首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mangiferin (MGN), a C-glucosylxanthone was investigated for its ability to protect against methylmercury (MeHg) induced neurotoxicity by employing IMR-32 (human neuroblastoma) cell line. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and clonogenic cell survival assays confirmed the efficacy of MGN supplementation in attenuating MeHg-induced cytotoxicity. Pre-treatment with MGN significantly (p < 0.01) inhibited MeHg-induced DNA damage (micronuclei, olive tail moment and % tail DNA) thereby demonstrating MGN’s antigenotoxic potential. Also, pre-treatment with MGN significantly reduced MeHg-induced oxidative stress, intra-cellular Ca2+ influx and inhibited depolarization of mitochondrial membrane. MGN pre-treated cells demonstrated a significant (p < 0.05) increase in the GSH and GST levels followed by a significant (p < 0.05) decrease in malondialdehyde (MDA) formation. In addition, inhibition of MeHg induced apoptotic cell death by MGN was demonstrated by microscopic, Annexin-V FITC and DNA fragmentation assays and further confirmed by western blot analysis. The present findings indicated the protective effect of MGN against MeHg induced toxicity, which may be attributed to its anti-genotoxic, anti-apoptotic and anti-lipid peroxidative potential plausibly because of its free radical scavenging ability, which reduced the oxidative stress and in turn facilitated the down-regulation of mitochondrial apoptotic signalling pathways.  相似文献   

2.
This work investigated the effects of copper as preventive treatment against mercury‐induced alterations in young rats. Wistar rats were treated (subcutaneous) with saline or CuCl2 · 2H2O (6.9 mg/kg/day) from 3 to 7 days old and with saline or HgCl2 (5.0 mg/kg/day) from 8 to 12 days old. Rats were sacrificed 24 h after the last dose. Mercury‐exposed rats presented inhibition of liver (43%) and kidney (52%) porphobilinogen (PBG)‐synthase activity and serum lactic dehydrogenase activity (50%). Also, an increase of the serum creatinine and urea levels around threefold and fivefold was observed, respectively. Pre‐exposure to copper partially prevented the mercury effect on liver but not on kidney PBG synthase, and prevented the increase of the creatinine levels. Blood and brain PBG synthase and serum alanineaminotransferase activities, as well as glycemia, and liver glycogen content were not altered by treatments. These results show that copper, although being an essential metal, is inefficient as a preventive agent against mercury poisoning in parameters investigated after the end of mercury exposure. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:354–359, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21429  相似文献   

3.
The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.  相似文献   

4.
BackgroundMangiferin is a polyphenolic xanthonoid with remarkable antioxidant activity. Oxidative stress plays the key role in tert-butyl hydroperoxide (tBHP) induced renal cell damage. In this scenario, we consider mangiferin, as a safe agent in tBHP induced renal cell death and rationalize its action systematically, in normal human kidney epithelial cells (NKE).MethodsNKE cells were exposed to 20 µM mangiferin for 2 h followed by 50 µM tBHP for 18 h. The effect on endogenous ROS production, antioxidant status (antioxidant enzymes and thiols), mitochondrial membrane potential, apoptotic signaling molecules, PI3K mediated signaling cascades and cell cycle progression were examined using various biochemical assays, FACS and immunoblot analyses.ResultstBHP exposure damaged the NKE cells and decreased its viability. It also elevated the intracellular ROS and other oxidative stress-related biomarkers within the cells. However, mangiferin dose dependently, exhibited significant protection against this oxidative cellular damage. Mangiferin inhibited tBHP induced activation of different pro-apoptotic signals and thus protected the renal cells against mitochondrial permeabilization. Further, mangiferin enhanced the expression of cell proliferative signaling cascade molecules, Cyclin d1, NFκB and antioxidant molecules HO-1, SOD2, by PI3K/Akt dependent pathway. However, the inhibitor of PI3K abolished mangiferin's protective activity.ConclusionsResults show Mangiferin maintains the intracellular anti-oxidant status, induces the expression of PI3K and its downstream molecules and shields NKE cells against the tBHP induced cytotoxicity.General significanceMangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature.  相似文献   

