共查询到20条相似文献,搜索用时 0 毫秒
1.
Prophage loci often remain under-annotated or even unrecognized in prokaryotic genome sequencing projects. A PHP application, Prophage Finder, has been developed and implemented to predict prophage loci, based upon clusters of phage-related gene products encoded within DNA sequences. This application provides results detailing several facets of these clusters to facilitate rapid prediction and analysis of prophage sequences. Prophage Finder was tested using previously annotated prokaryotic genomic sequences with manually curated prophage loci as benchmarks. Additional analyses from Prophage Finder searches of several draft prokaryotic genome sequences are available through the Web site (http://bioinformatics.uwp.edu/~phage/DOEResults.php) to illustrate the potential of this application. 相似文献
2.
Ming Yi Jay D Horton Jonathan C Cohen Helen H Hobbs Robert M Stephens 《BMC bioinformatics》2006,7(1):30-24
Background
Analysis of High Throughput (HTP) Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS), for deriving biological insights from analysis of HTP data. 相似文献3.
A method is described that allows the assessment of treelikeness of phylogenetic distance data before tree estimation. This method is related to statistical geometry as introduced by Eigen, Winkler-Oswatitsch, and Dress (1988 [Proc. Natl. Acad. Sci. USA. 85:5913-5917]), and in essence, displays a measure for treelikeness of quartets in terms of a histogram that we call a delta plot. This allows identification of nontreelike data and analysis of noisy data sets arising from processes such as, for example, parallel evolution, recombination, or lateral gene transfer. In addition to an overall assessment of treelikeness, individual taxa can be ranked by reference to the treelikeness of the quartets to which they belong. Removal of taxa on the basis of this ranking results in an increase in accuracy of tree estimation. Recombinant data sets are simulated, and the method is shown to be capable of identifying single recombinant taxa on the basis of distance information alone, provided the parents of the recombinant sequence are sufficiently divergent and the mixture of tree histories is not strongly skewed toward a single tree. delta Plots and taxon rankings are applied to three biological data sets using distances derived from sequence alignment, gene order, and fragment length polymorphism. 相似文献
4.
5.
Yale Image Finder (YIF) is a publicly accessible search engine featuring a new way of retrieving biomedical images and associated papers based on the text carried inside the images. Image queries can also be issued against the image caption, as well as words in the associated paper abstract and title. A typical search scenario using YIF is as follows: a user provides few search keywords and the most relevant images are returned and presented in the form of thumbnails. Users can click on the image of interest to retrieve the high resolution image. In addition, the search engine will provide two types of related images: those that appear in the same paper, and those from other papers with similar image content. Retrieved images link back to their source papers, allowing users to find related papers starting with an image of interest. Currently, YIF has indexed over 140 000 images from over 34 000 open access biomedical journal papers. AVAILABILITY: http://krauthammerlab.med.yale.edu/imagefinder/ 相似文献
6.
A high-throughput approach for biomolecule analysis is demonstrated for a mixture of peptides from tryptic digest of four proteins as well as a tryptic digests of human plasma. In this method a chip based electrospray autosampler coupled to a hybrid ion mobility (IMS) mass spectrometer (MS) is utilized to achieve rapid sample analysis. This high-throughput measurement is realized by exploiting the direct infusion capability of the chip based electrospray with its rapid sample manipulating capability as well as a high sensitive IMS-MS with a recently developed IMS-IMS separation technique that can be multiplexed to provide greater throughput. From replicate IMS-MS runs of known mixtures, the average uncertainty of peak intensities is determined to be +/-7% (relative standard deviation), and a detection limit in the low attomole range is established. The method is illustrated by analyzing 124 human plasma protein samples in duplicate, a measurement that required 16.5 h. Current limitations as well as implications of the high-throughput approach for complex biological sample analysis are discussed. 相似文献
7.
