首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-activated calcium channels can be divided into two subgroups based on their activation threshold, low-voltage-activated (LVA) and high-voltage-activated (HVA). Auxiliary subunits of the HVA calcium channels contribute significantly to biophysical properties of the channels. We have cloned and characterized members of two families of auxiliary subunits: alpha2delta and gamma. Two new alpha2delta subunits, alpha2delta-2 and alpha2delta-3, regulate all classes of HVA calcium channels. While the ubiquitous alpha2delta-2 modulates both neuronal and non-neuronal channels with similar efficiency, the alpha2delta-3 subunit regulates Ca(v)2.3 channels more effectively. Furthermore, alpha2delta-2 may modulate the LVA Ca(v)3.1 channel. Four new gamma subunits, gamma-2, gamma-3, gamma-4 and gamma-5, were characterized. The gamma-2 subunit modulated both the non-neuronal Ca(v)1.2 channel and the neuronal Ca(v)2.1 channel. The gamma-4 subunit affected only the Ca(v)2.1 channel. The gamma-5 subunit may be a regulatory subunit of the LVA Ca(v)3.1 channel. The Ca(v)1.2 channel is a major target for treatment of cardiovascular diseases. We have mapped the interaction site for clinically important channel blockers - dihydropyridines (DHPs) - and analysed the underlying inhibition mechanism. High-affinity inhibition is characterized by interaction with inactivated state of the channel. Its structural determinants are amino acids of the IVS6 segment, with smaller contribution of the IS6 segment, which contributes to voltage-dependence of DHP inhibition. Removal of amino acids responsible for the high-affinity inhibition revealed a low-affinity open channel block, in which amino acids of the IIIS5 and IIIS6 segments take part. Experiments with a permanently charged DHP suggested that there is another low-affinity interaction site on the alpha(1) subunit. We have cloned and characterized murine neuronal LVA Ca(v)3.1 channel. The channel has high sensitivity to the organic blocker mibefradil, moderate sensitivity to phenytoin, and low sensitivity to ethosuximide, amiloride and valproat. The channel is insensitive to tetrodotoxin and DHPs. The inorganic blockers Ni2+ and Cd2+ are moderately effective compared to La3+. The current through the Ca(v)3.1 channel inactivates faster with Ba2+ compared to Ca2+. Molecular determinants of fast inactivation are located in amino side of the intracellular carboxy terminus. The voltage dependence of charge movement is very shallow compared to the voltage dependence of current activation. Transfer of 30 % of charge correlates with activation of 70 % of measurable macroscopic current. Prolonged depolarization does not immobilize charge movement of the Ca(v)3.1 channel.  相似文献   

2.
The molecular basis of the Ca2+ channel block by (+)-cis-diltiazem was studied in class A/L-type chimeras and mutant alpha1C-a Ca2+ channels. Chimeras consisted of either rabbit heart (alpha1C-a) or carp skeletal muscle (alpha1S) sequence in transmembrane segments IIIS6, IVS6, and adjacent S5-S6 linkers. Only chimeras containing sequences from alpha1C-a were efficiently blocked by (+)-cis-diltiazem, whereas the phenylalkylamine (-)-gallopamil efficiently blocked both constructs. Carp skeletal muscle and rabbit heart Ca2+ channel alpha1 subunits differ with respect to two nonconserved amino acids in segments IVS6. Transfer of a single leucine (Leu1383, located at the extracellular mouth of the pore) from IVS6 alpha1C-a to IVS6 of alpha1S significantly increased the (+)-cis-diltiazem sensitivity of the corresponding mutant L1383I. An analysis of the role of the two heterologous amino acids in a L-type alpha1 subunit revealed that corresponding amino acids in position 1487 (outer channel mouth) determine recovery of resting Ca2+ channels from block by (+)-cis-diltiazem. The second heterologous amino acid in position 1504 of segment IVS6 (inner channel mouth) was identified as crucial inactivation determinant of L-type Ca2+ channels. This residue simultaneously modulates drug binding during membrane depolarization. Our study provides the first evidence for a guarded and modulated benzothiazepine receptor on L-type channels.  相似文献   

