首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternating guanine-adenine strands of DNA are known to self-associate into a parallel-stranded homoduplex at neutral pH, fold into an ordered single-stranded structure at acid pH, and adopt yet another ordered single-stranded conformer in aqueous ethanol. The unusual conformers melt cooperatively and exhibit distinct circular dichroism spectra suggestive of a substantial conformational order, but their molecular structures are not known yet. Here, we have probed the molecular structures using guanine and adenine analogs lacking the N7 atom, and thus unable of Hoogsteen pairing, or those restrained in the less-frequent syn glycosidic orientation. The studies showed that the syn glycosidic orientation of dA residues promoted the neutral homoduplex, whereas the syn orientation of dG was incompatible with the homoduplex. In addition, Hoogsteen pairing of dA seemed to be a crucial property of the homoduplex whereas dG did not pair in this way. The situation was the same in both single-stranded conformers with the dG residues. On the other hand, the presence of N7 was important with dA but its syn geometry was not favorable. The present data can be used as restraints to model the unusual molecular structures of the alternating guanine-adenine strands of DNA.  相似文献   

2.
3.
The human gene for cartilage oligomeric matrix protein contains five tandem repeats of the GAC trinucleotide. Its expansion by one repeat causes multiple epiphyseal dysplasia, while expansion by two repeats or, remarkably, deletion of one repeat causes pseudoachondroplasia. Here we used CD spectroscopy, PAGE and UV absorption spectroscopy to compare conformational properties of the DNA strands containing four, five, six and seven repeats of the GAC trinucleotide. The (GAC)n strands were found to form four distinct ordered conformations, depending on the solution conditions. The first was a foldback, stable at slightly alkaline pH values and low and medium ionic strengths. Increasing salt concentration induced a transition of the foldback into an antiparallel right-handed homoduplex. Both the conformers contained the Watson-Crick G.C pairs while the intervening adenines contributed little to their B-like conformation. Thirdly, the strands associated into a parallel homoduplex stabilized by the hemiprotonated C+.C pairs and by the GpA steps that both favor the parallel DNA strand orientation. The parallel homoduplex was stable even at neutral pH. The fourth conformation was the left-handed Z-DNA, which formed easier with (GAC)n than with (GC)n of comparable length, indicating that the adenines of (GAC)n promoted the left-handed duplex. The paper shows that stability of the above four conformers strongly depends on the GAC repeat number.  相似文献   

4.
Six different synthetic deoxyhexadecamers complementary to the origin of bacteriophage φX174, corresponding to nucleotides 4299 to 4314, except for one preselected nucleotide change were used as primers for DNA synthesis on wild-type φX2 DNA as a template. DNA synthesis was performed with Escherichia coli DNA polymerase I (Klenow fragment) in the presence of DNA ligase. Heteroduplex RFIV DNA was isolated and, after limited digestion with DNAase I, complementary strands containing the mutant primers were isolated. The biological activity of these complementary strands was assayed in spheroplasts. Spheroplasts were made from E. coli K58 ung? (uracil N-glycosylase) to prevent degradation of the complementary strands caused by uracil incorporation (Baas et al., 1980a).Using (5′-32P) end-labeled primers, it was shown that all tested DNA polymerase preparations, including phage T4 DNA polymerase, contained variable amounts of 5′ → 3′ exonuclease activity. This nick translation activity may result in removal of the mutation in the primers, and therefore in isolation of wild-type complementary DNA instead of mutant complementary DNA.Restriction enzyme analysis of completed RFIV DNA showed that the primers can initiate DNA synthesis at more than one place on the φX174 genome. These complications result in a mixed population of complementary strand DNAs synthesized in vitro. Nevertheless, the desired mutants were picked up with high frequency using a selection test that is based on the difference in ultraviolet light sensitivity of homoduplex and heteroduplex φX174 RF DNA. Heteroduplex φX174 RF DNA is two to three times more sensitive to ultraviolet light irradiation than is homoduplex φX174 RF DNA (Baas &; Jansz, 1971,1972). Phage DNA derived from single plaque lysates of two of the six mutant complementary strand DNA preparations yielded, after annealing with wild-type complementary strand DNA, heteroduplex DNA with high frequency. DNA sequence analysis in the origin region of RF DNA obtained from these two phage preparations revealed the presence of the expected mutation. RFI DNA of these two origin mutants was nicked by φX174 gene A protein in the same way as wild-type φX174 RFI DNA.Phage DNA derived from single plaque lysates of the other four mutant complementary strand DNA preparations yielded exclusively homoduplex DNA after annealing with wild-type complementary strand DNA. It is concluded that priming with these deoxyhexadecamers resulted in the synthesis of complementary φX174 DNA with lethal mutations. The implications of these results, the construction of two silent, viable φX174 origin mutants and the failure to detect four others, for the initiation mechanism of φX174 RF DNA replication are discussed.  相似文献   

