首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Conjugated linoleic acids (CLA) are octadecadienoic fatty acids that have profound effects on lipid metabolism. Our previous work showed that CLA (mixture of isomers) markedly reduced milk fat synthesis. In this study, our objective was to evaluate the effects of specific CLA isomers. Multiparous Holstein cows were used in a 3x3 Latin square design, and treatments were 4-day abomasal infusions of 1) skim milk (control), 2) 9,11 CLA supplement, and 3) 10,12 CLA supplement. CLA supplements provided 10 g/day of the specific CLA isomer (cis-9,trans-11 or trans-10,cis-12). Treatments had no effect on intake, milk yield, or milk protein yield. Only the 10,12 CLA supplement affected milk fat, causing a 42 and 44% reduction in milk fat percentage and yield, respectively. Milk fat composition revealed that de novo synthesized fatty acids were extensively reduced. Increases in ratios of C(14:0) to C(14:1) and C(18:0) to C(18:1) indicated the 10,12 CLA supplement also altered Delta(9)-desaturase. Treatments had minimal effects on plasma concentrations of glucose, nonesterified fatty acids, insulin, or insulin-like growth factor-I. Overall, results demonstrate that trans-10,cis-12 CLA is the isomer responsible for inhibition of milk fat synthesis.  相似文献   

2.
Thirty lactating dairy cows were used in a 3 × 3 Latin-square design to investigate the effects of a raw or extruded blend of linseed and wheat bran (70:30) on plasma and milk fatty-acids (FA). Linseed diets, containing 16.6% linseed blend on a dry-matter basis, decreased milk yield and protein percentage. They decreased the proportions of FA with less than 18 carbons in plasma and milk and resulted in cis-9, cis-12, cis-15 18:3 proportions that were more than three and four times higher in plasma and milk, respectively, whereas cis-9, cis-12 18:2 proportions were decreased by 10-15%. The cis-9, trans-11, cis-15 18:3 isomer of conjugated linolenic acid was not detected in the milk of control cows, but was over 0.15% of total FA in the milk fat of linseed-supplemented cows. Similarly, linseed increased plasma and milk proportions of all biohydrogenation (BH) intermediates in plasma and milk, including the main isomer of conjugated linoleic acid cis-9, trans-11 18:2, except trans-4 18:1 and cis-11, trans-15 18:2 in plasma lipids. In milk fat, compared with raw linseed, extruded linseed further reduced 6:0-16:0 even-chain FA, did not significantly affect the proportions of 18:0, cis-9 18:1 and cis-9, cis-12 18:2, tended to increase cis-9, cis-12, cis-15 18:3, and resulted in an additional increase in the proportions of most BH intermediates. It was concluded that linseed addition can improve the proportion of conjugated linoleic and linolenic acids, and that extrusion further increases the proportions of intermediates of ruminal BH in milk fat.  相似文献   

3.
Biomedical studies with animal models have demonstrated that cis-9, trans-11 conjugated linoleic acid (CLA), the predominant isomer found in milk fat from dairy cows, has anticarcinogenic effects. We recently demonstrated endogenous synthesis of cis-9, trans-11 CLA from ruminally derived trans-11 C18:1 by Delta(9)-desaturase in lactating dairy cows. The present study further examined endogenous synthesis of cis-9, trans-11 CLA and quantified its importance by increasing substrate supply using partially hydrogenated vegetable oil (PHVO) as a source of trans-11 C18:1 and blocking endogenous synthesis using sterculic oil (SO) as a source of cyclopropene fatty acids which specifically inhibit Delta(9)-desaturase. Four cows were abomasally infused with 1) control, 2) PHVO, 3) SO, and 4) PHVO+SO in a 4 x 4 Latin square design. With infusion of PHVO, cis-9, trans-11 CLA was increased by 17% in milk fat. Consistent with inhibition of desaturase, SO treatments increased milk fat ratios for the fatty acid pairs effected by Delta(9)-desaturase, C14:0/cis-9 C14:1, C16:0/cis-9 C16:1, and C18:0/cis-9 C18:1. The role of endogenous synthesis of CLA was evident from the 60-65% reduction in cis-9, trans-11 CLA which occurred in milk fat with SO treatments. cis-9 C14:1 originates from desaturation of C14:0 by Delta(9)-desaturase and can be used to estimate the extent of SO inhibition of Delta(9)-desaturase. When this correction factor was applied, endogenous synthesis was estimated to account for 78% of the total cis-9, trans-11 CLA in milk fat. Thus, endogenous synthesis was the major source of cis-9, trans-11 CLA in milk fat of lactating cows.  相似文献   

