首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
After studying the effects of almitrine, a new kind of ATPase/ATP synthase inhibitor, on two kinds of isolated mammalian mitochondrion, we have observed that: (1) Almitrine inhibits oligomycin-sensitive ATPase; it decreases the ATP/O value of oxidative phosphorylations without any change in the magnitude of delta mu H+. (2) Almitrine increases the mechanistic H+/ATP stoichiometry of ATPase as shown by measuring either (i) the extent of potassium acetate and of potassium phosphate accumulation sustained by ATP utilisation, or (ii) the electrical charge/ATP (K+/ATP) ratio at steady-state of ATPase activity. (3) Rat liver mitochondria are at least 10-times more sensitive to almitrine than beef heart mitochondria. (4) The change in H+/ATP stoichiometry induced by almitrine depends on the magnitude of the flux through ATPase. The inhibitory effect of almitrine on ATPase/ATP synthase complex, as a consequence of such an H+/ATP stoichiometry change, is discussed.  相似文献   

2.
Cross RL  Müller V 《FEBS letters》2004,576(1-2):1-4
Members of the FoF1, AoA1 and VoV1 family of ATP synthases and ATPases have undergone at least two reversals in primary function. The first was from a progenitor proton-pumping ATPase to a proton-driven ATP synthase. The second involved transforming the synthase back into a proton-pumping ATPase. As proposed earlier [FEBS Lett. 259 (1990) 227], these reversals required changes in the H+/ATP coupling ratio from an optimal value of about 2 for an ATPase function to about 4 for an ATP synthase function. The doubling of the ratio that occurred at the ATPase-to-Synthase transition was accomplished by duplicating the gene that encodes the nucleotide-binding catalytic subunits followed by loss of function in one of the genes. The halving of the ratio that occurred at the Synthase-to-ATPase transition was achieved by a duplication/fusion of the gene that encodes the proton-binding transporter subunits, followed by a loss of function in one half of the double-sized protein. These events allowed conservation of quaternary structure, while maintaining a sufficient driving force to sustain an adequate phosphorylation potential or electrochemical gradient. Here, we describe intermediate evolutionary steps and a fine-tuning of the H+/ATP coupling ratio to optimize synthase function in response to different environments. In addition, we propose a third reversal of function, from an ATPase back to an ATP synthase. In contrast to the first two reversals which required a partial loss in function, the change in coupling ratio required for the third reversal is explained by a gain in function.  相似文献   

3.
At low concentrations, almitrine inhibits yeast cell multiplication by acting on oxidative metabolism. Studies on isolated mitochondria display the following features: (i) almitrine inhibits ATPase activity and decreases ATP/O ratio during oxidative phosphorylation; (ii) no direct effect on respiration can be evidenced; (iii) ATP/O value decreases without any change in the magnitude of delta p; (iv) the higher the ATP synthesis and respiratory fluxes, the larger is the decrease in ATP/O ratio induced by almitrine. These results indicate that almitrine does not act as a classical protonophoric uncoupler nor as previously studied non protonophoric uncouplers (e.g., general anesthetics). Our data show a direct inhibitory effect of almitrine on ATPase-ATP synthase complex. But, in contrast to the classical inhibitors of this complex, almitrine decreases the ATP/O ratio in a flux-dependent manner. Thus, almitrine could induce either an intrinsic uncoupling of H+/-ATPase (i.e., slip in this proton pump) or a change in the mechanistic H+/ATP stoichiometry at the ATPase level.  相似文献   

