首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2). Here, we investigated the roles of these arginines (Arg322, Arg323, and Arg747) of ClpB from Thermus thermophilus in the ATPase cycle and chaperone function by alanine substitution. These mutations did not affect nucleotide binding, but did inhibit the hydrolysis of the bound ATP and slow the threading of the denatured protein through the central pore of the T. thermophilus ClpB ring, which severely impaired the chaperone functions. Previously, it was demonstrated that ATP binding to the AAA-1 module induced motion of the middle domain and stabilized the ClpB hexamer. However, the arginine mutations of the AAA-1 module destabilized the ClpB hexamer, even though ATP-induced motion of the middle domain was not affected. These results indicated that the three arginines are crucial for ATP hydrolysis and chaperone activity, but not for ATP binding. In addition, the two arginines in AAA-1 and the ATP-induced motion of the middle domain independently contribute to the stabilization of the hexamer.  相似文献   

2.
We have defined amino acids important for function of the Arabidopsis thaliana Hsp100/ClpB chaperone (AtHsp101) in acquired thermotolerance by isolating recessive, loss-of-function mutations and a novel semidominant, gain-of-function allele [hot1-4 (A499T)]. The hot1-4 allele is unusual in that it not only fails to develop thermotolerance to 45 degrees C after acclimation at 38 degrees C, but also is sensitive to 38 degrees C, which is a permissive temperature for wild-type and loss-of-function mutants. hot1-4 lies between nucleotide binding domain 1 (NBD1) and NBD2 in a coiled-coil domain that is characteristic of the Hsp100/ClpB proteins. We then isolated two classes of intragenic suppressor mutations of hot1-4: loss-of-function mutations (Class 1) that eliminated the 38 degrees C sensitivity, but did not restore thermotolerance function to hot1-4, and Class 2 suppressors that restored acquired thermotolerance function to hot1-4. Location of the hot1-4 Class 2 suppressors supports a functional link between the coiled-coil domain and both NBD1 and the axial channel of the Hsp100/ClpB hexamer. In addition, the strongest Class 2 suppressors restored solubility of aggregated small heat shock proteins (sHsps) after heat stress, revealing genetic interaction of the Hsp100/ClpB and sHsp chaperone systems. These results also demonstrate that quantitative phenotypes can be used for in vivo genetic dissection of protein mechanism in Arabidopsis.  相似文献   

3.
Hsp104 in yeast and ClpB in bacteria are homologous, hexameric AAA+ proteins and Hsp100 chaperones, which function in the stress response as ring-translocases that drive protein disaggregation and reactivation. Both Hsp104 and ClpB contain a distinctive coiled-coil middle domain (MD) inserted in the first AAA+ domain, which distinguishes them from other AAA+ proteins and Hsp100 family members. Here, we focus on recent developments concerning the location and function of the MD in these hexameric molecular machines, which remains an outstanding question. While the atomic structure of the hexameric assembly of Hsp104 and ClpB remains uncertain, recent advances have illuminated that the MD is critical for the intrinsic disaggregase activity of the hexamer and mediates key functional interactions with the Hsp70 chaperone system (Hsp70 and Hsp40) that empower protein disaggregation.  相似文献   

4.
The AAA(+) chaperone ClpB mediates the reactivation of aggregated proteins in cooperation with the DnaK chaperone system. ClpB consists of two AAA domains that drive the ATP-dependent threading of substrates through a central translocation channel. Its unique middle (M) domain forms a coiled-coil structure that laterally protrudes from the ClpB ring and is essential for aggregate solubilization. Here, we demonstrate that the conserved helix 3 of the M domain is specifically required for the DnaK-dependent shuffling of aggregated proteins, but not of soluble denatured substrates, to the pore entrance of the ClpB translocation channel. Helix 3 exhibits nucleotide-driven conformational changes possibly involving a transition between folded and unfolded states. This molecular switch controls the ClpB ATPase cycle by contacting the first ATPase domain and establishes the M domain as a regulatory device that acts in the disaggregation process by coupling the threading motor of ClpB with the DnaK chaperone activity.  相似文献   