5.
Besnier CE  Kong H 《EMBO reports》2001,2(9):782-786
N.BstNBI is a nicking endonuclease that recognizes the sequence GAGTC and nicks one DNA strand specifically. The Type IIs endonuclease, MlyI, also recognizes GAGTC, but cleaves both DNA strands. Sequence comparisons revealed significant similarities between N.BstNBI and MlyI. Previous studies showed that MlyI dimerizes in the presence of a cognate DNA, whereas N.BstNBI remains a monomer. This suggests that dimerization may be required for double-stranded cleavage. To test this hypothesis, we used a multiple alignment to design mutations to disrupt the dimerization function of MlyI. When Tyr491 and Lys494 were both changed to alanine, the mutated endonuclease, N.MlyI, no longer formed a dimer and cleaved only one DNA strand specifically. Thus, we have shown that changing the oligomerization state of an enzyme changes its enzymatic function. This experiment also established a protocol that could be applied to other Type IIs endonucleases in order to generate more novel nicking endonucleases.  相似文献   

6.
Structure of F-actin needles from extracts of sea urchin oocytes   总被引:12,自引:0,他引:12  
The mouse L-cell line LD maintains its mitochondrial DNA genome in the form of a head-to-tail unicircular dimer of the monomeric 16,000 base-pair species. This situation permits a comparison of the mechanism of replication of this dimeric molecule with our previous studies of replication of monomeric mouse L-cell mitochondrial DNA. Whereas monomeric mitochondrial DNA requires about one hour for a round of replication, the dimeric molecule requires almost three hours. Denaturing agarose gel electrophoretic analyses of replicative intermediates reveals several discrete size classes of partially replicated daughter strands of dimeric mitochondrial DNA. This suggests that replication occurs with specific discontinuities in the rate of daughter strand synthesis. The strand specificity of these daughter strands was determined by hybridization with 32P-labeled DNA representing either the heavy or light strand mitochondrial DNA sequence. The sizes and strand specificities of these discrete daughter strands indicate that the same set of control sequences is functional in both dimer and monomer mitochondrial DNA replication.Immediately following a round of replication, the majority of dimeric mitochondrial DNA molecules contain displacement loops, as assessed by their sensitivity to nicking within the displaced DNA strand by single-strand DNA specific S1 nuclease under conditions which leave supercoiled DNA intact. This result is in contrast with the conformation of newly replicated monomeric mitochondrial DNA molecules, which lack both superhelical turns and displacement loops. This indicates that dimeric mitochondrial DNA proceeds through a different series of post-replicative processing steps than does monomeric mitochondrial DNA. We postulate that intermediates at late stages of dimeric mitochondrial DNA replication contain displacement loops which remain intact following closure of the full-length daughter strands.  相似文献   

7.
Previous studies have indicated that the ultraviolet endonuclease of bacteriophage T4 acts specifically at pyrimidine dimer sites in ultraviolet-irradiated DNA. At such sites the enzyme could conceivably catalyze endonucleolytic incision of the DNA either on the dimer-containing strand or on the strand directly opposite to the dimer. In the present work, a direct test of these alternatives was made. Substrate molecules containing one irradiated and one unirradiated strand were prepared from differentially isotopically labeled purified complementary strands of bacteriophage lambdaDNA. Following incubation with the enzyme, the sedimentation profiles of the DNA strands in alkaline sucrose density gradients were compared. The results show that the enzyme selectively nicks the irradiated strand.  相似文献   