Dynamic models of biochemical networks usually are described as a system of nonlinear differential equations. In case of optimization of models for purpose of parameter estimation or design of new properties mainly numerical methods are used. That causes problems of optimization predictability as most of numerical optimization methods have stochastic properties and the convergence of the objective function to the global optimum is hardly predictable. Determination of suitable optimization method and necessary duration of optimization becomes critical in case of evaluation of high number of combinations of adjustable parameters or in case of large dynamic models. This task is complex due to variety of optimization methods, software tools and nonlinearity features of models in different parameter spaces. A software tool ConvAn is developed to analyze statistical properties of convergence dynamics for optimization runs with particular optimization method, model, software tool, set of optimization method parameters and number of adjustable parameters of the model. The convergence curves can be normalized automatically to enable comparison of different methods and models in the same scale. By the help of the biochemistry adapted graphical user interface of ConvAn it is possible to compare different optimization methods in terms of ability to find the global optima or values close to that as well as the necessary computational time to reach them. It is possible to estimate the optimization performance for different number of adjustable parameters. The functionality of ConvAn enables statistical assessment of necessary optimization time depending on the necessary optimization accuracy. Optimization methods, which are not suitable for a particular optimization task, can be rejected if they have poor repeatability or convergence properties. The software ConvAn is freely available on www.biosystems.lv/convan. 相似文献
8.
High-throughput sequencing for microRNA (miRNA) profiling has revealed a vast complexity of miRNA processing variants, but these are difficult to discern for those without bioinformatics expertise and large computing capability. In this article, we present miRNA Sequence Profiling (miRspring) (http://mirspring.victorchang.edu.au), a software solution that creates a small portable research document that visualizes, calculates and reports on the complexities of miRNA processing. We designed an index-compression algorithm that allows the miRspring document to reproduce a complete miRNA sequence data set while retaining a small file size (typically <3 MB). Through analysis of 73 public data sets, we demonstrate miRspring’s features in assessing quality parameters, miRNA cluster expression levels and miRNA processing. Additionally, we report on a new class of miRNA variants, which we term seed-isomiRs, identified through the novel visualization tools of the miRspring document. Further investigation identified that ∼30% of human miRBase entries are likely to have a seed-isomiR. We believe that miRspring will be a highly useful research tool that will enhance the analysis of miRNA data sets and thus increase our understanding of miRNA biology. 相似文献
9.
Robert K. Reft 《Plant Ecology》1980,42(1-3):171-174
Summary Ordination has proven to be a useful tool for examining relationships between environment and vegetation in data sets with a simple underlying environmental strueture. Complex data sets have proven much less tractable. A strategy is offered for dealing with complex data sets based on progressive removal of sets of stands along identified gradients, and subsequent reordination. This strategy is demonstrated using forests of the North Carolina piedmont.The author gratefully acknowledges the continuing collaboration of Dr. Norman L. Christensen of Duke University. This research was supported by National Science Foundation grants DEB-7708743 and DEB-7804043 to R.K.P. and DEB-7707532 and DEB-7804041 to N.L.C. 相似文献
10.
11.
12.
Benjamin Misselwitz Gerhard Strittmatter Balamurugan Periaswamy Markus C Schlumberger Samuel Rout Peter Horvath Karol Kozak Wolf-Dietrich Hardt 《BMC bioinformatics》2010,11(1):30
Background
Light microscopy is of central importance in cell biology. The recent introduction of automated high content screening has expanded this technology towards automation of experiments and performing large scale perturbation assays. Nevertheless, evaluation of microscopy data continues to be a bottleneck in many projects. Currently, among open source software, CellProfiler and its extension Analyst are widely used in automated image processing. Even though revolutionizing image analysis in current biology, some routine and many advanced tasks are either not supported or require programming skills of the researcher. This represents a significant obstacle in many biology laboratories. 相似文献13.
14.
