首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
One fundamental function of telomeres is to prevent the ends of chromosomes from being sensed and treated as DNA damage. Here we present evidence for additional roles of telomeres in promoting proper chromosome segregation and DNA repair. We find that the fission yeast telomere protein Taz1p is required for cell cycle progression at 20 degrees C, a temperature at which taz1Delta cells exhibit a G(2)/M DNA damage checkpoint delay, chromosome missegregation, and DNA double-strand breaks (DSBs). Spindle assembly checkpoint components and a checkpoint-independent function of Rad3p are required for taz1Delta cells to survive at 20 degrees C. Disruption of topoisomerase II activity suppresses the cold sensitivity of taz1Delta cells, suggesting a scenario in which telomeric entanglement is the primary defect. Furthermore, hypersensitivity to treatments that induce DSBs suggests that Taz1p is involved in DSB repair. Our observations imply roles for Taz1p-containing telomeres in preventing and repairing DNA breaks throughout the genome.  相似文献   

2.
Catastrophic losses of telomeric sequences have recently been described during apoptosis, senescence and tumorigenesis in murine and human cells, in ataxia telangiectasia patients and in immortalized cells in which telomerase is inactive. A mechanism that underlies a single-step non-reciprocal telomere deletion called telomere rapid deletion in Saccharomyces cerevisiae might provide clues for future studies of catastrophic telomere loss in higher eukaryotes.  相似文献   

3.
Telomeres are essential for genome integrity. scRap1 (S. cerevisiae Rap1) directly binds to telomeric DNA and regulates telomere length and telomere position effect (TPE) by recruiting two different groups of proteins to its RCT (Rap1 C-terminal) domain. The first group, Rif1 and Rif2, regulates telomere length. The second group, Sir3 and Sir4, is involved in heterochromatin formation. On the other hand, human TRF1 and TRF2, as well as their fission yeast homolog, Taz1, directly bind to telomeric DNA and negatively regulate telomere length. Taz1 also plays important roles in TPE and meiosis. Human Rap1, the ortholog of scRap1, negatively regulates telomere length and appears to be recruited to telomeres by interacting with TRF2. Here, we describe two novel fission yeast proteins, spRap1 (S. pombe Rap1) and spRif1 (S. pombe Rif1), which are orthologous to scRap1 and scRif1, respectively. spRap1 and spRif1 are independently recruited to telomeres by interacting with Taz1. The rap1 mutant is severely defective in telomere length control, TPE, and telomere clustering toward the spindle pole body (SPB) at the premeiotic horsetail stage, indicating that spRap1 has critical roles in these telomere functions. The rif1 mutant also shows some defects in telomere length control and meiosis. Our results indicate that Taz1 provides binding sites for telomere regulators, spRap1 and spRif1, which perform the essential telomere functions. This study establishes the similarity of telomere organization in fission yeast and humans.  相似文献   

4.
Pot1 is a single-stranded telomere-binding protein that is conserved from fission yeast to mammals. Deletion of Schizosaccharomyces pombe pot1(+) causes immediate telomere loss. S. pombe Rqh1 is a homolog of the human RecQ helicase WRN, which plays essential roles in the maintenance of genomic stability. Here, we demonstrate that a pot1Δ rqh1-hd (helicase-dead) double mutant maintains telomeres that are dependent on Rad51-mediated homologous recombination. Interestingly, the pot1Δ rqh1-hd double mutant displays a "cut" (cell untimely torn) phenotype and is sensitive to the antimicrotubule drug thiabendazole (TBZ). Moreover, the chromosome ends of the double mutant do not enter the pulsed-field electrophoresis gel. These results suggest that the entangled chromosome ends in the pot1Δ rqh1-hd double mutant inhibit chromosome segregation, signifying that Pot1 and Rqh1 are required for efficient chromosome segregation. We also found that POT1 knockdown, WRN-deficient human cells are sensitive to the antimicrotubule drug vinblastine, implying that some of the functions of S. pombe Pot1 and Rqh1 may be conserved in their respective human counterparts POT1 and WRN.  相似文献   