5.
In Escherichia coli, protein degradation is performed by several proteolytic machines, including ClpAP. Generally, the substrate specificity of these machines is determined by chaperone components, such as ClpA. In some cases, however, the specificity is modified by adaptor proteins, such as ClpS. Here we report the 2.5 A resolution crystal structure of ClpS in complex with the N-terminal domain of ClpA. Using mutagenesis, we demonstrate that two contact residues (Glu79 and Lys 84) are essential not only for ClpAS complex formation but also for ClpAPS-mediated substrate degradation. The corresponding residues are absent in the chaperone ClpB, providing a structural rationale for the unique specificity shown by ClpS despite the high overall similarity between ClpA and ClpB. To determine the location of ClpS within the ClpA hexamer, we modeled the N-terminal domain of ClpA onto a structurally defined, homologous AAA+ protein. From this model, we proposed a molecular mechanism to explain the ClpS-mediated switch in ClpA substrate specificity.  相似文献   

6.
Cell survival under severe thermal stress requires the activity of a bi-chaperone system, consisting of the ring-forming AAA+ chaperone ClpB (Hsp104) and the DnaK (Hsp70) chaperone system, which acts to solubilize and reactivate aggregated proteins. Recent studies have provided novel insight into the mechanism of protein disaggregation, demonstrating that ClpB/Hsp104 extracts unfolded polypeptides from an aggregate by threading them through its central pore. This translocation activity is necessary but not sufficient for aggregate solubilization. In addition, the middle (M) domain of ClpB and the DnaK system have essential roles, possibly by providing an unfolding force, which facilitates the extraction of misfolded proteins from aggregates.  相似文献   

7.
Lee S  Choi JM  Tsai FT 《Molecular cell》2007,25(2):261-271
ClpB is a ring-shaped molecular chaperone that has the remarkable ability to disaggregate stress-damaged proteins. Here we present the electron cryomicroscopy reconstruction of an ATP-activated ClpB trap mutant, along with reconstructions of ClpB in the AMPPNP, ADP, and in the nucleotide-free state. We show that motif 2 of the ClpB M domain is positioned between the D1-large domains of neighboring subunits and could facilitate a concerted, ATP-driven conformational change in the AAA-1 ring. We further demonstrate biochemically that ATP is essential for high-affinity substrate binding to ClpB and cannot be substituted with AMPPNP. Our structures show that in the ATP-activated state, the D1 loops are stabilized at the central pore, providing the structural basis for high-affinity substrate binding. Taken together, our results support a mechanism by which ClpB captures substrates on the upper surface of the AAA-1 ring before threading them through the ClpB hexamer in an ATP hydrolysis-driven step.  相似文献   

8.
Bacterial ClpB is a molecular chaperone that solubilizes and reactivates aggregated proteins in cooperation with the DnaK chaperone system. The mechanism of protein disaggregation mediated by ClpB is linked to translocation of substrates through the central channel within the ring-hexameric structure of ClpB. Two isoforms of ClpB are produced in vivo: the full-length ClpB95 and the truncated ClpB80 (ClpBΔN), which does not contain the N-terminal domain. The functional specificity of the two ClpB isoforms and the biological role of the N-terminal domain are still not fully understood. Recently, it has been demonstrated that ClpB may achieve its full potential as an aggregate-reactivating chaperone through the functional interaction and synergistic cooperation of its two isoforms. It has been found that the most efficient resolubilization and reactivation of stress-aggregated proteins occurred in the presence of both ClpB95 and ClpB80. In this work, we asked if the two ClpB isoforms functionally cooperate in the solubilization and reactivation of proteins from insoluble inclusion bodies (IBs) in Escherichia coli cells. Using the model β-galactosidase fusion protein (VP1LAC), we found that solubilization and reactivation of enzymes entrapped in IBs occurred more efficiently in the presence of ClpB95 with ClpB80 than with either ClpB95 or ClpB80 alone. The two isoforms of ClpB chaperone acting together enhanced the solubility and enzymatic activity of β-galactosidase sequestered into IBs. Both ClpB isoforms were associated with IBs of β-galactosidase, what demonstrates their affinity to this type of aggregates. These results demonstrate a synergistic cooperation between the two isoforms of ClpB chaperone. In addition, no significant recovery of the β-galactosidase from IBs in ΔclpB mutant cells suggests that ClpB is a key chaperone in IB protein release.  相似文献   

