首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The matricellular protein SPARC (secreted protein acidic and rich in cysteine) has been implicated in development, differentiation, response to injury, and tumor biology by virtue of its regulation of extracellular matrix production/assembly and its antiadhesive and antiproliferative effects on different cell types. Despite numerous biological activities described for SPARC, cell surface receptors for this protein have not been identified. By phage display and in vitro-binding assays, we now show that SPARC interacts with stabilin-1, a scavenger receptor expressed by tissue macrophages and sinusoidal endothelial cells. The interaction is mediated by the extracellular epidermal growth factor-like region of stabilin-1 containing the sequence FHGTAC. Using FACS analysis and confocal microscopy, we demonstrate that stabilin-1 internalizes and targets SPARC to an endosomal pathway in Chinese hamster ovary cells stably transfected with this receptor. In human macrophages, stabilin-1 expression is required for receptor-mediated endocytosis of SPARC. SPARC was efficiently endocytosed by alternatively activated macrophages stimulated by IL-4 and dexamethasone, but not solely by Th1 or Th2 cytokines. A time course of ligand exposure to alternatively activated macrophages revealed that stabilin-1-mediated endocytosis of SPARC was followed by its targeting for degradation, similar to the targeting of acetylated low density lipoprotein, another stabilin-1 ligand. We propose that alternatively activated macrophages coordinate extracellular matrix remodeling, angiogenesis, and tumor progression via stabilin-1-mediated endocytosis of SPARC and thereby regulate its extracellular concentration.  相似文献   

2.
The multifunctional scavenger receptor stabilin-1 (STAB1, FEEL-1, CLEVER-1, KIAA0246) was originally identified as the MS-1 antigen, expressed by sinusoidal endothelial cells in human spleen. Extensive histological studies revealed that stabilin-1 is also expressed by tissue macrophages and sinusoidal endothelial cells in the healthy organism; its expression on both macrophages and different subtypes of endothelial cells is induced during chronic inflammation and tumorigenesis. In vitro induction of stabilin-1 in macrophages requires the presence of glucocorticoids. Stabilin-1 is involved in two intracellular trafficking pathways: receptor mediated endocytosis and recycling; and shuttling between the endosomal compartment and trans-Golgi network (TGN). The latter intracellular pathway of stabilin-1 trafficking is mediated by GGAs, clathrin adaptors that interact with the DDSLL motif in the cytoplasmic tail of stabilin-1. When expressed by alternatively activated macrophages, stabilin-1 mediates the uptake and targeting for degradation of acLDL and SPARC, a regulator of tissue remodeling. Likewise, stabilin-1 in macrophages is involved in intracellular sorting and lysosomal delivery of the novel stabilin- 1-interacting chitinase-like protein (SI-CLP). Indirect evidence suggests that stabilin-1 is involved in adhesion and transmigration in various cell types (including tumor cells, leukocytes, and lymphocytes); however, its rapid recycling and scant level of surface expression argue against its universal role in cell adhesion. In summary, stabilin-1 is a homeostatic receptor which links signals from the extracellular environment to intracellular vesicular processes, creating a potential impact on the macrophage secretion profile.  相似文献   

3.
Bone marrow sinusoidal endothelial cells have a specific function as a site of transmigration of hematopoietic stem and progenitor cells and mature blood cells between bone marrow and blood stream. However, the specific characteristics of bone marrow sinusoidal endothelial cells are still largely unclear. We here report that these cells express stabilin-1 and stabilin-2, which in liver sinusoidal endothelial cells have been identified as endocytic scavenger receptors for several ligands, including SPARC and hyaluronan. We show here that intravenously injected formaldehyde-treated serum albumin, advanced glycation end-products, and collagen I α-chains were taken up by bone marrow sinusoidal endothelial cells, showing that these cells have a scavenging function and thereby may modulate bone marrow vascular stem cell niches. Importantly, we show hyaluronan mediated adhesion of hematopoietic stem and progenitor cells to stabilin-2-transfected cells, suggesting that stabilin-2 contributes to adhesion and homing of circulating stem and progenitor cells to bone marrow.  相似文献   