5.
Taz1p is the fission yeast orthologue of human TRF2, a telomeric repeat-binding protein. Delta(taz1) mutants are defective in telomeric silencing, telomere length control, and meiotic recombination events. A recent report demonstrated that the human Rap1p homolog (hRap1) is recruited to telomere by interaction with TRF2, arguing that the telomere control mechanism of higher eukaryotes is distinct from that of the budding yeast. Taz1p showed a significant similarity to human TRF2, but not with the budding yeast Rap1p (scRap1p). This suggests that Taz1p and TRF2 share common features in telomere regulation. To assess the roles of Taz1p in telomere-related functions in detail, we attempted to identify a protein(s) that interacts with Taz1p by using two-hybrid screening. Interestingly, the sequence analysis of a positive clone revealed a perfect match with a Rap1 homolog in S. pombe (spRap1), which showed a significant homology with scRap1p and hRap1p. Here we show that the spRap1 deficiency in haploid cells is viable, which results in increased telomere length regulation, disruption of telomere silencing, and aberrant meiosis (like the delta(taz1) mutant). This suggests that spRap1p might be recruited to the telomere by Taz1p and play crucial roles in telomere function. Interestingly, the delta(rap1) mutants in fission yeast are defective only for telomere silencing. Therefore, the role of spRap1p may be distinct from that of scRap1p, which is involved in the silencing at both the telomere and mating type locus. Our data, therefore, suggest that the regulation mechanisms of telomere in fission yeast resemble that of higher eukaryotic cells rather than the budding yeast.  相似文献   

6.
Fission yeast Rnf4 homologs are required for DNA repair   总被引:1,自引:0,他引:1  
We describe two RING finger proteins in the fission yeast Schizosaccharomyces pombe, Rfp1 and Rfp2. We show that these proteins function redundantly in DNA repair. Rfp1 was isolated as a Chk1-interacting protein in a two-hybrid screen and has high amino acid sequence similarity to Rfp2. Deletion of either gene does not cause a phenotype, but a double deletion (rfp1Deltarfp2Delta) showed poor viability and defects in cell cycle progression. These cells are also sensitive to DNA-damaging agents, although they maintained normal checkpoint signaling to Chk1. Rfp1 and Rfp2 are most closely related to human Rnf4, and we showed that Rnf4 can substitute functionally for Rfp1 and/or Rfp2. The double mutants also showed significantly increased levels of protein SUMOylation, and we identified an S. pombe Ulp2/Smt4 homolog that, when overexpressed, reduced SUMO levels and suppressed the DNA damage sensitivity of rfp1Delta rfp2Delta cells.  相似文献   

7.
Similar to its human homologues TRF1 and TRF2, fission yeast Taz1 protein is a component of telomeric chromatin regulating proper telomere maintenance. As mammalian TRF1 and TRF2 proteins have been shown to directly bind telomeric DNA to form protein arrays and looped structures, termed t-loops, the ability of Taz1p to act on fission yeast telomeric DNA in similar ways was examined using purified protein and model DNA templates. When incubated with Taz1p, model telomeres containing 3' single-stranded telomeric overhangs formed t-loops at a frequency approaching 13%. Termini with blunt ends and non-telomeric overhangs were deficient in t-loop formation. In addition, we observed arrays of multiple Taz1p molecules bound to the telomeric regions, resembling the pattern of TRF1 binding. The presence of t-loops larger than the telomeric tract, a high frequency of end-bound DNAs and a donut shape of the Taz1p complex suggest that Taz1p binds the 3' overhang then extrudes a loop that grows in size as the donut slides along the duplex DNA. Based on these in vitro results we discuss possible general implications for fission yeast telomere dynamics.  相似文献   