9.
In this study, we report the purification, initial structural characterization, and functional analysis of the molecular chaperone ClpB from the gram-positive, halophilic lactic acid bacterium Tetragenococcus halophilus. A recombinant T. halophilus ClpB (ClpB(Tha)) was overexpressed in Escherichia coli and purified by affinity chromatography, hydroxyapatite chromatography, and gel filtration chromatography. As demonstrated by gel filtration chromatography, chemical cross-linking with glutaraldehyde, and electron microscopy, ClpB(Tha) forms a homohexameric single-ring structure in the presence of ATP under nonstress conditions. However, under stress conditions, such as high-temperature (>45 degrees C) and high-salt concentrations (>1 M KCl), it dissociated into dimers and monomers, regardless of the presence of ATP. The hexameric ClpB(Tha) reactivated heat-aggregated proteins dependent upon the DnaK system from T. halophilus (KJE(Tha)) and ATP. Interestingly, the mixture of dimer and monomer ClpB(Tha), which was formed under stress conditions, protected substrate proteins from thermal inactivation and aggregation in a manner similar to those of general molecular chaperones. From these results, we hypothesize that ClpB(Tha) forms dimers and monomers to function as a holding chaperone under stress conditions, whereas it forms a hexamer ring to function as a disaggregating chaperone in cooperation with KJE(Tha) and ATP under poststress conditions.  相似文献   

10.
Strub C  Schlieker C  Bukau B  Mogk A 《FEBS letters》2003,553(1-2):125-130
The Hsp100 protein ClpB is a member of the AAA+ protein family that mediates the solubilization of aggregated proteins in cooperation with the DnaK chaperone system. Unstructured polypeptides such as casein or poly-L-lysine have been shown to stimulate the ATPase activity of ClpB and thus may both act as substrates. Here we compared the effects of alpha-casein and poly-L-lysine on the ATPase and chaperone activities of ClpB. alpha-Casein stimulated ATP hydrolysis by both AAA domains of ClpB and inhibited the ClpB-dependent solubilization of aggregated proteins if present in excess. In contrast, poly-L-lysine stimulated exclusively the ATPase activity of the second AAA domain and increased the disaggregation activity of ClpB. Thus poly-L-lysine does not act as substrate, but rather represents an effector molecule, which enhances the chaperone activity of ClpB.  相似文献   

11.
The molecular chaperone ClpB can rescue the heat-damaged proteins from an aggregated state in cooperation with other chaperones. It has two nucleotide binding domains (NBD1 and NBD2) and forms a hexamer ring in a manner dependent on ATP binding to NBD1. In the crystal structure of ClpB with both NBDs filled by nucleotides, the linker between two NBDs forms an 85-A-long coiled-coil that extends on the outside of the hexamer and leans to NBD1. To probe the possible motion of the coiled-coil, we tested the accessibility of a labeling reagent, fluorescence change of a labeled dye, and cross-linking between the coiled-coil and NBD1 by using the mutants with defective NBD1 or NBD2. The results suggest that the coiled-coil is more or less parallel to the main body of ClpB in the absence of nucleotide and that ATP binding to NBD1 brings it to the leaning position as seen in the crystal structure. This motion results in stabilization of the hexamer form of ClpB and promotion of ATP hydrolysis at NBD2.  相似文献   

12.
ClpB is a member of the AAA+ superfamily that forms a ring-shaped homohexamer. Each protomer contains two nucleotide binding domains arranged in two rings that hydrolyze ATP. We extend here previous studies on ClpB nucleotide utilization requirements by using an experimental approach that maximizes random incorporation of different subunits into the protein hexamer. Incorporation of one subunit unable to bind or hydrolyze ATP knocks down the chaperone activity, while the wt hexamer can accommodate two mutant subunits that hydrolyze ATP in only one protein ring. Four subunits seem to build the functional cooperative unit, provided that one of the protein rings contains active nucleotide binding sites.  相似文献   

13.
Lee S  Sowa ME  Watanabe YH  Sigler PB  Chiu W  Yoshida M  Tsai FT 《Cell》2003,115(2):229-240
Molecular chaperones assist protein folding by facilitating their "forward" folding and preventing aggregation. However, once aggregates have formed, these chaperones cannot facilitate protein disaggregation. Bacterial ClpB and its eukaryotic homolog Hsp104 are essential proteins of the heat-shock response, which have the remarkable capacity to rescue stress-damaged proteins from an aggregated state. We have determined the structure of Thermus thermophilus ClpB (TClpB) using a combination of X-ray crystallography and cryo-electron microscopy (cryo-EM). Our single-particle reconstruction shows that TClpB forms a two-tiered hexameric ring. The ClpB/Hsp104-linker consists of an 85 A long and mobile coiled coil that is located on the outside of the hexamer. Our mutagenesis and biochemical data show that both the relative position and motion of this coiled coil are critical for chaperone function. Taken together, we propose a mechanism by which an ATP-driven conformational change is coupled to a large coiled-coil motion, which is indispensable for protein disaggregation.  相似文献   