5.
Endothelial cells (ECs) express a Nox2 enzyme, which, by generating reactive oxygen species (ROS), contributes to EC redox signaling and angiotensin II (AngII)-induced endothelial dysfunction. ECs also express abundantly an adenosine A(2A) receptor (A(2A)R), but its role in EC ROS production remains unknown. In this study, we investigated the role of A(2A)R in the regulation of Nox2 activity and signaling in ECs with or without acute AngII stimulation. In cultured ECs (SVEC4-10), AngII (100 nm, 30 min) significantly increased Nox2 membrane translocation and association with A(2A)R. These were accompanied by p47(phox), ERK1/2, p38 MAPK, and Akt phosphorylation and an increased ROS production (169 ± 0.04%). These AngII effects were inhibited back to the control levels by a specific A(2A)R antagonist (SCH58261), or adenosine deaminase, or by knockdown of A(2A)R or Nox2 using specific siRNAs. Knockdown of A(2A)R, as determined by Western blotting, decreased Nox2 and p47(phox) expression. In wild-type mouse aorta, SCH58261 significantly reduced acute AngII-induced ROS production and preserved endothelium-dependent vessel relaxation to acetylcholine. These results were further confirmed by using aortas from A(2A)R knock-out mice. In conclusion, A(2A)R is involved in the regulation of EC ROS production by Nox2. Inhibition or blockade of A(2A)R protects ECs from acute AngII-induced oxidative stress, MAPK activation, and endothelium dysfunction.  相似文献   

6.
In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on an administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes.  相似文献   

7.
The aim of this study was to evaluate the health benefits associated with apple consumption following cadmium exposure. A total of 15 Wistar rats were distributed into three groups (n = 5), as follows: control group (non-treated group, CTRL); cadmium group (Cd) and apple juice group (Cd + AJ). The results showed a decrease in the frequency micronucleated cells in bone marrow and hepatocytes in the group exposed to cadmium and treated with apple juice. Apple juice was also able to reduce the 8OHdG levels and to decrease genetic damage in liver and peripheral blood cells. Catalase (CAT) was decreased following apple juice intake. Taken together, our results demonstrate that apple juice seems to be able to prevent genotoxicity and oxidative stress induced by cadmium exposure in multiple organs of Wistar rats.  相似文献   

8.
Mangiferin, a polyphenol compound of C-glucoside, is well-known for its anti-inflammatory, antioxidant, anticancer, antidiabetic and cognitive enhancement properties. In this study, we investigated the neuroprotective effect of mangiferin against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease (PD), which is most popular and widely used to evaluate therapeutic implications of new protective agents. Male C57BL/6 mice were orally treated with mangiferin (10, 20 and 40 mg/kg body wt.) for 14 days and from 10th day onwards MPTP (30 mg/kg, i.p.) was injected for last 5 days. MPTP treatment leads to enhanced oxidative stress, induction of apoptosis (upregulates the expression of Bax, proapoptotic protein and downregulates the expression of anti-apoptotic marker Bcl-2), and loss of dopominergic neurons which results in motor impairments. Results of our study confirmed that mangiferin prevented MPTP-induced behavioral deficits, oxidative stress, apoptosis, dopaminergic neuronal degeneration and dopamine depletion. Taken together, we conclude that mangiferin attenuates the dopaminergic neurodegeneration mainly through its potent antioxidant and antiapoptotic properties.  相似文献   

9.
The artemisinin compounds are the frontline drugs for the treatment of drug-resistant malaria. They are selectively cytotoxic to mammalian cancer cell lines and have been implicated as neurotoxic and embryotoxic in animal studies. The endoperoxide functional group is both the pharmacophore and toxicophore, but the proposed chemical mechanisms and targets of cytotoxicity remain unclear. In this study we have used cell models and quantitative drug metabolite analysis to define the role of the mitochondrion and cellular heme in the chemical and molecular mechanisms of cell death induced by artemisinin compounds. HeLa ρ(0) cells, which are devoid of a functioning electron transport chain, were used to demonstrate that actively respiring mitochondria play an essential role in endoperoxide-induced cytotoxicity (artesunate IC(50) values, 48 h: HeLa cells, 6 ± 3 μM; and HeLa ρ(0) cells, 34 ± 5 μM) via the generation of reactive oxygen species and the induction of mitochondrial dysfunction and apoptosis but do not have any role in the reductive activation of the endoperoxide to cytotoxic carbon-centered radicals. However, using chemical modulators of heme synthesis (succinylacetone and protoporphyrin IX) and cellular iron content (holotransferrin), we have demonstrated definitively that free or protein-bound heme is responsible for intracellular activation of the endoperoxide group and that this is the chemical basis of cytotoxicity (IC(50) value and biomarker of bioactivation levels, respectively: 10β-(p-fluorophenoxy)dihydroartemisinin alone, 0.36 ± 0.20 μM and 11 ± 5%; and with succinylacetone, >100 μM and 2 ± 5%).  相似文献   