8.
9.
The actin-related proteins (Arps), which are subdivided into at least eight subfamilies, are conserved from yeast to humans. A member of the Arp6 subfamily in Drosophila, Arp4/Arp6, co-localizes with heterochromatin protein 1 (HP1) in pericentric heterochromatin. Fission yeast Schizosaccharomyces pombe possesses both an HP1 homolog and an Arp6 homolog. However, the function of S.pombe Arp6 has not been characterized yet. We found that deletion of arp6+ impaired telomere silencing, but did not affect centromere silencing. Chromatin immunoprecipitation assays revealed that Arp6 bound to the telomere region. However, unlike Drosophila Arp4/Arp6, S.pombe Arp6 was distributed throughout nuclei. The binding of Arp6 to telomere DNA was not affected by deletion of swi6+. Moreover, the binding of Swi6 to telomere ends was not affected by deletion of arp6+. These results suggest that Arp6 and Swi6 function independently at telomere ends. We propose that the Arp6-mediated repression mechanism works side by side with Swi6-based telomere silencing in S.pombe.  相似文献   

10.
11.
Mre11 is a central factor in creating an optimal substrate for telomerase loading and elongation. We have used a G2/M synchronized telomere-healing assay as a tool to separate different functions of Mre11 that are not apparent in null alleles. An analysis of healing efficiencies of several mre11 alleles revealed that both nuclease and C-terminal mutations led to a loss of healing. Interestingly, trans-complementation of the 49 amino acid C-terminal deletion (DeltaC49) and the D16A mutant, deficient in nuclease activity and partially defective in MRX complex formation, restores healing. DeltaC49 provokes Rad53 phosphorylation after treatment with the radiomimetic agent MMS exclusively through the Tel1 pathway, suggesting that a Tel1-mediated function is initiated through the C-terminal tail.  相似文献   

12.
Jin Y  Uzawa S  Cande WZ 《Genetics》2002,160(3):861-876
In meiotic prophase of many eukaryotic organisms, telomeres attach to the nuclear envelope and form a polarized configuration called the bouquet. Bouquet formation is hypothesized to facilitate homologous chromosome pairing. In fission yeast, bouquet formation and telomere clustering occurs in karyogamy and persists throughout the horsetail stage. Here we report the isolation and characterization of six mutants from our screen for meiotic mutants. These mutants show defective telomere clustering as demonstrated by mislocalization of Swi6::GFP, a heterochromatin-binding protein, and Taz1p::GFP, a telomere-specific protein. These mutants define four complementation groups and are named dot1 to dot4-defective organization of telomeres. dot3 and dot4 are allelic to mat1-Mm and mei4, respectively. Immunolocalization of Sad1, a protein associated with the spindle pole body (SPB), in dot mutants showed an elevated frequency of multiple Sad1-nuclei signals relative to wild type. Many of these Sad1 foci were colocalized with Taz1::GFP. Impaired SPB structure and function were further demonstrated by failure of spore wall formation in dot1, by multiple Pcp1::GFP signals (an SPB component) in dot2, and by abnormal microtubule organizations during meiosis in dot mutants. The coincidence of impaired SPB functions with defective telomere clustering suggests a link between the SPB and the telomere cluster.  相似文献   

13.
The Schizosaccharomyces pombe Ku70–Ku80 heterodimer is required for telomere length regulation. Lack of pku70+ results in telomere shortening and striking rearrangements of telomere-associated sequences. We found that the rearrangements of telomere-associated sequences in pku80+ mutants are Rhp51 dependent, but not Rad50 dependent. Rhp51 bound to telomere ends when the Ku heterodimer was not present at telomere ends. We also found that the single-stranded G-rich tails increased in S phase in wild-type strains, while deletion of pku70+ increased the single-stranded overhang in both G2 and S phase. Based on these observations, we propose that Rhp51 binds to the G-rich overhang and promotes homologous pairing between two different telomere ends in the absence of Ku heterodimer. Moreover, pku80 rhp51 double mutants showed a significantly reduced telomere hybridization signal. Our results suggest that, although Ku heterodimer sequesters Rhp51 from telomere ends to inhibit homologous recombination activity, Rhp51 plays important roles for the maintenance of telomere ends in the absence of the Ku heterodimer.  相似文献   