4.
The gastric [H,K]ATPase:H+/ATP stoichiometry   总被引:2,自引:0,他引:2  
An H+/ATP ratio of 2 for H+ transport was determined from initial rate measurements at pH 6.1 in a purified gastric microsomal fraction containing the [H,K]ATPase. This ratio was independent of external KCl, though the apparent K0.5 for ATP was increased from 10.78 +/- 0.51 (n = 3) to 64.6 +/- 11.9 (n = 3) microM ATP and from 5.13 +/- 0.64 (n = 3) to 65.2 +/- 0.64 (n = 3) microM ATP for H+ transport and the K+-stimulated ATPase, respectively, as K+external was increased from 12 to 150 mM. The H+/ATP ratio was also relatively independent of ATP concentration. Maximum initial rates obtained in KCl-equilibrated vesicles were independent of added valinomycin, though net H+ transport was increased 29.3 +/- 1.03% (n = 6) by the addition of ionophore. Maximum net H+ transport in this vesicle preparation was 185 +/- 2.1 (n = 14) nmol mg-1 of protein. Initial rate measurements of ATPase represent a burst of K+-dependent activity of approximately 10-15 s duration. The H+/ATP stoichiometry was calculated based on the K+-stimulated component of hydrolysis. Under most conditions, the Mg2+-dependent component of hydrolysis was less than 10% of the (Mg2+ + K+) component of hydrolysis.  相似文献   

5.
H+ ATPase of chromaffin granules. Kinetics, regulation, and stoichiometry   总被引:5,自引:0,他引:5  
The chromaffin granule ATPase mediates an inwardly directed transport of H+ against concentration gradients, thereby forming and maintaining an electrochemical transmembrane H+ gradient. The kinetics of this ATPase, its activity modulation by changes in electrochemical H+ gradients, and the stoichiometry between H+ transport and ATP hydrolysis were studied in intact bovine chromaffin granules, resealed chromaffin granule ghosts, and highly purified fragmented chromaffin granule membranes. In fragmented membranes the H+ ATPase has a KM for ATP of 69 microM, a maximum of activity at pH 7.3, and a Vmax of 111 nmol/min/mg of protein at 20 degrees C. Trimethyl tin inhibits the ATPase at much lower concentrations than dicyclohexylcarbodiimide, whereas oligomycin, reserpine, and other inhibitors were without effect. In intact chromaffin granules, the ATPase activity was stimulated up to 300% by collapsing the H+ transmembrane gradients. H+/ATP stoichiometry was measured in resealed chromaffin ghosts devoid of ATP and catecholamines under conditions where no net pH changes occur upon ATP hydrolysis. After addition of ATP, the rates of H+ accumulation in the ghosts and ATP hydrolysis were both linear for about 60-100 s, and the ratio of H+ to ATP was 1.71. These data indicate that the H+ ATPase of chromaffin granules has both kinetic similarities and dissimilarities with other known H+ ATPases. The regulation by changes in H+ gradients and the fixed H+/ATP ratio of this ATPase is further evidence of its primary role in establishing electrogenic H+ translocation and H+ gradients in chromaffin granules.  相似文献   

6.
Some aspects of the ATPase function of the Escherichia coli Lon protease were studied around the optimum pH value. It was revealed that, in the absence of the protein substrate, the maximum ATPase activity of the enzyme is observed at an equimolar ratio of ATP and Mg2+ ions in the area of their millimolar concentrations. Free components of the substrate complex (ATP-Mg)2- inhibit the enzyme ATPase activity. It is hypothesized that the effector activity of free Mg2+ ions is caused by the formation of the "ADP-Mg-form" of the ATPase centers. It was shown that the activation of ATP hydrolysis in the presence of the protein substrate is accompanied by an increase in the affinity of the (ATP-Mg)2- complex to the enzyme, by the elimination of the inhibiting action of free Mg2+ ions without altering the efficiency of catalysis of ATP hydrolysis (based on the kcat value), and by a change in the type of inhibition of ATP hydrolysis by the (ADP-Mg)- complex (without changing the Ki value). Interaction of the Lon protease protein substrate with the enzyme area located outside the peptide hydrolase center was demonstrated by a direct experiment.  相似文献   

7.
T A Scholes  P C Hinkle 《Biochemistry》1984,23(14):3341-3345
The maximum Gibbs free energies of reverse electron transfer from succinate to NAD+ and from cytochrome c to fumarate driven by ATP hydrolysis in submitochondrial particles from beef heart were measured as a function of the Gibbs free energy of ATP hydrolysis. The ratio of the energies delta G'redox/delta G'ATP was 1.40 from succinate to NAD+ and 0.89 from cytochrome c to succinate. The ratio, equivalent to a thermodynamic P/2e-ratio, was dependent on whether the electrochemical proton gradient was primarily a membrane potential or a pH gradient for the cytochrome c to fumarate reaction. The results are consistent with H+/ATP = 3 for F1 ATPase, H+/2e- = 4 for NADH-CoQ reductase, and H+(matrix)/2e- = 2 for succinate-cytochrome c reductase.  相似文献   