14.
ClpB is a member of a protein-disaggregating multi-chaperone system in Escherichia coli. The mechanism of protein-folding reactions mediated by ClpB is currently unknown, and the functional role of different sequence regions in ClpB is under discussion. We have expressed and purified the full-length ClpB and three truncated variants with the N-terminal, C-terminal, and a double N- and C-terminal deletion. We studied the protein concentration-dependent and ATP-induced oligomerization of ClpB, casein-induced activation of ClpB ATPase, and ClpB-assisted reactivation of denatured firefly luciferase. We found that both the N- and C-terminal truncation of ClpB strongly inhibited its chaperone activity. The reasons for such inhibition were different, however, for the N- and C-terminal truncation. Deletion of the C-terminal domain inhibited the self-association of ClpB, which led to decreased affinity for ATP and to decreased ATPase and chaperone activity of the C-terminally truncated variants. In contrast, deletion of the N-terminal domain did not inhibit the self-association of ClpB and its basal ATPase activity but decreased the ability of casein to activate ClpB ATPase. These results indicate that the N-terminal region of ClpB may contain a functionally significant protein-binding site, whereas the main role of the C-terminal region is to support oligomerization of ClpB.  相似文献   

15.
ClpB is a member of a multichaperone system in Escherichia coli (with DnaK, DnaJ, and GrpE) that reactivates aggregated proteins. The sequence of ClpB contains two ATP-binding regions that are enclosed between the N- and C-terminal extensions. Whereas it has been found that the N-terminal region of ClpB is essential for the chaperone activity, the structure of this region is not known, and its biochemical properties have not been studied. We expressed and purified the N-terminal fragment of ClpB (residues 1-147). Circular dichroism of the isolated N-terminal region showed a high content of alpha-helical structure. Differential scanning calorimetry showed that the N-terminal region of ClpB is thermodynamically stable and contains a single folding domain. The N-terminal domain is monomeric, as determined by gel-filtration chromatography, and the elution profile of the N-terminal domain does not change in the presence of the N-terminally truncated ClpB (ClpBDeltaN). This indicates that the N-terminal domain does not form strong contacts with ClpBDeltaN. Consistently, addition of the separated N-terminal domain does not reverse an inhibition of ATPase activity of ClpBDeltaN in the presence of casein. As shown by ELISA measurements, full-length ClpB and ClpBDeltaN bind protein substrates (casein, inactivated luciferase) with similar affinity. We also found that the isolated N-terminal domain of ClpB interacts with heat-inactivated luciferase. Taken together, our results indicate that the N-terminal fragment of ClpB forms a distinct domain that is not strongly associated with the ClpB core and is not required for ClpB interactions with other proteins, but may be involved in recognition of protein substrates.  相似文献   

16.
The Escherichia coli heat-shock protein ClpB reactivates protein aggregates in cooperation with the DnaK chaperone system. The ClpB N-terminal domain plays an important role in the chaperone activity, but its mechanism remains unknown. In this study, we investigated the effect of the ClpB N-terminal domain on malate dehydrogenase (MDH) refolding. ClpB reduced the yield of MDH refolding by a strong interaction with the intermediate. However, the refolding kinetics was not affected by deletion of the ClpB N-terminal domain (ClpBDeltaN), indicating that MDH refolding was affected by interaction with the N-terminal domain. In addition, the MDH refolding yield increased 50% in the presence of the ClpB N-terminal fragment (ClpBN). Fluorescence polarization analysis showed that this chaperone-like activity is explained best by a weak interaction between ClpBN and the reversible aggregate of MDH. The dissociation constant of ClpBN and the reversible aggregate was estimated as 45 muM from the calculation of the refolding kinetics. Amino acid substitutions at Leu 97 and Leu 110 on the ClpBN surface reduced the chaperone-like activity and the affinity to the substrate. In addition, these residues are involved in stimulation of ATPase activity in ClpB. Thus, Leu 97 and Leu 110 are responsible for the substrate recognition and the regulation of ATP-induced ClpB conformational change.  相似文献   

