首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutant pg 113, derived from Chlamydomonas reinhardii, arg2 mt+ (parent strain), completely lacks chlorophyll (Chl) b but is still able to grow under autotrophic conditions. The light-harvesting Chl a/b-protein complex (LHCP) is absent. This is shown (a) by the lack of the corresponding signal in the CD spectrum of thylakoids and (b) by the absence of the band of the LHCP after electrophoresis of partially solubilized thylakoid membranes on lithium dodecyl sulfate polyacrylamide gels. All the other chlorophyll-protein complexes are present. In spite of the absence of the LHCP, all the polypeptide components of this complex are present in the mutant in the same ratios as in the parent strain, although in slightly reduced amounts. The LHC apoproteins are synthesized, processed and transported into the thylakoid membrane of the mutant. Moreover, the phosphorylation of thylakoid membrane polypeptides, which is related to the regulation of the energy distribution between Photosystem I and II, is the same in the mutant and in the parent strain, indicating that phosphorylation is not dependent on the presence of Chl b. Electron micrographs of thin sections of whole cells show that there are stacked regions of thylakoids in both the mutant and the parent strain chloroplasts. However, in the mutant, stacks are located near the chloroplast envelope, while long stretches or sometimes circles of unstacked membranes are found in the interior, mostly around the pyrenoid.  相似文献   

2.
Ayumi Tanaka  Hideo Tsuji 《BBA》1982,680(3):265-270
Dark-grown cucumber seedlings were exposed to intermittent light (2 min light and 98 min dark) and then cotyledons were incubated with 50 mM CaCl2 in the dark. Chlorophyll (Chl) a was selectively accumulated under intermittent light and Chl b was accumulated during the subsequent dark incubation with CaCl2. The change in chlorophyll-protein complexes during Chl b accumulation induced by CaCl2 in the dark was investigated by SDS-polyacrylamide gel electrophoresis. Chlorophyll-protein complex I and free chlorophyll were major chlorophyll-containing bands of the cotyledons intermittently illuminated 10 times. When these cotyledons were incubated with CaCl2 in the dark, the light-harvesting Chl a/b-protein complex was formed. When the number of intermittent illumination periods was extended to 55, small amounts of Chl b and light-harvesting Chl a/b-protein complex were recognized at the end of intermittent light treatment, and these two pigments were further increased during the subsequent incubation of the cotyledons with CaCl2 in the dark compared to water controls.  相似文献   

3.
Rolf Bü  rgi  Franz Suter  Herbert Zuber 《BBA》1987,890(3):346-351
The transverse orientation of the light-harvesting chlorophyll a/b protein complex of Photosystem II (LHC II) in the thylakoid membrane of pea was investigated using surface radioiodination with Iodo-GenTM. The labelling effects on LHC II of four different membrane preparations were compared. One preparation was oriented right-side-out (intact thylakoids); two of them had an inside-out orientation exposing the lumenal surface (inside-out vesicles; PS II particles) and one had both sides of the membrane exposed (mechanically damaged thylakoids). It was found that LHC II could be iodinated only in membrane preparations with an exposed lumenal surface. Isolated apoproteins were chemically cleaved. Fragments analysis revealed a tyrosine residue located eight amino acids from the C-terminus as the single iodination site. It is concluded that the C-terminus of LHC II points towards the lumental side of the thylakoid. Differences in the labelling behaviour of the LHC apoproteins could be assigned to a heterogeneity in the C-terminal region in which the tyrosine residue is replaced by phenylalanine.  相似文献   