14.
The fission yeast (Schizosaccharomyces pombe) taz1 gene encodes a telomere-associated protein. It contains a single copy of a Myb-like motif termed the telobox that is also found in the human telomere binding proteins TRF1 and TRF2, and Tbf1p, a protein that binds to sequences found within the sub-telomeric regions of budding yeast (Saccharomyces cerevisiae) chromosomes. Taz1p was synthesised in vitro and shown to bind to a fission yeast telomeric DNA fragment in a sequence specific manner that required the telobox motif. Like the mammalian TRF proteins, Taz1p bound to DNA as a preformed homodimer. The isolated Myb-like domain was also capable of sequence specific DNA binding, although with less specificity than the full-length dimer. Surprisingly, a protein extract produced from a taz1–fission yeast strain still contained the major telomere binding activity (complex I) we have characterised previously, suggesting that there could be other abundant telomere binding proteins in fission yeast. One candidate, SpX, was also synthesised in vitro, but despite the presence of two telobox domains, no sequence specific binding to telomeric DNA was detected.  相似文献   

15.
Fission yeast cells survive loss of the telomerase catalytic subunit Trt1 (TERT) through recombination-based telomere maintenance or through chromosome circularization. Although trt1Δ survivors with linear chromosomes can be obtained, they often spontaneously circularize their chromosomes. Therefore, it was difficult to establish genetic requirements for telomerase-independent telomere maintenance. In contrast, when the telomere-binding protein Taz1 is also deleted, taz1Δ trt1Δ cells are able to stably maintain telomeres. Thus, taz1Δ trt1Δ cells can serve as a valuable tool in understanding the regulation of telomerase-independent telomere maintenance. In this study, we show that the checkpoint kinase Tel1 (ATM) and the DNA repair complex Rad32-Rad50-Nbs1 (MRN) are required for telomere maintenance in taz1Δ trt1Δ cells. Surprisingly, Rap1 is also essential for telomere maintenance in taz1Δ trt1Δ cells, even though recruitment of Rap1 to telomeres depends on Taz1. Expression of catalytically inactive Trt1 can efficiently inhibit recombination-based telomere maintenance, but the inhibition requires both Est1 and Ku70. While Est1 is essential for recruitment of Trt1 to telomeres, Ku70 is dispensable. Thus, we conclude that Taz1, TERT-Est1, and Ku70-Ku80 prevent telomere recombination, whereas MRN-Tel1 and Rap1 promote recombination-based telomere maintenance. Evolutionarily conserved proteins in higher eukaryotic cells might similarly contribute to telomere recombination.  相似文献   

16.
Lehmann A  Toda T 《FEBS letters》2004,566(1-3):77-82
Skp1 is a core component of the Skp1-Cullin-1-F-box ubiquitin ligase. Here, we show a novel role for fission yeast Skp1 in mitotic progression. Temperature-sensitive skp1-A7 mutants enter mitosis, but fail to execute anaphase. Time-lapse imaging shows that spindles in this mutant form intranuclear arch-like structures, which eventually collapse abruptly. The two spindle poles are also seen to move backward to the cell centre rather than towards the cell ends. These abnormal phenotypes appear to stem from defects in nuclear membrane segregation. Our results show that Skp1 is required for coordinated structural alterations of mitotic spindles and nuclear membranes.  相似文献   