4.
Alternatively activated (M2) macrophages regulate immune responses and tissue remodelling. In many tissues including placenta, M2 express stabilin-1, a multidomain protein that exerts a dual role as a scavenger receptor for acetylated low density lipoprotein (acLDL) and SPARC (secreted protein acidic and rich in cysteine) and as an intracellular cargo carrier for SI-CLP. Using yeast two-hybrid screening, we identified the developmental hormone placental lactogen (PL) as a novel ligand of stabilin-1. In Chinese hamster ovary-stabilin-1 cells and M2, FACS and confocal microscopy demonstrated that stabilin-1 mediates internalization and endosomal sorting of PL. In M2 macrophages, PL was partially degraded in lysosomes; part of PL escaped degradation and was delivered to novel PL+ storage vesicles lacking endosomal/lysosomal markers. During formation, PL+ vesicles underwent transient interaction with the trans-Golgi network (TGN). Upon placement of PL-loaded M2 into PL-free medium, PL was secreted into the supernatant. Leupeptin, an inhibitor of lysosomal hydrolases, reduced PL degradation, enhanced sorting of PL into the TGN/storage vesicle pathway and increased PL secretion. Thus, processing of PL in M2 macrophages occurs either by the classical lysosomal pathway or by a novel TGN-associated trans-secretory pathway. Macrophages isolated from human placental villi efficiently endocytosed PL-FITC and transported it to the storage vesicles. Our data show that extracellular PL levels are determined by uptake, degradation, storage, and release in M2. During pregnancy PL concentration reaches 10 microg/ml in maternal circulation and stays below 0.5 microg/ml in fetal circulation. We propose that stabilin-1-positive macrophages determine the difference in PL levels between maternal and fetal circulation.  相似文献   

5.
6.
Clearance of apoptotic cells is involved in the resolution of inflammation, and this mechanism is controlled by the regulation of pro- and anti-inflammatory cytokine production during the ingestion of apoptotic cells. Inflamed areas show extracellular acidity, and low pH stimulates cellular functions of immune cells. However, little is known about the influence of extracellular acidic pH on the function of phagocytic cells. In this study, we showed that stabilin-2-mediated phagocytosis is activated in low pH media (pH 6.8) and examined the molecular mechanisms underlying this pH-dependent enhancement of phagocytic activity. Stabilin-2, which is expressed in human monocyte derived macrophages (HMDM), is a phosphatidylserine (PS) receptor that mediates phagocytosis of apoptotic cells, and releases the anti-inflammatory cytokine, TGF-β. The PS binding activity of stabilin-2 is enhanced in low pH, and a conserved histidine1403 in close proximity to the PS binding loop is critical for pH-dependent activity. We propose that protonation of His1403 may rearrange the PS binding loop to enhance binding affinity in low pH, indicating that acidic pH might act as a danger signal to stimulate stabilin-2-mediated phagocytosis to resolve inflammation. Considering that phosphatidylserine is an important target molecule for apoptotic cells in the acidic microenvironment of inflammation and tumors, our results also have implications for pH sensitive targeting of apoptotic cells.  相似文献   

7.
The sinusoidal endothelia of liver, spleen, and lymph node are major sites for uptake and recycling of waste macromolecules through promiscuous binding to a disparate family of scavenger receptors. Among the most complex is stabilin-1, a large multidomain protein containing tandem fasciclin domains, epidermal growth factor-like repeats, and a C-type lectin-like hyaluronan-binding Link module, which functions as an endocytic receptor for acetylated low density lipoprotein and advanced glycation end products. Intriguingly, stabilin-1 has also been reported to mediate both homing of leukocytes across lymph node high endothelial venules and adhesion of metastatic tumor cells to peritumoral lymphatic vessels. Currently, however, it is not clear how stabilin-1 mediates these distinct functions. To address the issue, we have investigated the tissue and subcellular localization of stabilin-1 in detail and assessed the functional status of its Link module. We show that stabilin-1 is almost entirely intracellular in lymph node high endothelial venules, lymphatic sinus endothelium, and cultured endothelial cells but that a finite population, detectable only by fluorescent antibody or fluorescein-labeled (Fl)-acetylated low density lipoprotein uptake, cycles rapidly between the plasma membrane and EEA-1+ve (early endosome antigen 1) early endosomes. In addition, we show using full-length stabilin-1 cDNA and a stabilin-1/CD44 chimera in HeLa cells that intracellular targeting is influenced by the transmembrane domain/cytoplasmic tail, which contains a putative dileucine (DXXLL) Golgi to endosomal sorting signal. Finally, we provide evidence that the stabilin-1 Link domain binds neither hyaluronan nor other glycosaminoglycans. These properties support a role for stabilin-1 as a rapidly recycling scavenger receptor and argue against a role in cell adhesion or lymphocyte homing.  相似文献   

