首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli HB101 harboring an expression plasmid that bears the calf prochymosin gene controlled by the tac promoter was cultivated under different conditions in order to find an optimal fermentation arrangement that would lead to maximal prochymosin yield. Our results indicate that it is advantageous to use lactose in the double role of inducer and carbon/energy source when foreign gene expression is controlled by the tac promoter and the gene product is only moderately toxic owing to its accumulation in the form of an intracellular body. Glucose, on the other hand, may be used when expression should be repressed. Growth temperature substantially influenced the specific rate of prochymosin and beta-lactamase gene expression and the plasmid copy number. Three phases were distinguished in the time course of the fermentation on lactose: exponential growth practically without prochymosin synthesis, linear growth with prochymosin synthesis, and prochymosin synthesis without growth of biomass. The synthesis of prochymosin in the form of intracellular inclusion body was accompanied by the loss of respiratory activity of the cell and the loss of its ability to multiply. Sixteen hours cultivation at 37 degrees C in a complex medium with lactose as inducer and carbon/energy source resulted in up to 30% of the volume and 48% of the total protein of biomass being accumulated for as prochymosin inclusion bodies. The concentration of extractable enzymatically active chymosin in the culture reached 12 mg/L.  相似文献   

2.
3.
4.
5.
A dnaA46 mutant of Escherichia coli showed loss of motility at 37 degrees C, a permissive temperature for cell growth of this mutant. Other dnaA mutations near the middle of the gene also caused an immotile phenotype. The amount of flagellin was much less in the dnaA46 mutant than in the wild-type control, as was the promoter activity. DnaA protein may play an important role in expression of the fliC gene.  相似文献   

6.
The aims of the present study were (i) to develop and test a sensitive and reproducible method for the study of gene expression in staphylococci and (ii) to study the expression of five housekeeping genes which are involved in nucleic acid metabolism (gmk, guanylate kinase; the dihydrofolate reductase [DHFR] gene), glucose metabolism (tpi, triosephosphate isomerase), and protein metabolism (the 16S rRNA gene; hsp-60, heat-shock protein 60) during in vitro exponential and stationary growth. A modified method for instant mRNA isolation was combined with gene quantification via Taqman real-time quantitative PCR. The detection limit of our method was 10 copies of RNA. The average intersample variability was 16%. A 10-fold increase in the expression of the hsp-60 gene was induced by exposure to a 10 degrees C heat shock (37 to 47 degrees C) for 10 min. During in vitro growth, the expression of all five housekeeping genes showed rapid up-regulation after inoculation of the bacteria in brain heart infusion medum and started to decline during the mid-exponential-growth phase. Maximal gene expression was 110- to 300-fold higher than gene expression during stationary phase. This indicates that housekeeping metabolism is a very dynamic process that is extremely capable of adapting to different growth conditions. Expression of the 16S rRNA gene decreases significantly earlier than that of other housekeeping genes. This confirms earlier findings for Escherichia coli that a decline in bacterial ribosomal content (measured by 16S rRNA gene expression) precedes the decline in protein synthesis (measured by mRNA expression).  相似文献   

7.
DNA gyrase, CS7.4, and the cold shock response in Escherichia coli.   总被引:12,自引:6,他引:6       下载免费PDF全文
  相似文献   

8.
9.
10.
Aedes albopictus (clone C6/36) cells, which normally grow at 28 degrees C, were maintained at a supraoptimal temperature of 37 degrees C. The effect of continuous heat stress (37 degrees C) on cell growth was analyzed as were the modifications occurring with protein synthesis during short- and long-term heat stress. We observed that cells in lag or exponential growth phase, present inhibition of cell growth, and cells in the lag phase showed more sensitivity to death than cells growing exponentially. During the first hour of exposing the cells to 37 degrees C, they synthesized two heat shock proteins (hsps) of 82 kd and 70 kd, respectively, concomitant with inhibition of normally produced proteins at control temperature (28 degrees C). However, for incubations longer than 2 hr at 37 degrees C, a shift to the normal pattern of protein synthesis occurred. During these transitions, two other hsps of 76 kd and 90 kd were synthesized. Pulse chase experiments showed that the 70-kd hsp is stable at least for 18 hr, when the cells are returned to 28 degrees C. However, if cells were incubated at 37 degrees C, the 70-kd hsp is stable for at least 48 hr. The 70-kd hsp was localized in the cytoplasmic and in the nuclear compartment. Our results indicate a possible role of hsp 70-kd protein in the regulation of cell proliferation.  相似文献   