8.
F Blasco  X Gidrol 《Biochimie》1982,64(7):531-536
Proton translocation activity of Candida tropicalis plasma membrane ATPase has been demonstrated using a fluorescent delta pH probe (ACMA) and by direct pH measurements. Modifications in fluorescence intensity and H+ transport are highly specific for Mg2+ and ATP, and are sensitive to the well-known inhibitors of the plasma membrane ATPase, vanadate and DCCD. A H+/ATP ratio of 0.54 is found.  相似文献   

9.
A kinetic method has been used to measure the apparent stoichiometry of H+ ions translocated per ATP split by membrane-bound [H+]-ATPases. In this method, membrane vesicles are suspended in well-buffered medium, ATP is added, and a fluorescent probe of delta pH (acridine orange) is used to detect the formation of a steady-state pH gradient. At the steady state, it is assumed that proton pumping in one direction is exactly balanced by the leak of protons in the opposite direction. The pump is then rapidly turned off by the addition of an appropriate inhibitor, and the initial rate of relaxation of delta pH is used to infer the pump rate. This rate is divided by the rate of ATP hydrolysis, measured under the same condition, to give the apparent H+/ATP stoichiometry. The method has been applied to two different [H+]-ATPases, the plasma-membrane ATPase of Neurospora (a Mr = 100,000 integral membrane protein) and the ATPase of Escherichia coli (which belongs to the F0F1 group). The Neurospora ATPase displayed an apparent stoichiometry close to 1 H+/ATP (0.82-1.23), in agreement with previous estimates from electrophysiological measurements on whole cells. In contrast, the E. coli ATPase yielded an apparent stoichiometry close to 2 H+/ATP (1.90), consistent with several published values obtained by both kinetic and thermodynamic methods for bacterial, mitochondrial, and chloroplast ATPases.  相似文献   

10.
A sequence of 10 amino acids (I-C-S-D-K-T-G-T-L-T) of ion motive ATPases such as Na+/K+-ATPase is similar to the sequence of the beta subunit of H+-ATPases, including that of Escherichia coli (I-T-S-T-K-T-G-S-I-T) (residues 282-291). The Asp (D) residue phosphorylated in ion motive ATPase corresponds to Thr (T) of the beta subunit. This substitution may be reasonable because there is no phosphoenzyme intermediate in the catalytic cycle of F1-ATPase. We replaced Thr-285 of the beta subunit by an Asp residue by in vitro mutagenesis and reconstituted the alpha beta gamma complex from the mutant (or wild-type) beta and wild-type alpha and gamma subunits. The uni- and multisite ATPase activities of the alpha beta gamma complex with mutant beta subunits were about 20 and 30% of those with the wild-type subunit. The rate of ATP binding (k1) of the mutant complex under uni-site conditions was about 10-fold less than that of the wild-type complex. These results suggest that Thr-285, or the region in its vicinity, is essential for normal catalysis of the H+-ATPase. The mutant complex could not form a phosphoenzyme under the conditions where the H+/K+-ATPase is phosphorylated, suggesting that another residue(s) may also be involved in formation of the intermediate in ion motive ATPase. The wild-type alpha beta gamma complex had slightly different kinetic properties from the wild-type F1, possibly because it did not contain the epsilon subunit.  相似文献   