8.
The clearance of apoptotic cells is critical during cellular homeostasis as well as inflammation resolution. Recently, we found that stabilin-1 is a phagocytic receptor that is involved in the clearance of apoptotic cells. However, the downstream signaling pathway of stabilin-1-mediated phagocytosis remains to be investigated. Here we identify that GULP is able to specifically interact with the NPxF/Y motif of stabilin-1 cytoplasmic region. The PTB domain of GULP is necessary for interaction with stabilin-1. GULP is enriched around PS-coated beads for phagocytosis and co-localized with stabilin-1. Downregulation of endogenous GULP expression decreased stabilin-1-mediated phagocytosis. Thus, these results indicate that GULP functions as an adaptor protein for stabilin-1-mediated phagocytosis.  相似文献   

9.
Rapid phagocytic clearance of apoptotic cells is crucial for the prevention of both inflammation and autoimmune responses. Phosphatidylserine (PS) at the external surface of the plasma membrane has been proposed to function as a general 'eat me' signal for apoptotic cells. Although several soluble bridging molecules have been suggested for the recognition of PS, the PS-specific membrane receptor that binds directly to the exposed PS and provides a tickling signal has yet to be definitively identified. In this study, we provide evidence that stabilin-2 is a novel PS receptor, which performs a key function in the rapid clearance of cell corpses. It recognizes PS on aged red blood cells and apoptotic cells, and mediates their engulfment. The downregulation of stabilin-2 expression in macrophages significantly inhibits phagocytosis, and anti-stabilin-2 monoclonal antibody provokes the release of the anti-inflammatory cytokine, transforming growth factor-beta. Furthermore, the results of time-lapse video analyses indicate that stabilin-2 performs a crucial function in the rapid clearance of aged and apoptotic cells. These data indicate that stabilin-2 is the first of the membrane PS receptors to provide tethering and tickling signals, and may also be involved in the resolution of inflammation and the prevention of autoimmunity.  相似文献   

10.
The common lymphatic endothelial and vascular endothelial receptor (CLEVER-1; also known as FEEL-1 and stabilin-1) is a recycling and intracellular trafficking receptor with multifunctional properties. In this study, we demonstrate increased endothelial expression of CLEVER-1/stabilin-1 at sites of leukocyte recruitment to the inflamed human liver including sinusoids, septal vessels, and lymphoid follicles in inflammatory liver disease and tumor-associated vessels in hepatocellular carcinoma. We used primary cultures of human hepatic sinusoidal endothelial cells (HSEC) to demonstrate that CLEVER-1/stabilin-1 expression is enhanced by hepatocyte growth factor but not by classical proinflammatory cytokines. We then showed that CLEVER-1/stabilin-1 supports T cell transendothelial migration across HSEC under conditions of flow with strong preferential activity for CD4 FoxP3(+) regulatory T cells (Tregs). CLEVER-1/stabilin-1 inhibition reduced Treg transendothelial migration by 40% and when combined with blockade of ICAM-1 and vascular adhesion protein-1 (VAP-1) reduced it by >80%. Confocal microscopy demonstrated that 60% of transmigrating Tregs underwent transcellular migration through HSEC via ICAM-1- and VAP-1-rich transcellular pores in close association with CLEVER-1/stabilin-1. Thus, CLEVER-1/stabilin-1 and VAP-1 may provide an organ-specific signal for Treg recruitment to the inflamed liver and to hepatocellular carcinoma.  相似文献   