4.
An in vitro study was conducted to determine the effect of different types of fibre supplemented with sunflower oil on ruminal fermentation and formation of conjugated linoleic acids (CLA) by mixed ruminal microorganisms. Cell wall components extracted from wheat straw (representing lignified fibre), soybean hulls (representing easily digestible fibre), and purified cellulose were used as substrates. Sunflower oil was supplemented at the same level for all three types of fibre. After 24 h of incubation, ruminal fermentation parameters (including 24 h gas production, pH value, concentration of ammonia nitrogen and volatile fatty acids) and the concentration of long chain fatty acids in the culture fluid were determined. Results showed that the type of fibre influenced ruminal fermentation traits and the biohydrogenation of unsaturated C18 fatty acids in vitro. Composition of LCFA and profile of CLA were altered by the fibre type. Compared to the digestible fibre and purified cellulose, lignified fibre significantly increased the production of cis-9, trans-11 CLA and total CLA (sum of cis-9, trans-11 CLA, trans-10, cis-12 CLA, trans-9, trans-11 CLA, and cis-9, cis-11 CLA) by ruminal microorganisms. It was concluded that ruminal fermentation and production of CLA can be affected by the type of dietary fibre.  相似文献   

5.
Digesta samples from the ovine rumen and pure ruminal bacteria were incubated with linoleic acid (LA) in deuterium oxide-containing buffer to investigate the mechanisms of the formation of conjugated linoleic acids (CLAs). Rumenic acid (RA; cis-9,trans-11-18:2), trans-9,trans-11-18:2, and trans-10,cis-12-18:2 were the major CLA intermediates formed from LA in ruminal digesta, with traces of trans-9,cis-11-18:2, cis-9,cis-11-18:2, and cis-10,cis-12-18:2. Mass spectrometry indicated an increase in the n+1 isotopomers of RA and other 9,11-CLA isomers, as a result of labeling at C-13, whereas 10,12 isomers contained minimal enrichment. In pure culture, Butyrivibrio fibrisolvens and Clostridium proteoclasticum produced mostly RA with minor amounts of other 9,11 isomers, all labeled at C-13. Increasing the deuterium enrichment in water led to an isotope effect, whereby (1)H was incorporated in preference to (2)H. In contrast, the type strain and a ruminal isolate of Propionibacterium acnes produced trans-10,cis-12-18:2 and other 10,12 isomers that were minimally labeled. Incubations with ruminal digesta provided no support for ricinoleic acid (12-OH,cis-9-18:1) as an intermediate of RA synthesis. We conclude that geometric isomers of 10,12-CLA are synthesized by a mechanism that differs from the synthesis of 9,11 isomers, the latter possibly initiated by hydrogen abstraction on C-11 catalyzed by a radical intermediate enzyme.  相似文献   

6.
Conjugated linoleic acids (CLAs) such as rumenic acid (RA) have the potential to alter blood lipid profiles in animals and in humans. In contrast, physiological effects of conjugated α-linolenic acids (CLnAs), which concomitantly are omega-3 and conjugated fatty acids, are still unknown. The aim of this study was to evaluate the potential of CLnA to interfere in early steps of atherosclerosis by altering lipoprotein profiles and fatty streaks in the aortas. F1B hamsters were fed a control or one of the three hypercholesterolemic (HC) diets: HC-control, HC-RA (18:2 cis-9, trans-11) or HC-CLnA (CLnA: equimolar mixture of 18:3 cis-9, trans-11, cis-15 and cis-9, trans-13, cis-15) diet. In low-cholesterol control-fed hamsters, the proportion of high-density lipoprotein cholesterol (HDL-C) was around 45% while in HC-fed hamsters, HDL-C was around 10% and cholesterol was mostly (80%) carried by triglyceride-rich lipoproteins (TRL). Low-density lipoprotein (LDL) triglycerides (TGs) increased by approximately 60% in hamsters fed either HC-RA or HC-CLnA compared with HC-controls but not compared with the low-cholesterol control diet. HDL cholesterol decreased by 24% and 16% in hamsters fed HC-RA and HC-CLnA, respectively. Small dense LDL-cholesterol increased by approximately 60% in hamsters fed HC-RA and HC-CLnA compared with the HC-control group and by more than a 100% compared with hamsters on the control diet. The relative percentage of liver cholesteryl ester content increased by 88% in hamsters fed HC diets compared with the control diet. Significant differences in fatty streaks were observed between control and HC-diet-fed hamsters. However, no significant difference was observed among the HC-diet-fed hamsters. This study shows that animals fed any one of the HC diets developed an adverse lipoprotein profile compared with a normolipidic diet. Also, HC-RA or HC-CLnA diets altered lipoprotein profile compared with animals fed the HC-control diet but had no beneficial effects on atherosclerosis.  相似文献   