4.
Thylakoids of the prokaryote Prochloron, present as a symbiont in ascidians isolated from the Red Sea at Eilat (Israel), showed polypeptide electrophoretic patterns comparable to those of thylakoids from eukaryotic oxygen-evolving organisms. Low temperature, fluorescence spectroscopy of Prochloron, having a chlorophyll a/b ratio of 3.8–5, and frozen in situ, demonstrated the presence of Photosystem II chlorophyll-protein complex emitting at 686 and 696 nm, as well as the emission band of Photosystem I at 720 nm which was so far not observed in Prochloron species. The latter emission was absent, if the cells or thylakoids were isolated prior to freezing. Energy transfer from chlorophyll b to chlorophyll a could be demonstrated to occur in vivo. The chlorophyll a,b-protein complex of Photosystem II, isolated by non-denaturing polyacrylamide gel electrophoresis, contained one major polypeptide of 34 kDa. The polypeptide was phosphorylated in vitro by a membrane-bound protein kinase which was not stimulated by light. A light-independent protein kinase activity was also found in isolated thylakoids of another prokaryote, the cyanophyte Fremyella diplosiphon. State I–State II transition could not be demonstrated in Prochloron by measurements of modulated fluorescence intensity in situ. We suggest that the presence of a light-independent thylakoid protein kinase of Prochloron, collected in the Red Sea at not less than 30 m depth, might be the result of an evolutionary process whereby this organism has adapted to an environment in which light, absorbed preferentially by Photosystem II, prevails.  相似文献   

5.
J. Hladík  P. Pančoška  D. Sofrová 《BBA》1982,681(2):263-272
Thylakoid membranes of the cyanobacterium Plectonema boryanum solubilized with Triton X-100 can be resolved into three fractions of pigment-protein complexes (Hladík, J. and Sofrová, D. (1981) Photosynthetica 15, 490–503). Fraction I contained relatively the highest amount of carotenoids as well as monomeric forms of chlorophyll a, Fractions II and III contained chlorophyll-protein complexes with a characteristic exciton-split circular dichroism in the red region. It has been shown that fraction III is an oligomeric form of the chlorophyll-protein complex of fraction II. Circular dichroism spectra indicate that, different from fraction II, fraction III contains specifically oriented and space-fixed molecules of carotenoids. Thermal dissociation of fracion III to fraction II is accompanied by disappearance of the positive circular dichroism effect of carotenoids in the 500–550 nm region, thus causing deorganization of the carotenoids, proceeding in parallel to the geometrical rearrangement of chlorophyll molecules. Extraction of the carotenoids of fraction III with heptane is acompanied by dissociation of fraction III. We assume that the observed effects are due to binding of the two pigments to the protein component of the complex and that carotenoids can mediate a part of the interactions which stabilize the structure of pigment-protein complexes. Thus, besides the light-harvesting and protective functions, carotenoids can also play a structural role.  相似文献   

6.
Analyses of chlorophyll fluorescence induction kinetics from DCMU-poisoned thylakoids were used to examine the contribution of the light-harvesting chlorophyll a/b protein complex (LHCP) to Photosystem II (PS II) heterogeneity. Thylakoids excited with 450 nm radiation exhibited fluorescence induction kinetics characteristic of major contributions from both PS II and PS IIβ centres. On excitation at 550 nm the major contribution was from PS IIβ centres, that from PS II centres was only minimal. Mg2+ depletion had negligible effect on the induction kinetics of thylakoids excited with 550 nm radiation, however, as expected, with 450 nm excitation a loss of the PS II component was observed. Thylakoids from a chlorophyll-b-less barley mutant exhibited similar induction kinetics with 450 and 550 nm excitation, which were characteristic of PS IIβ centres being the major contributors; the PS II contribution was minimal. The fluorescence induction kinetics of wheat thylakoids at two different developmental stages, which exhibited different amounts of thylakoid appression but similar chlorophyll a/b ratios and thus similar PS II:LHCP ratios, showed no appreciable differences in the relative contributions of PS II and PS IIβ centres. Mg2+ depletion had similar effects on the two thylakoid preparations. These data lead to the conclusion that it is the PS II:LHCP ratio, and probably not thylakoid appression, that is the major determinant of the relative contributions of PS II and PS IIβ to the fluorescence induction kinetics. PS II characteristics are produced by LHCP association with PS II, whereas PS IIβ characteristic can be generated by either disconnecting LHCP from PS II or by preferentially exciting PS II relative to LHCP.  相似文献   