3.
A 413-base cDNA insert encoding a portion of the alpha subunit of pyruvate dehydrogenase (E1 alpha; EC 1.2.4.1) from Saccharomyces cerevisiae was isolated from a lambda gt11 cDNA library by immunoscreening and by hybridization with an oligonucleotide probe which corresponded to the amino acid sequence around the phosphorylation site of E1 alpha. This cDNA was subcloned, sequenced and used as a probe to isolate two additional cDNA inserts which were subcloned and sequenced. These overlapping clones comprised the carboxyl-terminal part of E1 alpha. To identify the missing nucleotide sequence, the polymerase chain reaction was used to amplify yeast genomic DNA with synthetic oligonucleotide primers based on the amino-terminal sequence of E1 alpha and the 5' end of one of the cDNA clones. Three DNA fragments were isolated and sequenced. The composite nucleotide sequence has an open reading frame of 1260 nucleotides encoding a putative presequence of 33 amino acids and a mature protein of 387 amino acids (Mr = 42,703). Hybridization analysis showed that the size of the mRNA is about 1.4 kilobases.  相似文献   

4.
The dihydropyridine (DHP)-binding site has been identified within L-type Ca(2+) channel alpha(1C) subunit. However, the molecular mechanism underlying modulation of Ca(2+) channel gating by DHPs has not been clarified. To search for novel determinants of high affinity DHP binding, we introduced point mutations in the rat brain Ca(2+) channel alpha(1C) subunit (rbCII or Ca(v)1.2c) based on the comparison of amino acid sequences between rbCII and the ascidian L-type Ca(2+) channel alpha(1) subunit, which is insensitive to DHPs. The alpha(1C) mutants (S1115A, S1146A, and A1420S) and rbCII were transiently expressed in BHK6 cells with beta(1a) and alpha(2)/delta subunits. The mutation did not affect the electrophysiological properties of the Ca(2+) channel, or the voltage- and concentration-dependent block of Ca(2+) channel currents produced by diltiazem and verapamil. However, the S1115A channel was significantly less sensitive to DHP antagonists. Interestingly, in the S1115A channel, DHP agonists failed to enhance whole-cell Ca(2+) channel currents and the prolongation of mean open time, as well as the increment of NP(o). Responsiveness to the non-DHP agonist FPL-64176 was also markedly reduced in the S1115A channel. When S1115 was replaced by other amino acids (S1115D, S1115T, or S1115V), only S1115T was slightly sensitive to S-(-)-Bay K 8644. These results indicate that the hydroxyl group of Ser(1115) in IIIS5-S6 linker of the L-type Ca(2+) channel alpha(1C) subunit plays a critical role in DHP binding and in the action of DHP Ca(2+) channel agonists.  相似文献   

5.
gamma-aminobutyric acid type A (GABAA) receptors comprise a subfamily of ligand-gated ion channels whose activity can be modulated by ligands acting at the benzodiazepine binding site on the receptor. The benzodiazepine binding site was characterized using a site-directed mutagenesis strategy in which amino acids of the alpha5 subunit were substituted by their corresponding alpha1 residues. Given the high affinity and selectivity of alpha1-containing compared with alpha5-containing GABAA receptors for zolpidem, mutated alpha5 subunits were co-expressed with beta2 and gamma2 subunits, and the affinity of recombinant receptors for zolpidem was measured. One alpha5 mutant (bearing P162T, E200G, and T204S) exhibited properties similar to that of the alpha1 subunit, notably high affinity zolpidem binding and potentiation by zolpidem of GABA-induced chloride current. Two of these mutations, alpha5P162T and alpha5E200G, might alter binding pocket conformation, whereas alpha5T204S probably permits formation of a hydrogen bond with a proton acceptor in zolpidem. These three amino acid substitutions also influenced receptor affinity for CL218872. Our data thus suggest that corresponding amino acids of the alpha1 subunit, particularly alpha1-Ser204, are the crucial residues influencing ligand selectivity at the binding pocket of alpha1-containing receptors, and a model of this binding pocket is presented.  相似文献   