11.
12.
Both Salmonella enterica serovar Typhimurium and Escherichia coli contain the cspH gene encoding CspH, one of the cold shock proteins (CSPs). In this study, we investigated the expression of cspH in S. enterica serovar Typhimurium and found that it was induced in response to a temperature downshift during exponential phase. The cspH promoter was activated at 37 degrees C, and its mRNA was more stable than the other csp mRNAs at 37 degrees C. Moreover, lacZ expression of the translational cspH-lacZ fusion was induced at that temperature. Interestingly, the cspH mRNA had a much shorter 5'-untranslated region than those in the other cold-shock-inducible genes, and the promoter sequence, which was only 55 bp, was sufficient for cspH expression. The 14-base downstream box located 12 bases downstream of the initiation codon of cspH mRNA was essential for its cold shock activation.  相似文献   

13.
The gene 1 of the Klebsiella phage K11 encoding the phage RNA polymerase was amplified using the polymerase chain reaction of the Pfu DNA polymerase, cloned and expressed under the control of tac promoter in Escherichia coli. Although the gene was efficiently expressed in E. coli BL21 cells at 37 degrees C, most of the K11 RNA polymerase produced was insoluble, in contrast to soluble expression of the cloned T7 RNA polymerase gene. Coexpression of the bacterial chaperone GroES and GroEL genes together did not help solubilize the K11 RNA polymerase. When the temperature of cell growth was lowered, however, solubility of the K11 RNA polymerase was increased substantially. It was found much more soluble when expressed at 25 degrees C than at 30 and 37 degrees C. Thus, the cloned K11 RNA polymerase gene was expressed in E. coli mostly to the soluble form at 25 degrees C. The protein was purified to homogeneity by chromatography using DEAE-Sephacel and Affigel-blue columns and was found to be active in vitro with the K11 genome or a K11 promoter. The purified K11 RNA polymerase showed highly stringent specificity for the K11 promoter. Low-level cross-reactivity was shown with the SP6 and T7 consensus promoters, while no activity shown with the T3 consensus promoter at all.  相似文献   

14.
15.
16.
Genetic modification of human adipose tissue–derived multilineage progenitor cells (hADMPCs) is highly valuable for their exploitation in therapeutic applications. Here, we have developed a novel single tet-off lentiviral vector platform. This vector combines (1) a modified tetracycline (tet)-response element composite promoter, (2) a multi-cistronic strategy to express an improved version of the tet-controlled transactivator and the blasticidin resistance gene under the control of a ubiquitous promoter, and (3) acceptor sites for easy recombination cloning of the gene of interest. In the present study, we used the cytomegalovirus (CMV) or the elongation factor 1 α (EF-1α) promoter as the ubiquitous promoter, and EGFP was introduced as the gene of interest. hADMPCs transduced with a lentiviral vector carrying either the CMV promoter or the EF-1α promoter were effectively selected by blasticidin without affecting their stem cell properties, and EGFP expression was strictly regulated by doxycycline (Dox) treatment in these cells. However, the single tet-off lentiviral vector carrying the EF-1α promoter provided more homogenous expression of EGFP in hADMPCs. Intriguingly, differentiated cells from these Dox-responsive cell lines constitutively expressed EGFP only in the absence of Dox. This single tet-off lentiviral vector thus provides an important tool for applied research on hADMPCs.  相似文献   

17.
18.
19.
When the growth temperature of an exponential culture of Escherichia coli is abruptly decreased from 37 to 10 degrees C, growth stops for several hours before a new rate of growth is established. During this growth lag the number of proteins synthesized is dramatically reduced, and at one point only about two dozen proteins are made; 13 of these are made at differential rates that are 3 to 300 times increased over the rates at 37 degrees C. The protein with the highest rate of synthesis during the lag is not detectably made at 37 degrees C. The identities of several of these cold shock proteins correlate with previous observations that indicate a block in translation initiation at low temperatures.  相似文献   

20.
K Nishiyama  M Hanada    H Tokuda 《The EMBO journal》1994,13(14):3272-3277
The Escherichia coli cytoplasmic membrane protein, p12, stimulates the protein translocation activity reconstituted with SecY, SecE and SecA. The gene encoding p12, which is located at 69 min on the E. coli chromosome, was deleted to examine the role of p12 in protein translocation in vivo. The deletion strain exhibited cold-sensitive growth. Pulse-chase experiments revealed that precursors of outer membrane protein A, maltose binding protein and beta-lactamase accumulated at 20 degrees C but not at 37 degrees C. The deletion strain harboring a plasmid which carries the gene encoding p12 under the control of the araBAD promoter was able to grow in the cold when p12 was expressed with the addition of arabinose. Furthermore, the accumulated precursors were rapidly processed to the mature forms upon the expression of p12. Immunoblot analysis revealed the steady-state accumulation of precursor proteins at 20 degrees C, whereas the accumulation was only marginal at 37 degrees C, indicating that the function of p12 is more critical at 20 degrees C than at 37 degrees C. Finally, proteoliposomes were reconstituted with or without p12 to demonstrate that the stimulation of the activity by p12 increases with a decrease in temperature. From these results, we concluded that p12 is directly involved in protein translocation in E. coli and plays a critical role in the cold. We propose the more systematic name, SecG, for p12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号