11.
Migration of endothelial cells is requisite to wound repair and angiogenesis. Since the glycoprotein SPARC (secreted protein, acidic and rich in cysteine) is associated with remodeling, cellular migration, and angiogenesis in vitro, we questioned whether SPARC might influence the motility of endothelial cells. In this study we show that, in the absence of serum, exogenous SPARC inhibits the migration of bovine aortic endothelial cells induced by bFGF. Similar results were obtained from two different assays, in which cell migration was measured in a Boyden chamber and in monolayer culture after an experimental wound. Without bFGF, the migration of endothelial cells was unaffected by SPARC. The inhibitory effect of SPARC on cell motility was dose-dependent, required the presence of Ca2+, was mimicked by synthetic peptides from the N- and C-terminal Ca(2+)-binding domains of the protein, and was not seen in the presence of serum. Modulation of the activities of secreted and cell-associated proteases, including plasminogen activators and metalloproteinases, appeared not to be responsible for the effects that we observed on the motility of endothelial cells. Moreover, a molecular interaction between SPARC and bFGF was not detected, and SPARC did not interfere with the binding of bFGF to high-affinity receptors on endothelial cells. Finally, in culture medium that contained serum, SPARC inhibited the incorporation of [3H]-thymidine into newly synthesized DNA, both in the absence and presence of bFGF. However, DNA synthesis was not affected by SPARC when the cells were plated on gelatin or fibronectin in serum-free medium. We propose that the combined action of a serum factor and SPARC regulates both endothelial cell proliferation and migration and coordinates these events during morphogenetic processes such as wound repair and angiogenesis.  相似文献   

12.
SPARC (osteonectin, BM-40) is a matricellular glycoprotein that is expressed in many embryogenic and adult tissues undergoing remodeling or repair. SPARC modulates cellular interaction with the extracellular matrix (ECM), inhibits cell adhesion and proliferation, and regulates growth factor activity. To explore further the function and activity of this protein in tissue homeostasis, we have developed several monoclonal antibodies (MAbs) that recognize distinct epitopes on SPARC. The MAbs bind to SPARC with high affinity and identify SPARC by ELISA, Western blotting, immunoprecipitation, immunocytochemistry, and/or immunohistochemistry. The MAbs were also characterized in functional assays for potential alteration of SPARC activity. SPARC binds to collagen I and laminin-1 through an epitope defined by MAb 293; this epitope is not involved in the binding of SPARC to collagen III. The other MAbs did not interfere with the binding of SPARC to collagen I or III or laminin-1. Inhibition of the anti-adhesive effect of SPARC on endothelial cells by MAb 236 was also observed. Functional analysis of SPARC in the presence of these novel MAbs now confirms that the activities ascribed to this matricellular protein can be assigned to discrete subdomains.  相似文献   

13.
Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM-40) is a matricellular protein that functions in wound healing. Fibrinogen is a plasma protein involved in many aspects of wound healing, such as inflammation, fibrosis and thrombosis. In this study, the binding of SPARC to both native and plasmin-cleaved fibrinogen under physiological conditions was examined by the use of a surface plasmon resonance (SPR) biosensor. We show that SPARC binds to plasmin-cleaved fibrinogen, but not to native fibrinogen. SPARC binds to both fibrinogen fragments D and E fg D and fg E with similar dissociation constants (8.67 x 10(-8) M for Fg D and 1.61 x 10(-7) M for Fg E). Results from endothelial cell proliferation assays show that the binding of SPARC to Fg E suppressed the inhibition of proliferation by SPARC, whereas the binding of SPARC to Fg D did not influence the activity of SPARC on the cell cycle. The interaction of SPARC with fibrinogen fragments D and E, which are produced as a result of proteolytic activation of fibrinolysis, reveals potential storage sites in provisional extracellular matrix for SPARC during the wound healing process and indicates a regulatory role of SPARC in fibrinolysis and angiogenesis.  相似文献   

14.
Lee SJ  So IS  Park SY  Kim IS 《FEBS letters》2008,582(15):2161-2166
Stabilin-2 was recently identified as a novel receptor for membrane phosphatidylserine of apoptotic cells. To identify proteins that were candidates for stabilin-2 cytoplasmic domain binding, we screened a human spleen cDNA library using the yeast two-hybrid system. We found that thymosin beta4 interacts with the stabilin-2 cytoplasmic domain and is co-localized with stabilin-2 at the phagocytic cup. Knockdown of thymosin beta4 significantly decreased the phagocytic activity of stabilin-2, whereas overexpression of thymosin beta4 increased this activity. Additionally, amino acids 2504-2514 of stabilin-2 cytoplasmic domain were found to be responsible for the interaction with thymosin beta4. Taken together, these results suggest that thymosin beta4 is a downstream molecule of stabilin-2 that plays a role in stabilin-2-mediated cell corpse clearance.  相似文献   