11.
The transmembrane electrical potential (deltaphi), the proton flux (H+), the rate of electron transport (e), the pH gradient (deltapH) and the rate of phosphorylation (ATP) were measured in chloroplasts of spinach. Photosynthesis was excited periodically with flashes of variable frequencies and intensities. A new method is described for determining the rate of electron transport and proton flux. Under conditions where the rate of electron transport and proton flux are not pH controlled the following correlations were found in the range 50 mV less than or equal to deltaphi less than or equal to 125 mV and 1.8 less than or equal to deltapH less than or equal to 2.7: (1) The pH gradient, deltapH, increases with H+ independently of Phout between 7-9. (2) The rate of phosphorylation, ATP, depends exponentially on deltapH (at constant deltaphi) and is independent of pHout between 7-9. (3) The rate of phosphorylation, ATP, depends also on deltaphi (at constant deltapH and at constant proton flux H+). (4) The proton flux via the ATPase pathway, Hp+, depends non-linearly on the ratio of the proton concentrations: Hp+ approximately (Hin+/Hout+)b, (b=2.3--2.6). The proton flux via the basal pathway, Hb+, depends linearly on the ratio of the proton concentrations: Hb+ approximately (Hin/Hout). (5) The ratio deltaH+/ATP (e/ATP, i.e. the ratio of the total proton flux, Hp+ + Hb+, and the rate of ATP formation, ATP, depends strongly on deltaphi and on deltapH. The ratio is deltaH+/ATP approximately 3 (e/ATP approximately 1.5) at deltapH 2.7 and deltaphi = 125 mV. (6) It is supposed that the reason for the dependence of deltaH+/ATP on deltaphi anddeltapH is the different functional dependence of the basal proton flux Hb+ and the phosphorylating proton flux Hp+ on deltapH and deltaphi. The calculation of deltaH+/ATP on the basis of this assumption is in fair agreement with the experimental values. Also the "threshold" effects can be explained in this way. (7) The ratio of deltaHp+/ATP, i.e. the ratio of the phosphorylating proton flux Hp+ and ATP, is deltaHp+/ATP APPROXIMATELY 2.4.  相似文献   

12.
E R Kashket 《Biochemistry》1982,21(22):5534-5538
The H+/ATP stoichiometry of the proton-translocating ATPase was investigated in growing and nongrowing, respiring cells of Escherichia coli. The protonmotive force, delta p, was determined by measuring the transmembrane chemical gradient of protons, delta pH, from the cellular accumulation of benzoate anions, and the electrical gradient, delta psi, from the accumulation of the lipophilic cation tetraphenylphosphonium (TPP+). The accumulation of lactose was also used to calculate the delta p in this lactose operon constitutive beta-galactosidase negative mutant. The phosphorylation potential, delta GP', was determined by measuring the cellular concentration of ATP, ADP, and inorganic phosphate. According to chemiosmotic principles, at steady state the phosphorylation potential is in thermodynamic equilibrium with the protonmotive force, and thus the ratio delta p/delta GP' can be used to determine the H+/ATP ratio. Respiring E. coli cells, in mid-exponential phase of growth or incubated in buffer, at external pHs from 6.25 to 8.25 had a constant delta GP' of about 500 mV. The H+/ATP ratio was found to be 3 when the delta p value derived from lactose accumulation levels was used. However, when the delta p values derived from delta pH and delta psi were used in the calculations, the H+/ATP ratio varied from about 2.5 at external pH 6.25 to about 4 at pH 8.25. Arguments are presented for the hypothesis that the delta psi values obtained from the TPP+ measurements are likely to be inaccurate and that a value of 3 H+/ATP, independent of the external pH, is likely to be the valid stoichiometry.  相似文献   

13.
Some aspects of theEscherichia coli Lon protease ATPase function were studied around the optimum pH value. It was revealed that in the absence of the protein substrate the maximum ATPase activity of the enzyme is observed at an equimolar ratio of ATP and Mg2+ ions in the area of their millimolar concentrations. Free components of the substrate complex (ATP-Mg)2− inhibit the enzyme ATPase activity. It is hypothesized that the effector activity of free Mg2+ ions is caused by the formation of the “ADP-Mg-form” of ATPase centers. It was shown that the activation of ATP hydrolysis in the presence of the protein substrate is accompanied by an increase in the affinity of the (ATP-Mg)2− complex to the enzyme, by an elimination of the inhibiting action of free Mg2+ ions without altering the efficiency of catalysis of ATP hydrolysis (based on thek cat value), and by a change in the type of inhibition of ATP hydrolysis by the (ADP-Mg) complex (without changing theK i value). Interaction of the Lon protease protein substrate with the enzyme area located outside the peptide hydrolase center was demonstrated by a direct experiment.  相似文献   