10.
N-(4-hydroxyphenyl)retinamide (4HPR) is a synthetic retinoid that has been tested in clinical trials as a cancer chemopreventive drug. 4HPR is cytotoxic to cancer cells but the underlying molecular mechanisms are at present only partially understood. Here we demonstrate that in the human cervical cancer cell line HeLa and the human leukemia cell line HL-60, 4HPR caused rapid, Reactive Oxygen Species (ROS)-dependent activation of the Unfolded Protein Response (UPR). In HeLa cells, 4HPR was shown to induce cell death and activation of procaspases. These effects of 4HPR could be abolished by the over-expression of dominant negative mutants of PERK or eIF2 alpha. HeLa cells incubated with 4HPR were found to form autophagosomes that were also mediated by the PERK/eIF2 alpha pathway. While 4HPR-induced cell death could be significantly prevented by the presence of specific caspase inhibitors, 3-methyladenine (3-MA) that inhibits autophagosome formation enhanced 4HPR-induced cell death. Examination of individual 4HPR-treated HeLa cells revealed that those without the development of autophagosomes hence exhibiting an incomplete UPR were caspase-active and were not viable, while those with autophagosomes were caspase-inactive and retained cell viability. Our data suggest that the PERK/eIF2 alpha pathway is essential for the cytotoxicity of 4HPR that targets on cancer cells with malfunctional UPR.  相似文献   

11.
Overexpression of the mature form of hyaluronan-binding protein 1 (HABP1/gC1qR/p32), a ubiquitous multifunctional protein involved in cellular signaling, in normal murine fibroblast cells leads to enhanced generation of reactive oxygen species (ROS), mitochondrial dysfunction, and ultimately apoptosis with the release of cytochrome c. In the present study, human liver cancer cell line HepG2, having high intracellular antioxidant levels was chosen for stable overexpression of HABP1. The stable transformant of HepG2, overexpressing HABP1 does not lead to ROS generation, cellular stress, and apoptosis, rather it induced enhanced cell growth and proliferation over longer periods. Phenotypic changes in the stable transformant were associated with the increased "HA pool," formation of the "HA cable" structure, up-regulation of HA synthase-2, and CD44, a receptor for HA. Enhanced cell survival was further supported by activation of MAP kinase and AKT-mediated cell survival pathways, which leads to an increase in CYCLIN D1 promoter activity. Compared with its parent counterpart HepG2, the stable transformant showed enhanced tumorigenicity as evident by its sustained growth in low serum conditions, formation of the HA cable structure, increased anchorage-independent growth, and cell-cell adhesion. This study suggests that overexpression of HABP1 in HepG2 cells leads to enhanced cell survival and tumorigenicity by activating HA-mediated cell survival pathways.  相似文献   

12.
13.
Hydroquinone-induced genotoxicity and oxidative DNA damage in HepG2 cells   总被引:1,自引:0,他引:1  
Hydroquinone (HQ) is used as an antioxidant in rubber industry and as a developing agent in photography. HQ is also an intermediate in the manufacture of rubber, food antioxidant and monomer inhibitor. However, the mechanisms of the effects, in particular those related to its genotoxicity in humans, are not well understood. The aim of this study was to assess the genotoxic effects of HQ and to identify and clarify the mechanisms, using human hepatoma HepG2 cells. DNA strand breaks and DNA-protein crosslinks (DPC) were measured by the proteinase K-modified alkaline single cell gel electrophoresis (SCGE) assays. Using the SCGE assay, a significant dose-dependent increment in DNA migration was detected at concentrations of HQ (6.25-25 microM); but at the higher tested concentrations (50 microM), a reduction in the migration compared to the maximum migration at 25 microM was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of HQ (50 microM). A significant increase of the frequency of micronuclei was found in the range from 12.5 to 50 microM in the micronucleus test (MNT). The data suggested that HQ caused DNA strand breaks, DPC and chromosome breaks. To elucidate the oxidative DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were chosen to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that HQ induced the increased levels of ROS and depletion of GSH in HepG2 cells, the doses being 25-50 and 6.25-50 microM, respectively. Moreover, HQ significantly caused 8-hydroxydeoxyguanosine (8-OHdG) formation in HepG2 cells at concentrations from 12.5 to 50 microM. All these results demonstrate that HQ exerts genotoxic effects in HepG2 cells, probably through DNA damage by oxidative stress. GSH, as a main intracellular antioxidant, is responsible for cellular defense against HQ-induced DNA damage.  相似文献   