6.
We demonstrate that 85 N-terminal amino acids of the alpha1(I) chain participate in a highly stable folding domain, acting as the stabilizing anchor for the amino end of the type I collagen triple helix. This anchor region is bordered by a microunfolding region, 15 amino acids in each chain, which include no proline or hydroxyproline residues and contain a chymotrypsin cleavage site. Glycine substitutions and amino acid deletions within the N-anchor domain induce its reversible unfolding above 34 degrees C. The overall triple helix denaturation temperature is reduced by 5-6 degrees C, similar to complete N-anchor removal. N-propeptide partially restores the stability of mutant procollagen but not sufficiently to prevent N-anchor unfolding and a conformational change at the N-propeptide cleavage site. The ensuing failure of N-proteinase to cleave at the misfolded site leads to incorporation of pN-collagen into fibrils. Similar, but weaker, effects are caused by G88E substitution in the adjacent triplet, which appears to alter N-anchor structure as well. As in Ehlers-Danlos syndrome (EDS) VIIA/B, fibrils containing pN-collagen are thinner and weaker causing EDS-like laxity of large and small joints and paraspinal ligaments. However, distinct structural consequences of N-anchor destabilization result in a distinct alpha1(I)-osteogenesis imperfecta (OI)/EDS phenotype.  相似文献   

7.
Ba(2+) current through the L-type Ca(2+) channel inactivates essentially by voltage-dependent mechanisms with fast and slow kinetics. Here we found that slow inactivation is mediated by an annular determinant composed of hydrophobic amino acids located near the cytoplasmic ends of transmembrane segments S6 of each repeat of the alpha(1C) subunit. We have determined the molecular requirements that completely obstruct slow inactivation. Critical interventions include simultaneous substitution of A752T in IIS6, V1165T in IIIS6, and I1475T in IVS6, each preventing in additive manner a considerable fraction of Ba(2+) current from inactivation. In addition, it requires the S405I mutation in segment IS6. The fractional inhibition of slow inactivation in tested mutants caused an acceleration of fast inactivation, suggesting that fast and slow inactivation mechanisms are linked. The channel lacking slow inactivation showed approximately 45% of the sustained Ba(2+) or Ca(2+) current with no indication of decay. The remaining fraction of the current was inactivated with a single-exponential decay (pi(f) approximately 10 ms), completely recovered from inactivation within 100 ms and did not exhibit Ca(2+)-dependent inactivation properties. No voltage-dependent characteristics were significantly changed, consistent with the C-type inactivation model suggesting constriction of the pore as the main mechanism possibly targeted by Ca(2+) sensors of inactivation.  相似文献   

8.
Limited proteolysis of the pyruvate decarboxylase (E1, alpha2beta2) component of the pyruvate dehydrogenase (PDH) multienzyme complex of Bacillus stearothermophilus has indicated the importance for catalysis of a site (Tyr281-Arg282) in the E1alpha subunit (Chauhan, H.J., Domingo, G.J., Jung, H.-I. & Perham, R.N. (2000) Eur. J. Biochem. 267, 7158-7169). This site appears to be conserved in the alpha-subunit of heterotetrameric E1s and multiple sequence alignments suggest that there are additional conserved amino-acid residues in this region, part of a common pattern with the consensus sequence -YR-H-D-YR-DE-. This region lies about 50 amino acids on the C-terminal side of a 30-residue motif previously recognized as involved in binding thiamin diphosphate (ThDP) in all ThDP-dependent enzymes. The role of individual residues in this set of conserved amino acids in the E1alpha chain was investigated by means of site-directed mutagenesis. We propose that particular residues are involved in: (a) binding the 2-oxo acid substrate, (b) decarboxylation of the 2-oxo acid and reductive acetylation of the tethered lipoyl domain in the PDH complex, (c) an "open-close" mechanism of the active site, and (d) phosphorylation by the E1-specific kinase (in eukaryotic PDH and branched chain 2-oxo acid dehydrogenase complexes).  相似文献   