14.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

15.
Oxygen-dependent proton efflux in cyanobacteria (blue-green algae).   总被引:3,自引:1,他引:2       下载免费PDF全文
The oxygen-dependent proton efflux (in the dark) of intact cells of Anabaena variabilis and four other cyanobacteria (blue-green algae) was investigated. In contrast to bacteria and isolated mitochondria, an H+/e ratio (= protons translocated per electron transported) of only 0.23 to 0.35 and a P/e ratio of 0.8 to 1.5 were observed, indicative of respiratory electron transport being localized essentially on the thylakoids, not on the cytoplasmic membrane. Oxygen-induced acidification of the medium was sensitive to cyanide and the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Inhibitors such as 2,6-dinitrophenol and vanadate exhibited a significant decrease in the H+/e ratio. After the oxygen pulse, electron transport started immediately, but proton efflux lagged 40 to 60 s behind, a period also needed before maximum ATP pool levels were attained. We suggest that proton efflux in A. variabilis is due to a proton-translocating ATP hydrolase (ATP-consuming ATPase) rather than to respiratory electron transport located on the cytoplasmic membrane.  相似文献   

16.
Several different proton pumps were used to generate a proton motive force (delta p, proton motive force across the mitochondrial inner membrane) in isolated rat liver mitochondria, and the relationship between delta p and pump rate was investigated by titrating with various inhibitors of the pumps. It was found that this relationship was the same for mitochondria respiring on succinate irrespective of whether respiration was inhibited with malonate, antimycin or cyanide, indicating that the relationship was independent of the redox state of the respiratory chain. When delta p was generated by either the cytochrome bc1 complex, cytochrome oxidase, both together, or ATP hydrolysis (and transport), the reaction rates (in moles of electrons or ATP) were in the ratio of close to 3:1.5:1:1, respectively, at all accessible values of delta p. This suggests that the proton stoichiometries (H+/e and H+/ATP, where H+/e is the number of protons translocated vectorially across the inner membrane per electron transferred by the respiratory chain and H+/ATP is the number of protons translocated vectorially per ATP molecule hydrolyzed externally) were in the ratio of close to 1:2:3:3, respectively, at all values of delta p. Possible reasons for previous contradictory results are suggested.  相似文献   

17.
Radiation inactivation analysis of oligomeric structure of the H,K-ATPase   总被引:2,自引:0,他引:2  
The oligomeric size of the H,K-ATPase was determined in frozen gastric microsomal vesicles irradiated with high energy electrons. Target sizes of various catalytic activities associated with H,K-ATPase function fell into two distinct groups. The lower group of target sizes described the radiation-induced loss of steady-state phosphoenzyme and structural monomer: the MgATP-dependent formation of a beta-aspartyl phosphate exhibited a size range of 133-147 kDa; the size range for the structural measurement (i.e. loss of H,K-ATPase monomer on sodium dodecyl sulfate-polyacrylamide gels) was 92-143 kDa. In contrast, a larger group of target sizes described the loss of full cycle catalytic activities (i.e. K+-dependent stimulation of p-nitrophenyl phosphate and ATP hydrolysis). The K+-phosphatase and K+-stimulated ATPase exhibited target sizes fo 200 +/- 13 and 232 +/- 23 kDa, respectively. The lower target size group represents the first evidence that a monomer of the catalytic subunit maintains partial enzyme function. The larger group of target sizes describing K+-phosphatase and ATPase activities suggest that subunit interactions contribute to full cycle catalytic activity. Subunit interactions appear to be involved in all ion transport activities. Passive Rb+ exchange and active H+ transport in reconstituted proteoliposomes exhibited target sizes of 233n = 2 and 388 +/- 48 kDa, respectively. H+ transport appears to require a subunit arrangement more complex than that associated with catalytic activity or passive ion transport.  相似文献   