7.
Total RNA was isolated from the diatom Cyclotella cryptica and separated into poly(A)+ and poly(A) fractions. These fractions were subjected to in vitro translation/immunoprecipitation experiments using an antiserum directed against the predominant light-harvesting complex of Cy. cryptica (ccry antiserum) and a heterologous antiserum raised against the light-harvesting complex of the cryptophyte Cryptomonas maculata (cmac antiserum). From translation reactions programmed with poly(A)+ RNA the ccry-antiserum immunoprecipitated polypeptides with relative molecular weights (Mr) of 27 000, 25 000, 23 000 and 21 000, while the cmac-antiserum precipitated proteins with Mrs of 32 500 and 27 000, respectively. Subsequent cDNA synthesis and immunological screening of the cDNA library with both antisera resulted in the isolation of six cDNA clones encoding light-harvesting subunits. Full-length precursors were 199-210 amino acids in length and had Mrs of 20 000–23 000. The lengths of the putative signal peptides were 29 or 30 amino acids. Pairwise comparison revealed that the similarity between the clones ranged from 54–99% on the nucleotide level and from 36–99% at the amino acid level. In agreement with the data from the screens with the two antisera, the genes clustered into two groups. The data provide evidence that the genes constitute a heterogeneous multigene family and that the light-harvesting system of Cy. cryptica might be as complex as that of higher plants and green algae. Received: 23 March 1998 / Accepted: 25 July 1998  相似文献   

8.
The mutant pg 113, derived from Chlamydomonas reinhardii, arg2 mt+ (parent strain), completely lacks chlorophyll (Chl) b but is still able to grow under autotrophic conditions. The light-harvesting Chl complex (LHCP) is absent. This is shown (a) by the lack of the corresponding signal in the CD spectrum of thylakoids and (b) by the absence of the band of the LHCP after electrophoresis of partially solubilized thylakoid membranes on lithium dodecyl sulfate polyacrylamide gels. All the other chlorophyll-protein complexes are present. In spite of the absence of the LHCP, all the polypeptide components of this complex are present in the mutant in the same ratios as in the parent strain, although in slightly reduced amounts. The LHC apoproteins are synthesized, processed and transported into the thylakoid membrane of the mutant. Moreover, the phosphorylation of thylakoid membrane polypeptides, which is related to the regulation of the energy distribution between Photosystem I and II, is the same in the mutant and in the parent strain, indicating that phosphorylation is not dependent on the presence of Chl b. Electron micrographs of thin sections of whole cells show that there are stacked regions of thylakoids in both the mutant and the parent strain chloroplasts. However, in the mutant, stacks are located near the chloroplast envelope, while long stretches or sometimes circles of unstacked membranes are found in the interior, mostly around the pyrenoid.  相似文献   

9.
Beverley R. Green  Edith L. Camm 《BBA》1982,681(2):256-262
Reelectrophoresis of the oligomer form (CP II1) of the chlorophyll ab light-harvesting complex (LHC) from the green alga Acetabularia yields two green bands which run at the position typical of the monomer (CP II). The upper green band (CP II1) is enriched in the 27 kDa polypeptide of the LHC, while the lower is enriched in the 26 kDa polypeptide. The fact that both bands have both chlorophyll (Chl) a and b, and in the same ratio, implies that the LHC is made up of two Chl ab proteins. Neither of these bands can be attributed to the Chl ab complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432). Resolution of CP II1 and CP II2 of spinach can be obtained if sucrose gradient fractions of an octylglucoside extract are subjected to SDS-polyacrylamide gel electrophoresis. CP II1 and CP II2 are interpreted as being fundamental subunits of the light-harvesting complex as it is defined on SDS-polyacrylamide gels.  相似文献   

10.
The low-temperature linear dichroism spectrum of thylakoids oriented in polyacrylamide gel can be adequately described by a linear combination of the corresponding spectra of particles of light-harvesting complex, Photosystem I and Photosystem II, isolated by Triton X-100 extraction. The main conclusions which can be derived from this observation are: (1) The in vivo orientation of the pigments within each of the three complexes is not significantly affected by the extraction and purification procedures. (2) The various photosynthetic pigments are oriented roughly to the same extent in each of the three main biochemical constituents of the thylakoid. (3) All the complexes investigated behave like ellipsoids, the largest dimensions of which are lying in the plane of the photosynthetic membrane.  相似文献   