8.
In a preceding paper (Schröder and Kaerner, 1972) a rolling circle mechanism has been described for the replication of bacteriophage φX174 replicative form. Replication involved nicking and elongation of the viral (positive) strand component of the RF molecule resulting in the displacement of a single-strand tail of increasing length. The synthesis of the new complementary (negative) strand on the single-strand tails appears to be initiated with considerable delay and converts the tail into double-stranded DNA. Before the new negative strand is completed the replicative intermediates split into (I) a complete RF molecule containing the “old” negative and the new positive strand, and (II) a linear, partially double-stranded “tail” consisting of the complete old positive strand and a fragment of the new negative strand.The present study is concerned with the fate during RF replication of these fragments of the rolling circles. Those RFII molecules containing the old negative strands appear to go into further replication rounds repeatedly. Some of the tails were found in the infected cells in their original linear form. “Gapped” RFII molecules, which have been described earlier by Schekman and co-workers (Schekman &; Ray, 1971; Schekman et al., 1971), are supposed to originate from the tails of rolling circle intermediates by circularization of their positive strand components. Evidence is provided by our experiments that even late during RF replication these gaps are present only in the negative strands of RFII. Appropriate chase experiments indicated that the tails finally are converted to RFI molecules. Progeny RFI molecules could not be observed to start new replication rounds under our conditions although we cannot exclude that this might happen to some minor extent.The results presented suggest that the master templates for RF replication are the first negative strands to be formed, rather than the parental positive strands.  相似文献   

9.
Modes of DNA cleavage by the EcoRV restriction endonuclease   总被引:6,自引:0,他引:6  
S E Halford  A J Goodall 《Biochemistry》1988,27(5):1771-1777
The mechanism of action of the EcoRV restriction endonuclease at its single recognition site on the plasmid pAT153 was analyzed by kinetic methods. In reactions at pH 7.5, close to the optimum for this enzyme, both strands of the DNA were cut in a single concerted reaction: DNA cut in only one strand of the duplex was neither liberated from the enzyme during the catalytic turnover nor accumulated as a steady-state intermediate. In contrast, reactions at pH 6.0 involved the sequential cutting of the two strands of the DNA. Under these conditions, DNA cut in a single strand was an obligatory intermediate in the reaction pathway and a fraction of the nicked DNA dissociated from the enzyme during the turnover. The different reaction profiles are shown to be consistent with a single mechanism in which the kinetic activity of each subunit of the dimeric protein is governed by its affinity for Mg2+ ions. At pH 7.5, Mg2+ is bound to both subunits of the dimer for virtually the complete period of the catalytic turnover, while at pH 6.0 Mg2+ is bound transiently to one subunit at a time. The kinetics of the EcoRV nuclease were unaffected by DNA supercoiling.  相似文献   

10.
11.
Homologous pairing of single strands with duplex DNA promoted by recA protein occurred without a lag only when the protein was preincubated with ATP and single-stranded DNA. The rate-limiting presynaptic interaction of recA protein and single strands showed a high temperature coefficient: it proceeded 30 times more slowly at 30 degrees C than at 37 degrees C, whereas synapsis showed a normal temperature coefficient. Thus, the presynaptic phase could be separated experimentally from the rest of the reaction by preincubation of single strands with recA protein and ATP at 37 degrees C, followed by a shift to 30 degrees C before double-stranded DNA was added. The presynaptic phase was an order of magnitude more sensitive to inhibition by ADP than was subsequent strand exchange. Presynaptic complexes that were formed at 37 degrees C decayed only slowly at 30 degrees C, but Escherichia coli single strand binding protein caused complexes to form rapidly at 30 degrees C which indicates that single strand binding protein accelerated the rate of formation of complexes. Preincubation synchronized the initial pairing reaction, and further revealed the rapid formation of nascent heteroduplex DNA 250-300 base pairs in length.  相似文献   

12.
The eukaryotic SMC1/SMC3 heterodimer is essential for sister chromatid cohesion and acts in DNA repair and recombination. Dimerization depends on the central hinge domain present in all SMC proteins, which is flanked at each side by extended coiled-coil regions that terminate in specific globular domains. Here we report on DNA interactions of the eukaryotic, heterodimeric SMC1/SMC3 hinge regions, using the two known isoforms, SMC1alpha/SMC3 and the meiotic SMC1beta/SMC3. Both dimers bind DNA with a preference for double-stranded DNA and DNA rich in potential secondary structures. Both dimers form large protein-DNA networks and promote reannealing of complementary DNA strands. DNA binding but not dimerization depends on approximately 20 amino acids of transitional sequence into the coiled-coil region. Replacement of three highly conserved glycine residues, thought to be required for dimerization, in one of the two hinge domains still allows formation of a stable dimer, but if two hinge domains are mutated dimerization fails. Single-mutant dimers bind DNA, but hinge monomers do not. Together, we show that eukaryotic hinge dimerization does not require conserved glycines in both hinge domains, that only the transition into the coiled-coil region rather than the entire coiled-coil region is necessary for DNA binding, and that dimerization is required but not sufficient for DNA binding of the eukaryotic hinge heterodimer.  相似文献   