9.
Yu P  Lasagna M  Pawlyk AC  Reinhart GD  Pettigrew DW 《Biochemistry》2007,46(43):12355-12365
Steady-state and time-resolved fluorescence anisotropy methods applied to an extrinsic fluorophore that is conjugated to non-native cysteine residues demonstrate that amino acids in an allosteric communication network within a protein subunit tune protein backbone motions at a distal site to enable allosteric binding and inhibition. The unphosphorylated form of the phosphocarrier protein IIAGlc is an allosteric inhibitor of Escherichia coli glycerol kinase, binding more than 25 A from the kinase active site. Crystal structures that showed a ligand-dependent conformational change and large temperature factors for the IIAGlc-binding site on E. coli glycerol kinase suggest that motions of the allosteric site have an important role in the inhibition. Three E. coli glycerol kinase amino acids that are located at least 15 A from the active site and the allosteric site were shown previously to be necessary for transplanting IIAGlc inhibition into the nonallosteric glycerol kinase from Haemophilus influenzae. These three amino acids are termed the coupling locus. The apparent allosteric site motions and the requirement for the distant coupling locus to transplant allosteric inhibition suggest that the coupling locus modulates the motions of the IIAGlc-binding site. To evaluate this possibility, variants of E. coli glycerol kinase and the chimeric, allosteric H. influenzae glycerol kinase were constructed with a non-native cysteine residue replacing one of the native residues in the IIAGlc-binding site. The extrinsic fluorophore Oregon Green 488 (2',7'-difluorofluorescein) was conjugated specifically to the non-native cysteine residue. Steady-state and time-resolved fluorescence anisotropy measurements show that the motions of the fluorophore reflect backbone motions of the IIAGlc-binding site and these motions are modulated by the amino acids at the coupling locus.  相似文献   

10.
Voltage-gated sodium channels consist of a pore-forming alpha subunit associated with beta1 subunits and, for brain sodium channels, beta2 subunits. Although much is known about the structure and function of the alpha subunit, there is little information on the functional role of the 16 extracellular loops. To search for potential functional activities of these extracellular segments, chimeras were studied in which an individual extracellular loop of the rat heart (rH1) alpha subunit was substituted for the corresponding segment of the rat brain type IIA (rIIA) alpha subunit. In comparison with rH1, wild-type rIIA alpha subunits are characterized by more positive voltage-dependent activation and inactivation, a more prominent slow gating mode, and a more substantial shift to the fast gating mode upon coexpression of beta1 subunits in Xenopus oocytes. When alpha subunits were expressed alone, chimeras with substitutions from rH1 in five extracellular loops (IIS5-SS1, IISS2-S6, IIIS1-S2, IIISS2-S6, and IVS3-S4) had negatively shifted activation, and chimeras with substitutions in three of these (IISS2-S6, IIIS1-S2, and IVS3-S4) also had negatively shifted steady-state inactivation. rIIA alpha subunit chimeras with substitutions from rH1 in five extracellular loops (IS5-SS1, ISS2-S6, IISS2-S6, IIIS1-S2, and IVS3-S4) favored the fast gating mode. Like wild-type rIIA alpha subunits, all of the chimeric rIIA alpha subunits except chimera IVSS2-S6 were shifted almost entirely to the fast gating mode when coexpressed with beta1 subunits. In contrast, substitution of extracellular loop IVSS2-S6 substantially reduced the effectiveness of beta1 subunits in shifting rIIA alpha subunits to the fast gating mode. Our results show that multiple extracellular loops influence voltage-dependent activation and inactivation and gating mode of sodium channels, whereas segment IVSS2-S6 plays a dominant role in modulation of gating by beta1 subunits. Evidently, several extracellular loops are important determinants of sodium channel gating and modulation.  相似文献   