15.
The role of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine) in modulation of vascular cell proliferation is believed to be mediated, in part, by its ability to regulate the activity of certain growth factors through direct binding. In this study, we demonstrate that SPARC does not bind to basic fibroblast growth factor (bFGF/FGF-2) or interfere with complex formation between FGF-2 and its high-affinity FGF receptor-1 (FGFR1), yet both native SPARC and a peptide derived from the C-terminal high-affinity Ca(2+)-binding region of protein significantly inhibit ligand-induced autophosphorylation of FGFR1 (>80%), activation of mitogen-activated protein kinases (MAPKs) (>75%), and DNA synthesis in human microvascular endothelial cells (HMVEC) stimulated by FGF-2 (>80%). We also report that in the presence of FGF-2, a factor which otherwise stimulates myoblast proliferation and the repression of terminal differentiation, both native SPARC and the Ca(2+)-binding SPARC peptide significantly promote (>60%) the differentiation of the MM14 murine myoblast cell line that expresses FGFR1 almost exclusively. Moreover, using heparan sulfate proteoglycan (HSPG)-deficient myeloid cells and porcine aortic endothelial cells (PAECs) expressing chimeric FGFR1, we show that antagonism of FGFR1-mediated DNA synthesis and MAPK activation by SPARC does not require the presence of cell-surface, low-affinity FGF-2 receptors, but can be mediated by an intracellular mechanism that is independent of an interaction with the extracellular ligand-binding domain of FGFR1. We also report that the inhibitory effect of SPARC on DNA synthesis and MAPK activation in endothelial cells is mediated in part (>50%) by activation of protein kinase A (PKA), a known regulator of Raf-MAPK pathway. SPARC thus modulates the mitogenic effect of FGF-2 downstream from FGFR1 by selective regulation of the MAPK signaling cascade.  相似文献   

16.
SPARC (Secreted Protein Acidic and Rich in Cysteine) is a Ca+2-binding glycoprotein that is differentially associated with morphogenesis, remodeling, cellular migration, and proliferation. We show here that exogenous SPARC, added to cells in culture, was associated with profound changes in cell shape, caused rapid, partial detachment of a confluent monolayer, and inhibited spreading of newly plated cells. Bovine aortic endothelial cells, exposed to 2-40 micrograms SPARC/ml per 2 x 10(6) cells, exhibited a rounded morphology in a dose-dependent manner but remained attached to plastic or collagen-coated surfaces. These round cells synthesized protein, uniformly excluded trypan blue, and grew in aggregates after replating in media without SPARC. SPARC caused rounding of bovine endothelial cells, fibroblasts, and smooth muscle cells; however, the cell lines F9, PYS-2, and 3T3 were not affected. The activity of native SPARC was inhibited by heat denaturation and prior incubation with anti-SPARC IgG. The effect of SPARC on endothelial cells appeared to be independent of the rounding phenomenon produced by the peptide GRGDSP. Immunofluorescence localization of SPARC on endothelial cells showed preferential distribution at the leading edges of membranous extensions. SPARC bound Ca+2 in both amino- and carboxyl-terminal (EF-hand) domains and required this cation for maintenance of native structure. Solid-phase binding assays indicated a preferential affinity of native SPARC for several proteins comprising the extracellular matrix, including types III and V collagen, and thrombospondin. This binding was saturable, Ca+2 dependent, and inhibited by anti-SPARC IgG. Endothelial cells also failed to spread on a substrate of native type III collagen complexed with SPARC. We propose that SPARC is an extracellular modulator of Ca+2 and cation-sensitive proteins or proteinases, which facilitates changes in cellular shape and disengagement of cells from the extracellular matrix.  相似文献   