14.
Volume-sensitive outwardly rectifying (VSOR) Cl channels are critical for the regulatory volume decrease (RVD) response triggered upon cell swelling. Recent evidence indicates that H2O2 plays an essential role in the activation of these channels and that H2O2 per se activates the channels under isotonic isovolumic conditions. However, a significant difference in the time course for current onset between H2O2-induced and hypotonicity-mediated VSOR Cl activation is observed. In several cell types, cell swelling induced by hypotonic challenges triggers the release of ATP to the extracellular medium, which in turn, activates purinergic receptors and modulates cell volume regulation. In this study, we have addressed the effect of purinergic receptor activation on H2O2-induced and hypotonicity-mediated VSOR Cl current activation. Here we show that rat hepatoma cells (HTC) exposed to a 33% hypotonic solution responded by rapidly activating VSOR Cl current and releasing ATP to the extracellular medium. In contrast, cells exposed to 200 μm H2O2 VSOR Cl current onset was significantly slower, and ATP release was not detected. In cells exposed to either 11% hypotonicity or 200 μm H2O2, exogenous addition of ATP in the presence of extracellular Ca2+ resulted in a decrease in the half-time for VSOR Cl current onset. Conversely, in cells that overexpress a dominant-negative mutant of the ionotropic receptor P2X4 challenged with a 33% hypotonic solution, the half-time for VSOR Cl current onset was significantly slowed down. Our results indicate that, at high hypotonic imbalances, swelling-induced ATP release activates the purinergic receptor P2X4, which in turn modulates the time course of VSOR Cl current onset in a extracellular Ca2+-dependent manner.  相似文献   

15.
16.
The Fusarium metabolite enniatin B is now recognized as a frequent contaminant of grains used for human foods and animal feeds. Yet, so far very limited data are available on its toxicity and that of other emerging Fusarium mycotoxins (Jestoi M, 2008, Crit Rev Food Sci Nutr 48:21-49). Thus, the mutagenic/genotoxic potential of enniatin B was investigated in a battery of short-term tests, and its cytotoxicity compared with that of several other mycotoxins. No mutagenicity was detected in the Ames assay with four Salmonella typhimurium strains, and in the HPRT (hypoxanthine guanine phosphoribosyl transferase) assay with V79 cells, in either the presence or absence of an external metabolizing enzyme system (rat liver S9). For other types of genotoxicity, i.e., clastogenicity and chromosomal damage, studied in V79 cells by means of alkaline single-cell gel electrophoresis (Comet) assay and micronucleus assay, no significant genotoxic potential of enniatin B was revealed. However, the Fusarium metabolite exerts pronounced time- and concentration-dependent cytotoxic effects in V79 cells as determined by Alamar Blue reduction and by neutral red uptake assays. For instance, IC20 and IC50 values determined for enniatin B by neutral red assay for 48-h exposure are 1.5 μM and 4 μM. These values are higher than those of the more potent Fusarium toxin deoxynivalenol (IC20 0.7 μM, IC50 of 0.8 μM), but clearly lower than the IC values of several other mycotoxins tested in parallel. Their ranking of cytotoxicity in V79 cells was as follows: deoxynivalenol > enniatin B > patulin > ochratoxin A > zearalenone > citrinin. Moreover, enniatin B was found to induce nuclear fragmentation, a sign of apoptosis, already at low submicromolar concentrations. In summary, despite an apparent lack of mutagenic and genotoxic activity, enniatin B can cause pronounced cytotoxicity in mammalian cells, detectable at low micromolar concentrations.  相似文献   

