macronuclear DNA molecules of different sizes. This is consistent with the duplication of the histone H4 gene prior to the speciation events leading to the various species ofTetrahymena. The number and sizes of the macronuclear DNA molecules that hybridize with the ubiquitin probe vary from species to species. A grouping of the different species ofTetrahymena based on this hybridization pattern paralels groupings of the species based on ribosomal RNA sequences and isoenzymes. Some intraspecific variation among different strains ofTetrahymena thermophila was detected using ubiquitin and 5S ribosomal RNA as probes.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

17.
Significant cytosine demethylation in ribosomal RNA genes (18S or 25S) were detected in all four studied rice lines containing introgressed DNA from wild rice, Zizania latifolia Griseb. In each line, the changed RFLP (restriction fragment length polymorphism) patterns produced with the methylation-sensitive enzyme (HpaII) were identical between two randomly selected individual plants both within and between generations. This indicates that the methylation changes are non-random and stably inherited. Cytosine demethylation in ribosomal RNA genes could be a major cause for the drastically altered phenotypic variations observed in the introgression lines.  相似文献   

18.
The loops which transcribe 5S ribosomal RNA in lampbrush chromosomes of the newt, Notophthalmus (Triturus) viridescens, were identified by hybridizing purified 5S DNA to nascent 5S RNA in situ. The genes which code for 5S RNA were found near the centromeres of chromosomes 1, 2, 6, and 7 by hybridizing iodinated 5S RNA to denatured lampbrush and mitotic chromosomes in situ. These genes and their intervening spacer DNA were isolated from Xenopus laevis using sequential silver-cesium sulfate equilibrium centrifugations. This purified 5S DNA was iodinated and hybridized to non-denatured lampbrush chromosomes in situ, where it bound to nascent 5S RNA on loops at the base of the centromeres of chromosomes 1, 2, 6, and 7. The number of 5S genes present in the haploid chromosome complement of N. viridescens was determined. — The 5S loops were chosen for study, since (1) the synthesis of 5S RNA has been demonstrated during the lampbrush stage, (2) both 5S RNA and 5S DNA could be isolated in pure form, and (3) the localization of the repetitive 5S genes could be verified by conventional in situ hybridization procedures. These methods may be applicable to the identification of other loops, leading to a better understanding of lampbrush chromosome function.  相似文献   

19.
The bacterial endosymbionts (Buchnera) from the aphids Rhopalosiphum padi, R. maidis, Schizaphis graminum, and Acyrthosiphon pisum contain the genes for anthranilate synthase (trpEG) on plasmids made up of one or more 3.6-kb units. Anthranilate synthase is the first as well as the rate-limiting enzyme in the tryptophan biosynthetic pathway. The amplification of trpEG on plasmids may result in an increase of enzyme protein and overproduction of this essential amino acid, which is required by the aphid host. The nucleotide sequence of trpEG from endosymbionts of different species of aphids is highly conserved, as is an approximately 500-bp upstream DNA segment which has the characteristics of an origin of replication. Phylogenetic analyses were performed using trpE and trpG from the endosymbionts of these four aphids as well as from the endosymbiont of Schlechtendalia chinensis, in which trpEG occurs on the chromosome. The resulting phylogeny was congruent with trees derived from sequences of two chromosome-located bacterial genes (part of trpB and 16S ribosomal DNA). In turn, trees obtained from plasmid-borne and bacterial chromosome-borne sequences were congruent with the tree resulting from phylogenetic analysis of three aphid mitochondrial regions (portions of the small and large ribosomal DNA subunits, as well as cytochrome oxidase II). Congruence of trees based on genes from host mitochondria and from bacteria adds to previous support for exclusively vertical transmission of the endosymbionts within aphid lineages. Congruence with trees based on plasmid-borne genes supports the origin of the plasmid-borne trpEG from the chromosomal genes of the same lineage and the absence of subsequent plasmid exchange among endosymbionts of different species of aphids. Received: 22 August 1995 / Accepted: 6 September 1995  相似文献   

20.
The endosymbiont theory proposes that chloroplasts have originated from ancestral cyanobacteria through a process of engulfment and subsequent symbiotic adaptation. The molecular data for testing this theory have mainly been the nucleotide sequence of rRNAs and of photosystem component genes. In order to provide additional data in this area, we have isolated genomic clones of Synechocystis DNA containing the ribosomal protein gene cluster rplJL. The nucleotide sequence of this cluster and flanking regions was determined and the derived amino acid sequences were compared to the available homologous sequences from other eubacteria and chloroplasts. In Escherichia coli these two genes are part of a larger cluster, i.e., rplKAJL-rpoBC. In Synechocystis, the genes for the RNA polymerase subunit (rpoBC) are shown to be widely separated from the r-protein genes. The Synechocystis gene arrangement is similar to that in the chloroplast system, where the rpoBC1C2 and rplKAJL clusters are separated and located in two cell compartments, the chloroplast and the nucleus, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号