Ghyselinck J Van Hoorde K Hoste B Heylen K De Vos P 《Journal of microbiological methods》2011,86(3):327-336
The present study examined the suitability of matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for the rapid grouping of bacterial isolates, i.e. dereplication. Dereplication is important in large-scale isolation campaigns and screening programs since it can significantly reduce labor intensity, time and costs in further downstream analyses. Still, current dereplication techniques are time consuming and costly. MALDI-TOF MS is an attractive tool since it performs fast and cheap analyses with the potential of automation. However, its taxonomic resolution for a broad diversity of bacteria remains largely unknown. To verify the suitability of MALDI-TOF MS for dereplication, a total of 249 unidentified bacterial isolates retrieved from the rhizosphere of potato plants, were analyzed with both MALDI-TOF MS and repetitive element sequence based polymerase chain reaction (rep-PCR). The latter technique was used as a benchmark. Cluster analysis and inspection of the profiles showed that for 204 isolates (82%) the taxonomic resolution of both techniques was comparable, while for 45 isolates (18%) one of both techniques had a higher taxonomic resolution. Additionally, 16S rRNA gene sequence analysis was performed on all members of each delineated cluster to gain insight in the identity and sequence similarity between members in each cluster. MALDI-TOF MS proved to have higher reproducibility than rep-PCR and seemed to be more promising with respect to high-throughput analyses, automation, and time and cost efficiency. Its taxonomic resolution was situated at the species to strain level. The present study demonstrated that MALDI-TOF MS is a powerful tool for dereplication. 相似文献
15.
Hammamieh R Chakraborty N Wang Y Laing M Liu Z Mulligan J Jett M 《Omics : a journal of integrative biology》2007,11(2):143-151
Systematic extraction of relevant biological facts from available massive scientific knowledge source is emerging as a significant task for the science community. Its success depends on several key factors, including the precision of a given search, the time of its accomplishment, and the communicative prowess of the mined information to the users. GeneCite - a stand-alone Java-based high-throughput data mining tool - is designed to carry out these tasks for several important knowledge sources simultaneously, allowing the users to integrate the results and interpret biological significance in a time-efficient manner. GeneCite provides an integrated high-throughput search platform serving as an information retrieval (IR) tool for probing online literature database (PubMed) and the sequence-tagged sites' database (UniSTS), respectively. It also operates as a data retrieval (DR) tool to mine an archive of biological pathways integrated into the software itself. Furthermore, GeneCite supports a retrieved data management system (DMS) showcasing the final output in a spread-sheet format. Each cell of the output file holds a real-time connection (hyperlink) to the given online archive reachable at the users' convenience. The software is free and currently available online www.bioinformatics.org; www.wrair.army.mil/Resources. 相似文献
16.
To exploit advances in proteomics for drug discovery, high-throughout methods for target validation that directly address the cellular roles of proteins are required. To do this, we have characterized fluorophore-assisted light inactivation (FALI) which uses coherent or diffuse light targeted by fluorescein-labeled probes to inactivate specific proteins. We have shown that it is spatially restricted and tested its efficacy in living cells. FALI is efficient using conventional antibodies and single chain variable fragment phage display antibodies (that are compatible with high-throughput applications). We have shown that singlet oxygen is one of the major components required for FALI-mediated damage. The half-maximal radius of damage is approximately 40 A. FALI causes the specific loss of function of beta 1 integrin in HT-1080 fibrosarcoma cells resulting in a reduction in invasiveness. The efficacy of diffuse light sources (such as a desk lamp) with FALI to inactivate many samples in parallel provides an inexpensive, high-throughput method of wide general applicability for functional proteomics. 相似文献
17.