11.
Recent crystallographic studies reveal loops in human AP endonuclease 1 (APE1) that interact with the major and minor grooves of DNA containing apurinic/apyrimidinic (AP) sites. These loops are postulated to stabilize the DNA helix and the flipped out AP residue. The loop alpha8 interacts with the major groove on the 3' side of the AP site. To determine the essentiality of the amino acids that constitute the alpha8 loop, we created a mutant library containing random nucleotides at codons 222-229 that, in wild-type APE1, specify the sequence NPKGNKKN. Upon expression of the library (2 x 10(6) different clones) in Escherichia coli and multiple rounds of selection with the alkylating agent methyl-methane sulfonate (MMS), we obtained approximately 2 x 10(5) active mutants that complemented the MMS sensitivity of AP endonuclease-deficient E. coli. DNA sequencing showed that active mutants tolerated amino acid substitutions at all eight randomized positions. Basic and uncharged polar amino acids together comprised the majority of substitutions, reflecting the positively charged, polar character of the wild-type loop. Asn-222, Asn-226, and Asn-229 exhibited the least mutability, consistent with x-ray data showing that each asparagine contacts a DNA phosphate. Substitutions at residues 226-229, located nearer to the AP site, that reduced basicity or hydrogen bonding potential, increased Km 2- to 6-fold and decreased AP site binding; substitutions at residues 222-225 exhibited lesser effects. This initial mutational analysis of the alpha8 loop supports and extends the conclusion of crystallographic studies that the loop is important for binding of AP.DNA and AP site incision.  相似文献   

12.
Using a deletion approach on the alpha subunit of DNA polymerase III from Escherichia coli, we show that there is an N-proximal polymerase domain which is distinct from a more C-proximal tau and beta binding domain. Although deletion of 60 residues from the alpha N terminus abolishes polymerase activity, deletions of 48, 169, and 342 amino acids from the C terminus progressively impair its catalytic efficiency but preserve an active site. Deletion of 342 C-terminal residues reduces k(cat) 46-fold, increases the Km for gapped DNA 5.5-fold, and increases the Km for deoxynucleoside triphosphates (dNTPs) twofold. The 818-residue protein with polymerase activity displays typical Michaelis-Menten behavior, catalyzing a polymerase reaction that is saturable with substrate and linear with time. With the aid of newly acquired sequences of the polymerase III alpha subunit from a variety of organisms, candidates for two key aspartate residues in the active site are identified at amino acids 401 and 403 of the E. coli sequence by inspection of conserved acidic amino acids. The motif Pro-Asp-X-Asp, where X is a hydrophobic amino acid, is shown to be conserved among all known DnaE proteins, including those from Bacillaceae, cyanobacteria, Mycoplasma, and mycobacteria. The E. coli DnaE deletion protein with only the N-terminal 366 amino acids does not have polymerase activity, consistent with the proposed position of the active-site residues.  相似文献   

13.
The dihydropyridine binding site of the rabbit skeletal muscle calcium channel alpha 1 subunit was identified using tritiated azidopine and nitrendipine as ligands. The purified receptor complex was incubated either with azidopine or nitrenidpine at an alpha 1 subunit to ligand ratio of 1:1. The samples were then irradiated by a 200 W UV lamp. The ligands were only incorporated into the alpha 1 subunit, which was isolated by size exclusion chromatography and digested either by trypsin (azidopine) or endoproteinase Asp-N (nitrendipine). Each digest contained two radioactive peptides, which were isolated and sequenced. The azidopine peptides were identical with amino acids 13-18 (minor peak) and 1428-1437 (major peak) of the primary sequence of the skeletal muscle alpha 1 subunit. The nitrendipine peptides were identical with amino acids 1390-1399 (major peak) and 1410-1420 (minor peak). The sequence from amino acids 1390 to 1437 is identical in the alpha 1 subunits of skeletal, cardiac and smooth muscle and follows directly repeat IVS6. These results indicate that dihydropyridines bind to an area that is located at the putative cytosolic domain of the calcium channel.  相似文献   