7.
The cellular fatty acids of free-living, nitrogen-fixing cyanobacteria belonging to the genera Anabaena and Nostoc were analyzed to differentiate the genera. The fatty acid compositions of 10 Anabaena strains and 10 Nostoc strains that were grown for 12 days on BG-11o medium were determined by gas-liquid chromatography-mass spectroscopy. Of the 53 fatty acids detected, 17 were major components; the average level for each of these 17 fatty acids was at least 0.9% of the total fatty acids (in at least one of the genera). These fatty acids included (with mean percentages in the Anabaena and Nostoc strains, respectively) the saturated fatty acids 16:0 (30.55 and 23.23%) and 18:0 (0.77 and 1.27%); several unsaturated fatty acids, including 14:1 cis-7 (2.50 and 0.11%), 14:1 cis-9 (3.10 and 3.41%), a polyunsaturated 16-carbon (sites undetermined) fatty acid with an equivalent chain length of 15.30 (1.20 and 1.03%), 16:4 cis-4 (0.95 and 0.87%), 16:3 cis-6 (2.16 and 1.51%), 16:1 cis-7 (1.44 and 0.36%), 16:1 cis-9 (6.53 and 18.76%), 16:1 trans-9 (4.02 and 1.35%), 16:1 cis-11 (1.62 and 0.42%), 18:2 cis-9 (10.16 and 12.44%), 18:3 cis-9 (18.19 and 17.25%), 18:1 cis-9 (4.01 and 5.10%), and 18:1 trans-9 (0.92 and 1.94%); and the branched-chain fatty acids iso-16:0 (2.50 and 1.14%) and iso-15:1 (0.34 and 2.05%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The biologically active isomers of conjugated linoleic acid.   总被引:70,自引:0,他引:70  
Numerous physiological effects are attributed to conjugated linoleic acid (CLA). The purpose of this presentation is to consider these effects with respect to the cis-9,trans-11 and trans-10,cis-12 CLA isomers. We review previously published data and present new findings that relate to underlying biochemical mechanisms of action. Both isomers are natural products. The cis-9,trans-11 isomer is the principal dietary form of CLA, but the concentrations of this isomer and the trans-10,cis-12 isomer in dairy products or beef vary depending on the diet fed to cows or steers, respectively. The trans-10,cis-12 CLA isomer exerts specific effects on adipocytes, in particular reducing the uptake of lipid by inhibiting the activities of lipoprotein lipase and stearoyl-CoA desaturase. The trans-10,cis-12 CLA isomer also affects lipid metabolism in cultured Hep-G2 human liver cells, whereas both the cis-9,trans-11 and trans-10,cis-12 CLA isomers appear to be active in inhibiting carcinogenesis in animal models. We present new findings indicating that the cis-9,trans-11 CLA isomer enhances growth and probably feed efficiency in young rodents. Accordingly, the effects of CLA on body composition (induced by trans-10,cis-12 CLA) and growth/feed efficiency (induced by cis-9,trans-11 CLA) appear to be due to separate biochemical mechanisms. We also show that a 19-carbon CLA cognate (conjugated nonadecadienoic acid, CNA) inhibits lipoprotein lipase activity as effectively as CLA in cultured 3T3-L1 adipocytes. Presumably, CNA is metabolized differently than the 18-carbon CLA isomers, so this finding indicates direct activity of the administered compound as opposed to acting via a metabolite.  相似文献   