18.
Ligand-binding studies with labelled triethyltin on yeast mitochondrial membranes showed the presence of high-affinity sites (KD = 0.6 micronM; 1.2 +/- 0.3 nmol/mg of protein) and low-affinity sites (KD less than 45 micronM; 70 +/- 20 nmol/mg of protein). The dissociation constant of the high-affinity site is in good agreement with the concentration of triethyltin required for inhibition of mitochondrial ATPase (adenosine triphosphatase) and oxidative phosphorylation. The high-affinity site is not competed for by oligomycin or venturicidin, indicating that triethyltin reacts at a different site from these inhibitors of oxidative phosphorylation. Fractionation of the mitochondrial membrane shows a specific association of the high-affinity sites with the ATP synthase complex. During purification of ATP synthase (oligomycin-sensitive ATPase) there is a 5-6-fold purification of oligomycin- and triethyltin-sensitive ATPase activity concomitant with a 7-9-fold increase in high-affinity triethyltin-binding sites. The purified yeast oligomycin-sensitive ATPase complex contains approximately six binding sites for triethyltin/mol of enzyme complex. It is concluded that specific triethyltin-binding sites are components of the ATP synthase complex, which accounts for the specific inhibition of ATPase and oxidative phosphorylation by triethyltin.  相似文献   

19.
A vanadate- and N-ethylmaleimide-sensitive ATPase was purified about 500-fold from chromaffin granule membranes. The purified preparation contained a single major polypeptide with an apparent molecular mass of about 115 kDa, which was copurified with the ATPase activity. Immunological studies revealed that this polypeptide has no relation to subunit I (115 kDa) of the H+-ATPase from chromaffin granules. The ATPase activity of the enzyme is inhibited about 50% by 100 microM N-ethylmaleimide or 5 microM vanadate. The enzyme is not sensitive to dicyclohexylcarbodiimide, ouabain, SCH28080, and omeprazole, which distinguishes it from Na+/K+-ATPase and the gastric K+/H+-ATPase. ATP and 2-deoxy ATP are equally effective substrates for the enzyme. However, the enzyme exhibited only 10% activity with GTP as a substrate. UV illumination of the purified enzyme in the presence of [alpha-32P]ATP exclusively labeled the 115 kDa protein. This labeling was increased by Mg2+ and strongly inhibited by Ca2+ ions. Similarly, the ATPase activity was dependent on Mg2+ and inhibited by the presence of Ca2+ ions. The ATPase activity of the enzyme was largely insensitive to monovalent anions and cations, except for F-, which inhibited the vanadate-sensitive ATPase. Incubation of the enzyme in the presence of [14C]N-ethylmaleimide labeled the 115-kDa polypeptide, and this labeling could be prevented by the addition of ATP during the incubation. A reciprocal experiment showed that preincubation with N-ethylmaleimide inhibited the labeling of the 115-kDa polypeptide by [alpha-32P]ATP by UV illumination. This suggests a close proximity between the ATP-binding site and an essential sulfhydryl group. A possible connection between the isolated ATPase and organelle movement is discussed.  相似文献   

20.
The H(+)/ATP ratio and the standard Gibbs free energy of ATP synthesis were determined with a new method using a chemiosmotic model system. The purified H(+)-translocating ATP synthase from chloroplasts was reconstituted into phosphatidylcholine/phosphatidic acid liposomes. During reconstitution, the internal phase was equilibrated with the reconstitution medium, and thereby the pH of the internal liposomal phase, pH(in), could be measured with a conventional glass electrode. The rates of ATP synthesis and hydrolysis were measured with the luciferin/luciferase assay after an acid-base transition at different [ATP]/([ADP][P(i)]) ratios as a function of deltapH, analysing the range from the ATP synthesis to the ATP hydrolysis direction and the deltapH at equilibrium, deltapH (eq) (zero net rate), was determined. The analysis of the [ATP]/([ADP][P(i)]) ratio as a function of deltapH (eq) and of the transmembrane electrochemical potential difference, delta micro approximately (H)(+) (eq), resulted in H(+)/ATP ratios of 3.9 +/- 0.2 at pH 8.45 and 4.0 +/- 0.3 at pH 8.05. The standard Gibbs free energies of ATP synthesis were determined to be 37 +/- 2 kJ/mol at pH 8.45 and 36 +/- 3 kJ/mol at pH 8.05.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号