14.
A 4175-bp EcoRI fragment of DNA that encodes the alpha and beta chains of the pyruvate dehydrogenase (lipoamide) component (E1) of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus has been cloned in Escherichia coli. Its nucleotide sequence was determined. Open reading frames (pdhA, pdhB) corresponding to the E1 alpha subunit (368 amino acids, Mr 41,312, without the initiating methionine residue) and E1 beta subunit (324 amino acids, Mr 35,306, without the initiating methionine residue) were identified and confirmed with the aid of amino acid sequences determined directly from the purified polypeptide chains. The E1 beta gene begins just 3 bp downstream from the E1 alpha stop codon. It is followed, after a longer gap of 73 bp, by the start of another but incomplete open reading frame that, on the basis of its known amino acid sequence, encodes the dihydrolipoyl acetyltransferase (E2) component of the complex. All three genes are preceded by potential ribosome-binding sites and the gene cluster is located immediately downstream from a region of DNA showing numerous possible promoter sequences. The E1 alpha and E1 beta subunits of the B. stearothermophilus pyruvate dehydrogenase complex exhibit substantial sequence similarity with the E1 alpha and E1 beta subunits of pyruvate and branched-chain 2-oxo-acid dehydrogenase complexes from mammalian mitochondria and Pseudomonas putida. In particular, the E1 alpha chain contains the highly conserved sequence motif that has been found in all enzymes utilizing thiamin diphosphate as cofactor.  相似文献   

15.
A region in the carboxy terminus of the protein encoded by open reading frame 6 in early region 4 (E4orf6) of adenovirus type 5 was determined to be required for directing nuclear localization of the E1B 55-kDa protein and for efficient virus replication. A peptide encompassing this region, corresponding to amino acids 239 through 255 of the E4orf6 protein, was analyzed by circular dichroism spectroscopy. The peptide showed evidence of self-interaction and displayed the characteristic spectra of an amphipathic alpha helix in the helix-stabilizing solvent trifluoroethanol. Disrupting the integrity of this alpha helix in the E4orf6 protein by proline substitutions or by removing amino acids 241 through 250 abolished its ability to direct the E1B 55-kDa protein to the nucleus when both proteins were transiently expressed in HeLa cells. Expression of E4orf6 variants that failed to direct nuclear localization of the E1B 55-kDa protein failed to enhance replication of the E4 mutant virus, dl1014, whereas expression of the wild-type E4orf6 protein restored growth of dl1014 to near-wild-type levels. These results suggest that the E4orf6 protein contains an arginine-faced, amphipathic alpha helix that is critical for a functional interaction with the E1B 55-kDa protein in the cell and for the function of the E4orf6 protein during a lytic infection.  相似文献   

16.
In order to study thrombin interaction with fibrinogen, thrombin binding to fragments D and E (prepared by plasmin digestion of fibrinogen) and to intact S-carboxymethylated chains of fibrinogen (A alpha, B beta, and gamma) was analyzed by autoradiography, immunoblotting, and affinity chromatography. Complex formation was observed between late fragment E and thrombin but not with fragment D. The three reduced chain remnants of fragment E all formed complexes with thrombin. Also, thrombin bound to the intact, separated A alpha, B beta, and gamma chains of fibrinogen as well as to the alpha and beta chains of fibrin. In these experiments the extended substrate-binding site, but not the catalytic-binding site, was being examined because fragment E had as its amino-terminal amino acids Val20 in the alpha chain, Lys54 in the beta chain, and Tyr1 in the gamma chain. Also, thrombin inhibited in its active center by D-phenyl-alanyl-L-prolyl-L-arginine-chloromethyl ketone bound to fragment E and to the separated chains in the same manner as unmodified thrombin. A lysine residue to thrombin was essential for its binding to fibrinogen. Thrombin attached to CNBr-activated Sepharose through its amino groups did not bind to fragment E, but when thrombin was attached through its carboxyl groups, it bound fragment E.  相似文献   