9.
Watts JL  Phillips E  Griffing KR  Browse J 《Genetics》2003,163(2):581-589
Arachidonic acid and other long-chain polyunsaturated fatty acids (PUFAs) are important structural components of membranes and are implicated in diverse signaling pathways. The Delta6 desaturation of linoleic and linolenic acids is the rate-limiting step in the synthesis of these molecules. C. elegans fat-3 mutants lack Delta6 desaturase activity and fail to produce C20 PUFAs. We examined these mutants and found that development and behavior were affected as a consequence of C20 PUFA deficiency. While fat-3 mutants are viable, they grow slowly, display considerably less spontaneous movement, have an altered body shape, and produce fewer progeny than do wild type. In addition, the timing of an ultradian rhythm, the defecation cycle, is lengthened compared to wild type. Since all these defects can be ameliorated by supplementing the nematode diet with gamma-linolenic acid or C20 PUFAs of either the n6 or the n3 series, we can establish a causal link between fatty acid deficiency and phenotype. Similar epidermal tissue defects and slow growth are hallmarks of human fatty acid deficiency.  相似文献   

10.
Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of linoleic acid (LA, C18:2 cis-9, cis-12) that are reported to have important biological activities, including protection against atherosclerosis. In this study, the potential role of the individual cis-9, trans-11 and trans-10, cis-12 isomers of CLA in atherogenesis were compared with LA in the Syrian Golden hamster. Supplementation of a high-fat, high-cholesterol diet (HFHC) with 1% (w/w) cis-9, trans-11 CLA or trans-10, cis-12 CLA did not significantly affect plasma cholesterol levels compared to supplementation with 1% (w/w) LA. Very low density lipoprotein cholesterol (VLDL-C) was lower and plasma triglycerides (TG) were higher in diets where C18:2 fatty acid was added to the HFHC diet, but neither the cis-9, trans-11 CLA group nor trans-10, cis-12 CLA group was significantly different from the LA control group. CLA supplementation did not significantly affect low density lipoprotein cholesterol (LDL-C). Trans-10, cis-12 CLA increased high density lipoprotein cholesterol (HDL-C) levels compared to LA or cis-9, trans-11 CLA (P<0.02), and although the ratio of non-HDL-C:HDL-C in the cis-9, trans-11 CLA group (1.11+/-0.54) and the trans-10, cis-12 CLA group (1.11+/-0.21) was lower than the LA group (1.29+/-0.45), the reduction did not reach statistical significance. Atherosclerosis was assessed in the ascending aorta by measuring the number of aortic cross-sections containing Oil Red O-stained intimal lesions. Compared to the LA group (60+/-11%), both the cis-9, trans-11 CLA group (38+/-8%) and the trans-10, cis-12 CLA group (28+/-7%) had fewer sections displaying a fatty streak lesion, although the differences did not reach statistical significance. These results suggest that individual CLA isomers may reduce atherosclerotic lesion development in the hamster, but when compared to LA, the apparent atheroprotective effects do not correlate with beneficial changes in lipoprotein profile.  相似文献   

11.
The substrate specificities and selectivities of acyl-CoA synthetasesfrom maturing oilseeds were investigated to reveal fatty acidstructures that the enzymes recognize. The synthetases fromrapeseed (Brassica nap us) and castor bean (Ricinus communis)activated palmitic acid 16:0 most rapidly among the saturatedfatty acids tested. Native unsat-urated fatty acids, oleic 18:1cis-9, linoleic 18:2 cis-9,12 and linolenic acid 18:3 m-9,12,15,were all effectively utilized. Palmitoleic acid 16:1 cis-9 wasalso a good substrate, while myristoleic acid 14:1 cis-9 wasa poor substrate. The activation of erucic acid 22:1 cis-13was very slow. Elaidic acid 18:1 trans-9 was utilized at ratessimilar to those of the cis isomer. The efficiencies of petroselinicacid 18:1 cis-6 were half the efficiencies of oleic acid, whilethe rates of activation of m-vaccenic acid 18:1 cw-11 were comparableto those for oleic acid. These findings suggest that acyl-CoAsynthetases of oilseeds producing long-chain fatty acids strictlyrecognize the molecular structures of fatty acids, i.e., thecarbon-chain length between C16-C18 and the position of thefirst double bond (  相似文献   