Beatriz Llano-Sotelo Robyn P. Hickerson Laura Lancaster Harry F. Noller Alexander S. Mankin 《RNA (New York, N.Y.)》2009,15(8):1597-1604
Measuring the binding of antibiotics and other small-molecular-weight ligands to the 2.5 MDa ribosome often presents formidable challenges. Here, we describe a general method for studying binding of ligands to ribosomes that carry a site-specific fluorescent label covalently attached to one of the ribosomal proteins. As a proof of principle, an environment-sensitive fluorescent group was placed at several specific sites within the ribosomal protein S12. Small ribosomal subunits were reconstituted from native 16S rRNA, individually purified small subunit proteins, and fluorescently labeled S12. The fluorescence characteristics of the reconstituted subunits were affected by several antibiotics, including streptomycin and neomycin, which bind in the vicinity of protein S12. The equilibrium dissociation constants of the drugs obtained using a conventional fluorometer were in good agreement with those observed using previously published methods and with measurements based on the use of radiolabeled streptomycin. The newly developed method is rapid and sensitive, and can be used for determining thermodynamic and kinetic binding characteristics of antibiotics and other small ribosomal ligands. The method can readily be adapted for use in high-throughput screening assays. 相似文献
18.
Emilio García‐Roselló Cástor Guisande Jacinto González‐Dacosta Juergen Heine Patricia Pelayo‐Villamil Ana Manjarrás‐Hernández Antonio Vaamonde Carlos Granado‐Lorencio 《Ecography》2013,36(11):1202-1207
The ModestR package consists of three applications: MapMaker, DataManager and MRFinder. MapMaker facilitates making range maps by drawing the areas, by importing existing data or using the Global Biodiversity Information Facility portal. It can discriminate between different habitats, thereby making data cleaning tasks easier. DataManager allows the management of taxonomically structured databases for range maps. MRFinder supports querying ModestR databases to find the species present in specific areas. Possible applications include the compilation and management of species distribution databases, cleaning data and computing aggregated data to perform subsequent analyses in other packages thanks to emphasized interoperability. 相似文献
19.
Zenonas Theodosiou Ioannis N Kasampalidis George Livanos Michalis Zervakis Ioannis Pitas Kleoniki Lyroudia 《Cytometry. Part A》2007,71(7):439-450
Fluorescent in-situ hybridization (FISH) and immunohistochemistry (IHC) constitute a pair of complimentary techniques for detecting gene amplification and overexpression, respectively. The advantages of IHC include relatively cheap materials and high sample durability, while FISH is the more accurate and reproducible method. Evaluation of FISH and IHC images is still largely performed manually, with automated or semiautomated techniques increasing in popularity. Here, we provide a comprehensive review of a number of (semi-) automated FISH and IHC image processing systems, focusing on the algorithmic aspects of each technique. Our review verifies the increasingly important role of such methods in FISH and IHC; however, manual intervention is still necessary in order to resolve particularly challenging or ambiguous cases. In addition, large-scale validation is required in order for these systems to enter standard clinical practice. 相似文献
20.
Multiplexed detection assays that analyze a modest number of nucleic acid targets over large sample sets are emerging as the preferred testing approach in such applications as routine pathogen typing, outbreak monitoring, and diagnostics. However, very few DNA testing platforms have proven to offer a solution for mid-plexed analysis that is high-throughput, sensitive, and with a low cost per test. In this work, an enhanced genotyping method based on MassCode technology was devised and integrated as part of a high-throughput mid-plexing analytical system that facilitates robust qualitative differential detection of DNA targets. Samples are first analyzed using MassCode PCR (MC-PCR) performed with an array of primer sets encoded with unique mass tags. Lambda exonuclease and an array of MassCode probes are then contacted with MC-PCR products for further interrogation and target sequences are specifically identified. Primer and probe hybridizations occur in homogeneous solution, a clear advantage over micro- or nanoparticle suspension arrays. The two cognate tags coupled to resultant MassCode hybrids are detected in an automated process using a benchtop single quadrupole mass spectrometer. The prospective value of using MassCode probe arrays for multiplexed bioanalysis was demonstrated after developing a 14plex proof of concept assay designed to subtype a select panel of Salmonella enterica serogroups and serovars. This MassCode system is very flexible and test panels can be customized to include more, less, or different markers. 相似文献