13.
A unique reaction for type II DNA topoisomerase is its cleavage of a pair of DNA strands in concert. We show however, that in a reaction mixture containing a molar excess of EDTA over Mg2+, or when Mg2+ is substituted by Ca2+, Mn2+, or Co2+, the enzyme cleaves only one rather than both strands. These results suggest that the divalent cations may play an important role in coordinating the two subunits of DNA topoisomerase II during the strand cleavage reaction. The single strand and the double strand cleavage reactions are similar in the following aspects: both require the addition of a protein denaturant, can be reversed by low temperature or high salt, and a topoisomerase II molecule is attached covalently to the 5' phosphoryl end of each broken DNA strand. Furthermore, the single strand cleavage sites share a similar sequence preference with double strand cleavage sites. There is, however, a strand bias for the single strand cleavage reaction. We show also that under single strand cleavage conditions, topoisomerase II still possesses a low level of double strand passage activity: it can introduce topological knots into both covalently closed or nicked DNA rings, and change the linking number of a plasmid DNA by steps of two. The implication of this observation on the sequential cleavage of the two strands of the DNA duplex during the normal DNA double strand passage process catalyzed by type II DNA topoisomerases is discussed.  相似文献   

14.
Large branched DNA structures are constructed by two-step reassociation of separated complementary strands from restriction fragments of different lengths. The displacement of DNA strands initially annealed to longer complementary DNA sequences, a process mediated by branch migration, is very rapid and has thus far been followed only under conditions which are second order, DNA reassociation rate limiting. The average lifetime of branched DNA leading to displacement of 1.6 Kb strands is estimated to be less than 10 seconds under conditions of DNA reassociation, Tm-25 degrees C. Several DNA-binding drugs, including intercalating dyes, have been tested to determine their influence, if any, on the kinetics of DNA strand displacements by branch migration. Only actinomycin D was found to have significant effect under the conditions we have described. The kinetics of the strand displacement in the presence of low concentrations of actinomycin D remain second order and slower rate of strand displacement must be attributed to decreased rate of reassociation of DNA strands to form the branched intermediates. Consideration is given to the potential manipulation of DNA structures at site-directed branches and the limitations due to rapid strand displacements. The feasibility of constructing sufficiently large branched DNA regions to approach first order, branch migration rate limiting kinetics is also discussed.  相似文献   

15.
DNA gyrase catalyzes ATP-dependent negative supercoiling of DNA by a strand passage mechanism that requires coordinated opening and closing of three protein interfaces, the N-, DNA-, and C-gates. ATP binding to the GyrB subunits of gyrase causes dimerization and N-gate closure. The closure of the N-gate is a key step in the gyrase catalytic cycle, as it captures the DNA segment to be transported and poises gyrase toward strand passage. We show here that K(+) ions are required for DNA supercoiling but are dispensable for ATP-independent DNA relaxation. Although DNA binding, distortion, wrapping, and DNA-induced narrowing of the N-gate occur in the absence of K(+), nucleotide-induced N-gate closure depends on their presence. Our results provide evidence that K(+) ions relay small conformational changes in the nucleotide-binding pocket to the formation of a tight dimer interface at the N-gate by connecting regions from both GyrB monomers and suggest an important role for K(+) in synchronization of N-gate closure and DNA-gate opening.  相似文献   

16.
The fate of label introduced as donor deoxyribonucleic acid (DNA) into competent cells of Diplococcus pneumoniae was determined immediately after entry at 25 C, as a function of the size of the donor DNA. Part of the label is found to be acid soluble, part has been incorporated into chromosomal DNA, apparently through reincorporation of degraded donor DNA, and part is found in single strands of length smaller than that of the input donor DNA strands. The last fraction apparently constitutes the precursor for integration of intact donor genetic markers and is referred to as the intact fraction. For large donor DNA the intact fraction contains over 80% of the total intracellular label, but the median strand length has been reduced to 2.2 x 10(6) daltons. For small donor molecules (1 x 10(5) to 6 x 10(5) daltons per strand) the fraction intact increases with donor size from 10 to 50% of the total intracellular label, and the median strand length of this fraction is half that of the donor strands. By combining these results with earlier data on the size dependence of the yield of transformants per unit of total intracellular donor label, we have calculated the probability that a marker in the intact fraction will be integrated, as a function of the length of the donor strand after entry. This probability has a linear dependence on strand length for activities below 40% of maximum, and extrapolates to zero activity at 77,000 daltons per strand.  相似文献   