12.
Conjugated linoleic acid (CLA) reduces body fat in part by inhibiting the activity of heparin-releasable lipoprotein lipase (HR-LPL) activity in adipocytes, an effect that is induced by the trans-10,cis-12 CLA isomer. In this study we used a series of compounds that are structurally related to CLA (i.e., CLA cognates) to investigate the structural basis for this phenomenon. None of the 18:1 CLA cognates that were tested, nor trans-9,cis-12 18:2, cis-12-octadecen-10-ynoic acid (10y,cis-12) or 11-(2'-(n-pentyl)phenyl)-10-undecylenic acid (designated P-t10), exhibited any significant effect on HR-LPL activity. Among the CLA derivatives (alcohol, amide, and chloride) that were tested, only the alcohol form inhibited HR-LPL activity, although to a lesser extent than CLA itself. In addition, intracellular TG was reduced only by trans-10,cis-12 CLA and the alcohol form of CLA. Hence it appears that the trans-10,cis-12 conjugated double bond in conjunction with a carboxyl group at C-1 is required for inhibition of HR-LPL activity, and that an alcohol group can partially substitute for the carboxyl group. We also studied glycerol release from the cells, observing that this was enhanced by trans-10 18:1, trans-13 18:1, cis-12 18:1, cis-13 18:1, P-t10 but was reduced by cis-9 18:1, the alcohol and amide forms of CLA or 10y,cis-12. Accordingly the structural feature or features involved in regulating lipolysis appear to be more complex. Despite enhancing lipolysis in cultured 3T3-L1 adipocytes, trans-10 18:1 did not reduce body fat gain when fed to mice.  相似文献   

13.
High carbohydrate (65% glucose) diets containing cis-12-octadecenoic acid (12c-18:1) or trans-9,trans-12-octadecadienoic acid (9t,12t-18:2) were fed to weanling mice to investigate the influence of fatty acid structure on six hepatic enzyme activities involved in lipid metabolism. Results with these diets were compared to those with diets containing no fatty acids, saturated fatty acids; cis-9-octadecenoic acid (9c-18:1) and cis-9,cis-12-octadecadienoic acid (9c,12c-18:2). These comparisons show saturated fatty acids, 9c-18:1, 12c-18:1, and 9t,12t-18:2, had little or no influence on the activity levels of fatty acid synthetase, malic enzyme (EC 1.1.1.40)citrate cleavage enzyme (EC 4.1.3.8), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44) and acetyl-CoA carboxylase (EC 6.4.1.2). Neither 12c-18:1 nor 9t,12t-18:2 produced the dramatic enzyme-lowering effect exhibited by the diet containing 9c,12c-18:2 when compared to the diet devoid of fat. Thus, both the 9 and 12 bonds must be present in the same molecule. Also, at least one and probably both bonds must be in the cis configuration to depress liver enzyme activities. Capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were both used for analysis of the methyl esters derived from the hepatic lipids. The GC and GC-MS data provided (a) direct evidence for incorporation of both isomers into hepatic lipids and (b) indirect evidence that 9t,12t-18:2 lowered liver delta 9-desaturase activity. In addition, since these products were found in the complex liver lipids, there is no doubt that the various enzymes concerned with activation and acylation utilize both of these isomeric fatty acids as substrates.  相似文献   

14.
The beneficial effects exerted by low amounts of conjugated linoleic acids (CLA) suggest that CLA are maximally conserved and raise the question about their mitochondrial oxidizability. Cis-9,trans-11-C(18:2) (CLA1) and trans-10,cis-12-C(18:2) (CLA2) were compared to cis-9,cis-12-C(18:2) (linoleic acid; LA) and cis-9-C(16:1) (palmitoleic acid; PA), as substrates for total fatty acid (FA) oxidation and for the enzymatic steps required for the entry of FA into rat liver mitochondria. Oxygen consumption rate was lowest when CLA1 was used as a substrate with that on CLA2 being intermediate between it and the respiration on LA and PA. The order of the radiolabeled FA oxidation rate was PA > LA > CLA2 > CLA1. Transesterification to acylcarnitines of the octadecadienoic acids were similar, while uptake across inner membranes of CLA1 and, to a lesser extent, of CLA2 was greater than that of LA or PA. Prior oxidation of CLA1 or CLA2 made re-isolated mitochondria much less capable of oxidising PA or LA under carnitine-dependent conditions, but without altering the carnitine-independent oxidation of octanoic acid. Therefore, the CLA studied appeared to be both poorly oxidizable and capable of interfering with the oxidation of usual FA at a step close to the beginning of the beta-oxidative cycle.  相似文献   