11.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 °C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing “activity gels”. Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being “self-digested”, also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 °C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg2+, and inhibited by Zn2+, Cd2+, EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing “activity gels” or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

12.
The present study examined the protein associations and energy transfer characteristics of chlorophyll c and fucoxanthin which are the major light-harvesting pigments in the brown and diatomaceous algae. It was demonstrated that sodium dodecyl sulfate (SDS)-solubilized photosynthetic membranes of these species when subjected to SDS polyacrylamide gel electrophoresis yielded three spectrally distinct pigment-protein complexes. The slowest migrating zone was identical to complex I, the SDS-altered form of the P-700 chlorophyll a-protein. The zone of intermediate mobility contained chlorophyll c and chlorophyll a in a molar ratio of 2 : 1, possessed no fucoxanthin, and showed efficient energy transfer from chlorophyll c to chlorophyll a. The fastest migrating pigment-protein zone contained fucoxanthin and chlorophyll a, possessed no chlorophyll c, and showed efficient energy transfer from fucoxanthin to chlorophyll a. It is demonstrated that the chlorophyll ac-protein and the chlorophyll afucoxanthin-protein complexes are common to the brown algae and diatoms examined, and likely share similar roles in the photosynthetic units of these species.  相似文献   

13.
Dark-grown cucumber seedlings were exposed to intermittent light (2 min light and 98 min dark) and then cotyledons were incubated with 50 mM CaCl2 in the dark. Chlorophyll (Chl) a was selectively accumulated under intermittent light and Chl b was accumulated during the subsequent dark incubation with CaCl2. The change in chlorophyll-protein complexes during Chl b accumulation induced by CaCl2 in the dark was investigated by SDS-polyacrylamide gel electrophoresis. Chlorophyll-protein complex I and free chlorophyll were major chlorophyll-containing bands of the cotyledons intermittently illuminated 10 times. When these cotyledons were incubated with CaCl2 in the dark, the light-harvesting Chl complex was formed. When the number of intermittent illumination periods was extended to 55, small amounts of Chl b and light-harvesting Chl complex were recognized at the end of intermittent light treatment, and these two pigments were further increased during the subsequent incubation of the cotyledons with CaCl2 in the dark compared to water controls.  相似文献   

14.
The kinetics of LHCP phosphorylation and associated changes in photosystem cross-section and energy ‘spill-over’ from PS II to PS I have been examined in isolated spinach chloroplasts. During an initial phosphorylation period of 3–6 min, in the presence of saturating concentrations of Mg2+, the increase in PS I and decrease in PS II cross-section are largely completed, as judged by both measurements of the steady-state redox state of Q and fluorescence yield changes. This corresponds to a period of rapid 32P incorporation into the low-molecular weight LHCP polypeptide. Subsequent to this initial 3–6-min period there is substantial further phosphorylation of both LHCP polypeptides, which is not accompanied by significant changes in photosystem cross-section, even after the chloroplasts had been unstacked with extensive mixing of PS I and PS II by Mg-removal. It is suggested that there exists a specific ‘mobile’ population of LHCP molecules which is rapidly phosphorylated and which may be enriched in the low-molecular-weight polypeptide. In addition, measurements of the kinetics of the ‘spill-over’ changes upon either Mg2+ addition or removal indicate that the continued phosphorylation of LHCP is able to increase the ‘spill-over’ process under favourable ionic conditions.  相似文献   