17.
Light absorption photometry of HepG2 cells treated with phenobarbital for enhancing the content of cytochrome P-450 and the synthesis of erythropoietin revealed an influence on all cytochromes detectable in the wavelength range between 400 and 620 nm. No correlation was found between specific changes of cytochrome P-450 absorption and increased EPO synthesis as proposed earlier by Fandrey et al. (Life Sci. (1990) 47, 127–134). In the present study, however, the increased erythropoietin synthesis could be related to a decreased intracellular hydroxyl radical level described as crucial for the oxygen regulated gene expression (Kietzmann et al., Biochem. J. (1998) 335, 425–432; Porwol et al., Eur. J. Biochem. (1998) 256, 16–23).  相似文献   

18.
Zinc (Zn) is an essential component of Zn-finger proteins and acts as a cofactor for enzymes required for cellular metabolism and in the maintenance of DNA integrity. The study investigated the genotoxic and cytotoxic effects of Zn deficiency or excess in a primary human oral keratinocyte cell line and determined the optimal concentration of two Zn compounds (Zn Sulphate (ZnSO4) and Zn Carnosine (ZnC)) to minimise DNA damage. Zn-deficient medium (0 μM) was produced using Chelex treatment, and the two Zn compounds ZnSO4 and ZnC were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0 μM. Cell viability was decreased in Zn-depleted cells (0 μM) as well as at 32 μM and 100 μM for both Zn compounds (P < 0.0001) as measured via the MTT assay. DNA strand breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P < 0.05). The Cytokinesis Block Micronucleus Cytome assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P < 0.05). Furthermore, elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were observed at 0 and 0.4 μM Zn, whereas these biomarkers were minimised for both Zn compounds at 4 and 16 μM Zn (P < 0.05), suggesting these concentrations are optimal to maintain genome stability. Expression of PARP, p53 and OGG1 measured by western blotting was increased in Zn-depleted cells indicating that DNA repair mechanisms are activated. These results suggest that maintaining Zn concentrations within the range of 4–16 μM is essential for DNA damage prevention in cultured human oral keratinocytes.  相似文献   

19.
The increased use of proton therapy has led to the need of better understanding the cellular mechanisms involved. The aim of this study was to investigate the effects induced by the accelerated proton beam in hepatocarcinoma cells. An existing facility in IFIN-HH, a 3 MV Tandetron? accelerator, was used to irradiate HepG2 human hepatocarcinoma cells with doses between 0 and 3 Gy. Colony formation was used to assess the influence of radiation on cell long-term replication. Also, the changes induced at the mitochondrial level were shown by increased ROS and ATP levels as well as a decrease in the mitochondrial membrane potential. An increased dose has induced DNA damages and G2/M cell cycle arrest which leads to caspase 3/7 mediated apoptosis and senescence induction. Finally, the morphological and ultrastructural changes were observed at the membrane level and the nucleus of the irradiated cells. Thus, proton irradiation induces both morphological and functional changes in HepG2 cells.  相似文献   

20.
Zuotai (mainly β-HgS) and Zhusha (also called as cinnabar, mainly α-HgS) are used in traditional medicines in combination with herbs or even drugs in the treatment of various disorders, while mercury chloride (HgCl2) and methylmercury (MeHg) do not have known medical values but are highly toxic. This study aimed to compare the effects of mercury sulfides with HgCl2 and MeHg on hepatic drug processing gene expression. Mice were orally administrated with Zuotai (β-HgS, 30 mg/kg), α-HgS (HgS, 30 mg/kg), HgCl2 (33.6 mg/kg), or MeHg (3.1 mg/kg) for 7 days, and the expression of genes related to phase-1 drug metabolism (P450), phase-2 conjugation, and phase-3 (transporters) genes were examined. The mercurials at the dose and duration used in the study did not have significant effects on the expression of cytochrome P450 1–4 family genes and the corresponding nuclear receptors, except for a slight increase in PPARα and Cyp4a10 by HgCl2. The expressions of UDP-glucuronosyltransferase and sulfotransferase were increased by HgCl2 and MeHg, but not by Zuotai and HgS. HgCl2 decreased the expression of organic anion transporter (Oatp1a1), but increased Oatp1a4. Both HgCl2 and MeHg increased the expression of multidrug resistance-associated protein genes (Mrp1, Mrp2, Mrp3, and Mrp4). Zuotai and HgS had little effects on these transporter genes. In conclusion, Zuotai and HgS are different from HgCl2 and MeHg in hepatic drug processing gene expression; suggesting that chemical forms of mercury not only affect their disposition and toxicity, but also affect their effects on the expression of hepatic drug processing genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号