17.
Tanaka N  Tani Y  Tada T  Lee YF  Kanaori K  Kunugi S 《Biochemistry》2006,45(28):8556-8561
Escherichia coli heat shock protein ClpB disaggregates denatured protein in cooperation with the DnaK chaperone system. Several studies showed that the N-terminal domain is essential for the chaperone activity, but its role is still largely unknown. The N-terminal domain contains two structurally similar subdomains, and conserved amino acids Thr7 and Ser84 share the same position in two apparent sequence repeats. T7A and S84A substitutions affected chaperone activity of ClpB without significantly changing the native conformation [Liu, Z. et al. (2002) J. Mol. Biol. 321, 111-120]. In this study, we aimed to better understand the roles of several conserved amino acid residues, including Thr7 and Ser84, in the N-terminal domain. We investigated the effects of mutagenesis on substrate binding and conformational states of ClpB N-terminal domain fragment (ClpBN). Fluorescence polarization analysis showed that the T7A and S84A substitutions enhanced the interaction between ClpBN and protein aggregates. Interestingly, further analyses suggested that the mechanisms by which they do so are quite different. For T7A substitution, the increased substrate affinity could be due to a conformational change in the hydrophobic core as revealed by NMR spectroscopy. In contrast, for S84A, increased substrate binding would be explained by a unique conformational state of this mutant as revealed by pressure perturbation analysis. The thermal transition temperature of the S84A mutant, monitored by DSC, was 6.1 degrees C lower than that of wild-type. Our results revealed that conserved amino acids Thr7 and Ser84 both participated in maintaining the conformational integrity of the ClpB N-terminal domain.  相似文献   

18.
E. coli Hsp100 ClpB can disaggregate denatured polypeptides by employing ATP hydrolysis. The ClpB N-terminal domain (ClpBN) has been proposed to play important roles in ClpB molecular chaperone activities. We have determined the crystal structure of ClpBN to 1.95 A resolution by MAD methods. The ClpBN monomer contains two subdomains that have similar folds. The crystal structure revealed a hydrophobic groove on the molecular surface. We have constructed ClpB mutants in which the hydrophobic residues within the putative peptide binding groove were replaced by glutamine. These ClpB mutants exhibited severe defects in molecular chaperone activity but retained the wild-type ATPase activity.  相似文献   

19.
ClpB/Hsp104 efficiently reactivates protein aggregates in cooperation with the DnaK/Hsp70 system. As a member of the AAA+ protein family (i.e. an expanded superfamily of ATPases associated with diverse cellular activities), ClpB forms a ring-shaped hexamer in an ATP-dependent manner. A protomer of ClpB consists of an N-terminal domain (NTD), an AAA+ module, a middle domain and another AAA+ module. In the crystal structures, the NTDs point to two different directions relative to other domains and are not visible in the single-particle cryo-electron microscopy reconstruction, suggesting that the NTD is highly mobile. In the present study, we generated mutants in which the NTD was anchored to other domain by disulfide cross-linking and compared several aspects of ClpB function between the reduced and oxidized mutants, using the wild-type and NTD-truncated ClpB (ClpBΔN) as references. In their oxidized form, the mutants and wild-type bind casein with a similar affinity, although the affinity of ClpBΔN for casein was significantly low. However, the extent of casein-induced stimulation of ATPase, the rate of substrate threading and the efficiency of protein disaggregation of these mutants were all lower than those of the wild-type but similar to those of ClpBΔN. These results indicate that the NTD supports the substrate binding of ClpB and that its conformational shift assists the threading and disaggregation of substrate proteins.  相似文献   

20.
The ClpB/Hsp104 chaperone solubilizes and reactivates protein aggregates in cooperation with DnaK/Hsp70 and its cofactors. The ClpB/Hsp104 protomer has two AAA+ modules, AAA-1 and AAA-2, and forms a homohexamer. In the hexamer, these modules form a two-tiered ring in which each tier consists of homotypic AAA+ modules. By ATP binding and its hydrolysis at these AAA+ modules, ClpB/Hsp104 exerts the mechanical power required for protein disaggregation. Although ATPase cycle of this chaperone has been studied by several groups, an integrated understanding of this cycle has not been obtained because of the complexity of the mechanism and differences between species. To improve our understanding of the ATPase cycle, we prepared many ordered heterohexamers of ClpB from Thermus thermophilus, in which two subunits having different mutations were cross-linked to each other and arranged alternately and measured their nucleotide binding, ATP hydrolysis, and disaggregation abilities. The results indicated that the ATPase cycle of ClpB proceeded as follows: (i) the 12 AAA+ modules randomly bound ATP, (ii) the binding of four or more ATP to one AAA+ ring was sensed by a conserved Arg residue and converted another AAA+ ring into the ATPase-active form, and (iii) ATP hydrolysis occurred cooperatively in each ring. We also found that cooperative ATP hydrolysis in at least one ring was needed for the disaggregation activity of ClpB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号