17.
18.
Sister chromatid cohesion is essential for cell viability. We have isolated a novel temperature-sensitive lethal mutant named eso1-H17 that displays spindle assembly checkpoint-dependent mitotic delay and abnormal chromosome segregation. At the permissive temperature, the eso1-H17 mutant shows mild sensitivity to UV irradiation and DNA-damaging chemicals. At the nonpermissive temperature, the mutant is arrested in M phase with a viability loss due to a failure to establish sister chromatid cohesion during S phase. The lethal M-phase arrest phenotype, however, is suppressed by inactivation of a spindle checkpoint. The eso1(+) gene is not essential for the onset and progression of DNA replication but has remarkable genetic interactions with those genes regulating the G(1)-S transition and DNA replication. The N-terminal two-thirds of Eso1p is highly homologous to DNA polymerase eta of budding yeast and humans, and the C-terminal one-third is homologous to budding yeast Eco1p (also called Ctf7p), which is required for the establishment of sister chromatid cohesion. Deletion analysis and determination of the mutation site reveal that the function of the Eco1p/Ctf7p-homologous domain is necessary and sufficient for sister chromatid cohesion. On the other hand, deletion of the DNA polymerase eta domain in Eso1p increases sensitivity to UV irradiation. These results indicate that Eso1p plays a dual role during DNA replication. The C-terminal region acts to establish sister chromatid cohesion, and the N-terminal region presumably catalyzes translesion DNA synthesis when template DNA contains lesions that block regular DNA replication.  相似文献   

19.
BACKGROUND: Accurate chromosome segregation depends on the establishment of correct-amphitelic-kinetochore orientation. Merotelic kinetochore orientation is an error that occurs when a single kinetochore attaches to microtubules emanating from opposite spindle poles, a condition that hinders segregation of the kinetochore to a spindle pole in anaphase. To avoid chromosome missegregation resulting from merotelic kinetochore orientation, cells have developed mechanisms to prevent or correct merotelic attachment. A protein called Pcs1 has been implicated in preventing merotelic attachment in mitosis and meiosis II in the fission yeast S. pombe. RESULTS: We report that Pcs1 forms a complex with a protein called Mde4. Both Pcs1 and Mde4 localize to the central core of centromeres. Deletion of mde4(+), like that of pcs1(+), causes the appearance of lagging chromosomes during the anaphases of mitotic and meiosis II cells. We provide evidence that the kinetochores of lagging chromosomes in both pcs1 and mde4 mutant cells are merotelically attached. In addition, we find that lagging chromosomes in cells with defective centromeric heterochromatin also display features consistent with merotelic attachment. CONCLUSIONS: We suggest that the Pcs1/Mde4 complex is the fission yeast counterpart of the budding yeast monopolin subcomplex Csm1/Lrs4, which promotes the segregation of sister kinetochores to the same pole during meiosis I. We propose that the Pcs1/Mde4 complex acts in the central kinetochore domain to clamp microtubule binding sites together, the centromeric heterochromatin coating the flanking domains provides rigidity, and both systems contribute to the prevention of merotelic attachment.  相似文献   

20.
Nucleotide-dependent conformational changes of the constitutively dimeric molecular chaperone Hsp90 are integral to its molecular mechanism. Recent full-length crystal structures (Protein Data Bank codes 2IOQ, 2CG9, AND 2IOP) of Hsp90 homologs reveal large scale quaternary domain rearrangements upon the addition of nucleotides. Although previous work has shown the importance of C-terminal domain dimerization for efficient ATP hydrolysis, which should imply cooperativity, other studies suggest that the two ATPases function independently. Using the crystal structures as a guide, we examined the role of intra- and intermonomer interactions in stabilizing the ATPase activity of a single active site within an intact dimer. This was accomplished by creating heterodimers that allow us to differentially mutate each monomer, probing the context in which particular residues are important for ATP hydrolysis. Although the ATPase activity of each monomer can function independently, we found that the activity of one monomer could be inhibited by the mutation of hydrophobic residues on the trans N-terminal domain (opposite monomer). Furthermore, these trans interactions are synergistically mediated by a loop on the cis middle domain. This loop contains hydrophobic residues as well as a critical arginine that provides a direct linkage to the gamma-phosphate of bound ATP. Small angle x-ray scattering demonstrates that deleterious mutations block domain closure in the presence of AMPPNP (5'-adenylyl-beta,gamma-imidodiphosphate), providing a direct linkage between structural changes and functional consequences. Together, these data indicate that both the cis monomer and the trans monomer and the intradomain and interdomain interactions cooperatively stabilize the active conformation of each active site and help explain the importance of dimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号