17.
Repair of DNA-containing pyrimidine dimers   总被引:11,自引:0,他引:11  
Ultraviolet light-induced pyrimidine dimers in DNA are recognized and repaired by a number of unique cellular surveillance systems. The most direct biochemical mechanism responding to this kind of genotoxicity involves direct photoreversal by flavin enzymes that specifically monomerize pyrimidine:pyrimidine dimers monophotonically in the presence of visible light. Incision reactions are catalyzed by a combined pyrimidine dimer DNA-glycosylase:apyrimidinic endonuclease found in some highly UV-resistant organisms. At a higher level of complexity, Escherichia coli has a uvr DNA repair system comprising the UvrA, UvrB, and UvrC proteins responsible for incision. There are several preincision steps governed by this pathway, which includes an ATP-dependent UvrA dimerization reaction required for UvrAB nucleoprotein formation. This complex formation driven by ATP binding is associated with localized topological unwinding of DNA. This same protein complex can catalyze an ATPase-dependent 5'----3'-directed strand displacement of D-loop DNA or short single strands annealed to a single-stranded circular or linear DNA. This putative translocational process is arrested when damaged sites are encountered. The complex is now primed for dual incision catalyzed by UvrC. The remainder of the repair process involves UvrD (helicase II) and DNA polymerase I for a coordinately controlled excision-resynthesis step accompanied by UvrABC turnover. Furthermore, it is proposed that levels of repair proteins can be regulated by proteolysis. UvrB is converted to truncated UvrB* by a stress-induced protease that also acts at similar sites on the E. coli Ada protein. Although UvrB* can bind with UvrA to DNA, it cannot participate in helicase or incision reactions. It is also a DNA-dependent ATPase.  相似文献   

18.
19.
Dhar G  Sanders ER  Johnson RC 《Cell》2004,119(1):33-45
Most site-specific recombinases can be grouped into two mechanistically distinct families. Whereas tyrosine recombinases exchange DNA strands through a Holliday intermediate, serine recombinases such as Hin generate double-strand breaks in each recombining partner. Here, site-directed protein crosslinking is used to elucidate the configuration of protein subunits and DNA within the Hin synaptic complex and to follow the movement of protein subunits during DNA strand exchange. Our results show that the protein interface mediating synapsis is localized to a region within the catalytic domains, thereby positioning the DNA strands on the outside of the Hin tetrameric complex. Unexpected crosslinks between residues within the dimerization helices provide evidence for a conformational change that accompanies DNA cleavage. We demonstrate that the Hin subunits, which are linked to the cleaved DNA ends by serine-phosphodiester bonds, translocate between synapsed dimers to exchange the DNA strands.  相似文献   

20.
Ly H  Parslow TG 《Journal of virology》2002,76(7):3135-3144
Retroviral virions each contain two identical genomic RNA strands that are stably but noncovalently joined in parallel near their 5' ends. For certain viruses, this dimerization has been shown to depend on a unique RNA stem-loop locus, called the dimer initiation site (DIS), that efficiently homodimerizes through a palindromic base sequence in its loop. Previous studies with Moloney murine leukemia virus (Mo-MuLV) identified two alternative DIS loci that can each independently support RNA dimerization in vitro but whose relative contributions are unknown. We now report that both of these loci contribute to the assembly of the Mo-MuLV dimer. Using targeted deletions, point mutagenesis, and antisense oligonucleotides, we found that each of the two stem-loops forms as predicted and contributes independently to dimerization in vitro through a mechanism involving autocomplementary interactions of its loop. Disruption of either DIS locus individually reduced both the yield and the thermal stability of the in vitro dimers, whereas disruption of both eliminated dimerization altogether. Similarly, the thermal stability of virion-derived dimers was impaired by deletion of both DIS elements, and point mutations in either element produced defects in viral replication that correlated with their effects on in vitro RNA dimerization. These findings support the view that in some retroviruses, dimer initiation and stability involve two or more closely linked DIS loci which together align the nascent dimer strands in parallel and in register.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号