15.
Jan M. Anderson 《BBA》1983,724(3):370-380
Eight chlorophyll-protein complexes were isolated from thylakoid membranes of a Codium species, a marine green alga, by mild SDS-polyacrylamide gel electrophoresis. CP 1a1, CP 1a2, CP 1a3 and CP 1a4 were partially dissociated Photosystem (PS) I complexes, which in addition to the core reaction centre complex, CP 1, possessed PS I light-harvesting complexes containing chlorophyll (Chl) a, Chl b and siphonaxanthin. LHCP1 and LHCP3 are orange-brown green chlorophyll ab-proteins (Chl aChl b ratios of 0.66) that contain siphonaxanthin and its esterified form, siphonein. CP a and CP 1, the core reaction centre complexes of PS II and PS I, respectively, had similar spectral properties to those isolated from other algae or higher plants. These P-680- or P-700-Chl a-proteins are universally distributed among algae and terrestrial plants; they appear to be highly conserved and have undergone little evolutionary adaptation. Siphonaxanthin and siphonein which are present in the Codium light-harvesting complexes of PS II and PS I are responsible for enhanced absorption in the green region (518 and 538 nm). Efficient energy transfer from both xanthophylls and Chl b to only Chl a in Codium light-harvesting complexes, which have identical fluorescence emission spectra at 77 K to those of the lutein-Chl ab-proteins (Chl aChl b ratios of 1.2) of most green algae and all higher plants, proved that the molecular arrangement of these light-harvesting pigments was maintained in the isolated Codium complexes. The siphonaxanthin-Chl ab-proteins allow enhanced absorption of blue-green and green light, the predominant light available in deep ocean waters or shaded subtidal marine habitats. Since there is a variable distribution of lutein, siphonaxanthin and siphonein in marine green algae and siphonaxanthin is found in very ancient algae, these novel siphonein-siphonaxanthin-Chl ab-proteins may be ancient light-harvesting complexes which were evolved in deep water algae.  相似文献   

16.
Shigeru Itoh 《BBA》1979,548(3):579-595
Salt- or pH-induced change of the rate of reduction of the phtooxidized membrane bound electron transfer components, P-700, by ionic and nonionic reductants added in the outer medium was studied in sonicated chloroplasts.

The rate with the negatively charged reductants increased with the increase of salt concentration at a neutral pH or with the decrease of medium pH. Salts of divalent cations were much more effective than those of monovalent cations. A trivalent cation was even more effective. The rate with a nonionic reductant was little affected by salts.

The change of the reduction rate was analyzed using the Gouy-Chapman theory, which explains the change of reduction rate by the changes of activities of ionic reductants at the charged membrane surface where the reaction takes place. This analysis gave more useful parameters and explained more satisfactorily the case with high-valence cation salts than the Brönsted type analysis. The values for the surface charge density and the surface potential of the membrane surface in the vicinity of P-700 estimated from the analysis were lower than those estimated for the surface in the vicinity of Photosystem II primary acceptor, suggesting the heterogeneity of the thylakoid surface.

The salt-induced surface potential change was shown to affect the activation energy of the reaction between P-700 and the ionic reagent.  相似文献   


17.
cDNA species encoding precursor polypeptides of the chlorophyll a/b/c light-harvesting complex (LHC) of Mantoniella squamata were cloned and sequenced. The precursor polypeptides have molecular weights of 24.2 kDa and are related to the major chlorophyll a/b polypeptides of higher plants. Southern analysis showed that their genes belong to the nuclear encoded Lhc multigene family; the investigated genes most probably do not contain introns. The chlorophyll a/b/c polypeptides contain two highly conserved regions common to all LHC polypeptides and three hydrophobic -helices, which span the thylakoid membrane. The first membrane-spanning helix, however, is not detected by predictive methods: its atypical hydrophilic domains may bind the chlorophyll c molecules within the hydrophobic membrane environment. Homology to LHC 11 of higher plants and green algae is specifically evident in the C-terminal region comprising helix III and the preceding stroma-exposed domain. The N-terminal region of 29 amino acids resembles the structure of a transit sequence, which shows only minor similarities to those of LHC II sequences. Strikingly, the mature light-harvesting polypeptides of M. squamata lack an N-terminal domain of 30 amino acids, which, in higher plants, contains the phosphorylation site of LHC 11 and simultaneously mediates membrane stacking. Therefore, the chlorophyll a/b/c polypeptides of M. squamata do not exhibit any light-dependent preference for photosystem I or 11. The lack of this domain also indicates that the attractive forces between stacked thylakoids are weak.This study is dedicated to Prof. Dr. W Rüdiger on the occasion of his 60th birthday  相似文献   