17.
Mapping of SPARC/BM-40/osteonectin-binding sites on fibrillar collagens   总被引:10,自引:0,他引:10  
The 33-kDa matrix protein SPARC (BM-40, osteonectin) binds several collagen types with moderate affinity. The collagen-binding site resides in helix alphaA of the extracellular calcium-binding domain of SPARC and is partially masked by helix alphaC. Previously, we found that the removal of helix alphaC caused a 10-fold increase in the affinity of SPARC for collagen, and we identified amino acids crucial for binding by site-directed mutagenesis. In this study, we used rotary shadowing, CNBr peptides, and synthetic peptides to map binding sites of SPARC onto collagens I, II, and III. Rotary shadowing and electron microscopy of SPARC-collagen complexes identified a major binding site approximately 180 nm from the C terminus of collagen. SPARC binding was also detected with lower frequency near the matrix metalloproteinase cleavage site. These data fit well with our analysis of SPARC binding to CNBr peptides, denaturation of which abolished binding, indicating triple-helical conformation of collagen to be essential. SPARC binding was substantially decreased in two of seven alpha2(I) mutant procollagen I samples and after N-acetylation of Lys/Hyl side chains in wild-type collagen. Synthetic peptides of collagen III were used to locate the binding sites, and we found SPARC binding activity in a synthetic triple-helical peptide containing the sequence GPOGPSGPRGQOGVMGFOGPKGNDGAO (where O indicates 4-hydroxyproline), with affinity for SPARC comparable with that of procollagen III. This sequence is conserved among alpha chains of collagens I, II, III, and V. In vitro collagen fibrillogenesis was delayed in the presence of SPARC, suggesting that SPARC might modulate collagen fibril assembly in vivo.  相似文献   

18.
Atherogenesis is associated with elevated levels of low-density lipoprotein (LDL) and its oxidized form (oxLDL) in the blood. The liver is an important scavenger organ for circulating oxLDLs. The present study aimed to examine endocytosis of mildly oxLDL (the major circulating form of oxLDLs) in liver sinusoidal endothelial cells (LSECs) and the involvement of the scavenger receptors stabilin-1 and stabilin-2 in this process. Freshly isolated LSECs, Kupffer cells (KCs), and stabilin-1- and stabilin-2-transfected human embryonic kidney cells were incubated with fluorescently labeled or radiolabeled oxLDLs [oxidized for 3 h (oxLDL(3)), 6 h, or 24 h (oxLDL(24))] to measure endocytosis. The intracellular localization of oxLDLs and stabilins in LSECs was examined by immunofluorescence and immunogold electron microscopy. Whereas oxLDL(24) was endocytosed both by LSECs and KCs, oxLDL(3) (mildly oxLDL) was taken up by LSECs only. The LSEC uptake of oxLDLs was significantly inhibited by the scavenger receptor ligand formaldehyde-treated serum albumin. Uptake of all modified LDLs was high in stabilin-1-transfected cells, whereas stabilin-2-transfected cells preferentially took up oxLDL(24), suggesting that stabilin-1 is a more important receptor for mildly oxLDLs than stabilin-2. Double immunogold labeling experiments in LSECs indicated interactions of stabilin-1 and stabilin-2 with oxLDL(3) on the cell surface, in coated pits, and endocytic vesicles. LSECs but not KCs endocytosed mildly oxLDL. Both stabilin-1 and stabilin-2 were involved in the LSEC endocytosis of oxLDLs, but experiments with stabilin-transfected cells pointed to stabilin-1 as the most important receptor for mildly oxLDL.  相似文献   

19.
The prompt clearance of cells undergoing apoptosis is critical during embryonic development and normal tissue turnover, as well as during inflammation and autoimmune responses. We recently demonstrated that stabilin-2 is a phosphatidylserine receptor that mediates the clearance of apoptotic cells, thereby releasing the anti-inflammatory cytokine, transforming growth factor-beta. However, the downstream signaling components of stabilin-2-mediated phagocytosis are not known. Here, we provide evidence that the adaptor protein, GULP, physically and functionally interacts with the stabilin-2 cytoplasmic tail. Using fluorescent resonance energy transfer analysis and biochemical approaches, we show that GULP directly binds to the cytoplasmic tail of stabilin-2. Knockdown of endogenous GULP expression significantly decreased stabilin-2-mediated phagocytosis. Conversely, overexpression of GULP caused an increase in aged cell engulfment. The phosphotyrosine binding (PTB) domain of GULP was sufficient for the interaction with stabilin-2; therefore, transduction of TAT fusion PTB domain acts as a dominant negative, resulting in impaired engulfment of aged red blood cells in stabilin-2 expressing cells. In addition, the PTB domain of GULP was able to specifically interact with the NPXY motif of the stabilin-2 cytoplasmic tail. Taken together, these results indicate that GULP is a likely downstream molecule in the stabilin-2-mediated signaling pathway and plays an important role in stabilin-2-mediated phagocytosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号