17.
We have recently reported that transfer of the domain IIS6 region from rapidly inactivating R-type (alpha(1E)) calcium channels to slowly inactivating L-type (alpha(1C)) calcium channel confers rapid inactivation (Stotz, S. C., Hamid, J., Spaetgens, R. L., Jarvis, S. E., and Zamponi, G. W. (2000) J. Biol. Chem. 275, 24575-24582). Here we have identified individual amino acid residues in the IIS6 regions that are responsible for these effects. In this region, alpha(1C) and alpha(1E) channels differ in seven residues, and exchanging five of those residues individually or in combination did not significantly affect inactivation kinetics. By contrast, replacement of residues Phe-823 or Ile-829 of alpha(1C) with the corresponding alpha(1E) residues significantly accelerated inactivation rates and, when substituted concomitantly, approached the rapid inactivation kinetics of R-type channels. A systematic substitution of these residues with a series of other amino acids revealed that decreasing side chain size at position 823 accelerates inactivation, whereas a dependence of the inactivation kinetics on the degree of hydrophobicity could be observed at position 829. Although these point mutations facilitated rapid entry into the inactivated state of the channel, they had little to no effect on the rate of recovery from inactivation. This suggests that the development of and recovery from inactivation are governed by separate structural determinants. Finally, the effects of mutations that accelerated alpha(1C) inactivation could still be antagonized following coexpression of the rat beta(2a) subunit or by domain I-II linker substitutions that produce ultra slow inactivation of wild type channels, indicating that the inactivation kinetics seen with the mutants remain subject to regulation by the domain I-II linker. Overall, our results provide novel insights into a complex process underlying calcium channel inactivation.  相似文献   

18.
The N-type voltage-dependent calcium channels play a significant role in neurotransmitter release. The alpha1B subunit of the N-type calcium channel functions as the primary subunit that forms the pore and contains the structural motifs that mediate the pharmacological and gating properties of the channel. We report on an isoform of the alpha1B subunit that is preferentially expressed by the monoaminergic neurons of the rat brain. This isoform contains a 21-amino acid cassette in the synprint site present in the cytoplasmic loop between domains IIS6 and IIIS1. RT-PCR of micropunched tissue was used to show preferential expression of this isoform in regions of the brain containing monoaminergic neurons and to a lesser extent in the cerebellum. Double-label in situ hybridization was used to show expression of this isoform mRNA in dopaminergic neurons of the ventral mesencephalon. The expression of two distinct N-type calcium channels containing these alpha1B subunit isoforms by the monoaminergic neurons may provide for synapse-specific regulation of neurotransmitter release.  相似文献   

19.
1. The ability of chemically hypermethylated Escherichia coli B transfer RNA to accept 19 amino acids was studied and the results were compared with those obtained with a control sample of E. coli B transfer RNA incubated under similar conditions in the absence of methylating agent. 2. There is a marked decrease in the ability of the modified transfer RNA to accept amino acids in almost all instances. 3. The acceptance of cysteine appears to be unique in that it is enhanced in the hypermethylated transfer RNA. 4. More detailed studies on the kinetics of acceptance for six amino acids is presented, emphasizing the variation in response of the individual amino acids. 5. Increasing hypermethylation causes a progressive decrease in the amino acid acceptance. 6. The results are discussed in terms of methylation at functional sites within the transfer RNA and possible conformational alterations to the structure of the macromolecule.  相似文献   

20.
Mutations of amino acid residues in the inner two-thirds of the S6 segment in domain III of the rat brain type IIA Na(+) channel (G1460A to I1473A) caused periodic positive and negative shifts in the voltage dependence of activation, consistent with an alpha-helix having one face on which mutations to alanine oppose activation. Mutations in the outer one-third of the IIIS6 segment all favored activation. Mutations in the inner half of IIIS6 had strong effects on the voltage dependence of inactivation from closed states without effect on open-state inactivation. Only three mutations had strong effects on block by local anesthetics and anticonvulsants. Mutations L1465A and I1469A decreased affinity of inactivated Na(+) channels up to 8-fold for the anticonvulsant lamotrigine and its congeners 227c89, 4030w92, and 619c89 as well as for the local anesthetic etidocaine. N1466A decreased affinity of inactivated Na(+) channels for the anticonvulsant 4030w92 and etidocaine by 3- and 8-fold, respectively, but had no effect on affinity of the other tested compounds. Leu-1465, Asn-1466, and Ile-1469 are located on one side of the IIIS6 helix, and mutation of each caused a positive shift in the voltage dependence of activation. Evidently, these amino acid residues face the lumen of the pore, contribute to formation of the high-affinity receptor site for pore-blocking drugs, and are involved in voltage-dependent activation and coupling to closed-state inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号