18.
Using a polyacrylamide gel squeezing technique, linear dichroism spectra of thylakoids from wild-type and chlorophyll-b less barley have been obtained at 100 K. The calculated difference linear dichroism spectra, based on normalization at 690–695 nm, are identical to those of the light-harvesting complex (LHC) isolated by Triton solubilization. This observation is in agreement with previous conclusions (Tapie, P., Haworth, P., Hervo, G. and Breton, J. (1982) Biochim. Biophys. Acta 682, 339–344) regarding: (i) scattering artifacts are absent in linear dichroism spectra determined using polyacrylamide gels, (ii) the in vivo orientation of LHC pigments is maintained in the isolated complex and (iii) the largest dimension(s) of the isolated LHC is (are), in vivo, parallel to the plane of the photosynthetic membrane.  相似文献   

19.
The thermophilic blue-green alga Synechococcus lividus was grown at 38 and 55°C. The reaction center chlorophyll-protein complexes (CP) of Photosystem (PS I) and PS II, CP aI and CP aII, were isolated by sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis at 4°C. SDS solubilization of thylakoids was performed in the temperature range 0–65°C. The low-temperature absorption and fluorescence emission spectral properties of the isolated chlorophyll-protein complexes were analyzed. Only traces of CP aI were solubilized at temperatures below the lipid phase transition temperature. Instead, a minor PS I component, CP aI, was obtained that had absorption and fluorescence characteristics similar to those of CP aI. CP aI had a slightly lower mobility than CP aI in SDS-polyacrylamide gel electrophoresis. The amount of CP aI in the gel scan profile increased dramatically when solubilization was carried out above the phase transition temperatures, but started to decrease above 60°C. CP aII, on the other hand, could be efficiently extracted even at 0°C and was stable in the scan profile up to extraction temperatures of 30–40°C. Low-temperature absorption and fluorescence emission spectra were typical for CP aI and CP aII and no specific effects of the two growth temperatures on these properties were observed. The phase transition temperature was considered to be critical for the solubilization of CP aI, either because of the difficulties of SDS (especially as it forms micelles at low temperatures) in penetrating the solidified membrane lipids at temperatures below that of the phase transition or because the CP aI monomers of the PS I antennae are so strongly bound to each other that they cannot be dissociated by SDS before thermal agitation has reached a certain level that is achieved above the phase transition temperature. We consider both the difficulties in solubilizing CP aI at sub-transition temperatures and the heat stability of the two complexes as adaptations which enable Synechococcus to grow under extreme high-temperature regimes.  相似文献   

20.
Antenna and reaction centre complexes purified from photosynthetically-grown cells of Rhodopseudomonas sphaeroides have been mixed with cytoplasmic membranes prepared from an aerobically-grown bacteriochlorophyll-less mutant of Rp. sphaeroides (designated 01) in the presence of 1% sodium cholate. After removal of the cholate by dialysis, the dialysate was subjected to isopycnic centrifugation. Reconstituted cytochrome c2 photooxidation and cytochrome b photoreduction were demonstrated in a pigmented fraction recovered from the sucrose gradient, suggesting that the pigment-proteins were incorporated into the 01 membrane.

The fluorescence properties of the system were examined. The appearance of a variable component after the initial fast fluorescence rise indicated that energy transfer occurred between the antenna and reaction centre proteins in the presence of 01 membrane. The order in which the system was assembled was important. Reconstituted energy transfer with a pre-dialysed reaction centre-antenna complex was more effective than when all the components were mixed at once. Energy transfer was also reconstituted between added reaction centre protein and the endogenous antenna present in membranes from the pigmented, but aerobically-grown reaction centre-less mutant PM8dp of Rp. sphaeroides.

Preparations of 01 membranes reconstituted with reaction centre exhibited a light intensity dependent cytochrome c2 photooxidation. At low exciting light intensities, preparations containing reconstituted antenna protein in addition to reaction centres showed greater membrane cytochrome c2 photooxidation than preparations with the antenna omitted; this improvement was maximal when a pre-dialysed antenna-reaction centre complex was used.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号