15.
Conjugated linoleic acids (CLA) have recently been recognized to reduce body fat and plasma lipids in some animals. This study demonstrated that the steatosis accompanying the fat loss induced by trans-10,cis-12-C(18:2) (CLA2) and not cis-9,trans-11-C(18:2) (CLA1) isomer in C57BL/6j mice was not due to an alteration of the liver lipoprotein production that was even increased. The 3-fold decrease in plasma triacylglycerol contents and the induction of mRNA expression of low-density lipoprotein receptors concomitantly observed in CLA2-fed mice suggested an increase in the lipoprotein clearance at the level of the liver itself. CLA1 feeding produced similar but attenuated effects on triglyceridaemia only.  相似文献   

16.
Although the conjugated linoleic acids (CLA) have several isomer-specific biological effects including anti-carcinogenic and anti-adipogenic effects, their mechanisms of action remain unclear. To determine their potential effects on membrane structure and function, we studied the incorporation profiles of four CLA isomers (trans-10 cis-12 (A), trans-9 trans-11 (B), cis-9 trans-11 (C), and cis-9 cis-11 (D)) in CHO and HepG2 cells. All four isomers were incorporated into cellular lipids as efficiently as linoleic acid (LA), with the majority of the incorporated CLA present in membrane rafts. Of the four isomers, only CLA-A increased the cholesterol content of the raft fraction. Over 50% of the incorporated CLAs were recovered in phosphatidylcholine of CHO cells, but in HepG2 the neutral lipids contained the majority of CLA. The desaturation index (18:1/18:0 and 16:1/16:0) was reduced by CLA-A, but increased by CLA-B, the effects being apparent mostly in raft lipids. The Δ? desaturase activity was inhibited by CLAs A and C. Unlike LA, which was mostly found in the sn-2 position of phospholipids, most CLAs were also incorporated significantly into the sn-1 position in both cell types. These studies show that the incorporation profiles of CLA isomers differ significantly from that of LA, and this could lead to alterations in membrane function, especially in the raft-associated proteins.  相似文献   

17.
Structural determination of polyunsaturated fatty acids by gas chromatography-mass spectrometry (GC-MS) requires currently the use of nitrogen containing derivatives such as picolinyl esters, 4,4-dimethyloxazoline or pyrrolidides derivatives. The derivatization is required in most cases to obtain low energy fragmentation that allows accurate location of the double bonds. In the present work, the following metabolites of rumelenic (cis-9,trans-11,cis-15 18:3) acid, from rat livers, were identified: cis-8,cis-11,trans-13,cis-17 20:4, cis-5,cis-8,cis-11,trans-13,cis-17 20:5, cis-7,cis-10,cis-13,trans-15,cis-19 22:5, and cis-4,cis-7,cis-10,cis-13,trans-15,cis-19 22:6 acids by GC-MS as their 4,4-dimethyloxazoline and methyl esters derivatives. Specific fragmentation of the methyl ester derivatives revealed some similarity with their corresponding DMOX derivatives. Indeed, intense ion fragments at m/z=M+-69, corresponding to a cleavage at the center of a bis-methylene interrupted double bond system were observed for all identified metabolites. Moreover, intense ion fragments at m/z=M+-136, corresponding to allylic cleavage of the n-12 double bonds were observed for the C20:5, C22:5, C22:6 acid metabolites. For the long chain polyunsaturated fatty acids from the rumelenic metabolism, we showed that single methyl esters derivatives might be used for both usual quantification by GC-FID and identification by GC-MS.  相似文献   

18.
19.
A survey of 30 representative strains of human gram-positive intestinal bacteria indicated that Roseburia species were among the most active in metabolizing linoleic acid (cis-9,cis-12-18:2). Different Roseburia spp. formed either vaccenic acid (trans-11-18:1) or a 10-hydroxy-18:1; these compounds are precursors of the health-promoting conjugated linoleic acid cis-9,trans-11-18:2 in human tissues and the intestine, respectively.  相似文献   

20.
In an earlier study, we showed that dietary conjugated linoleic acid (CLA) isomers can exert differential effects on heart function in male and female rats, but the underlying mechanisms for these actions are not known. Cardiomyocyte Ca2+ cycling is a key event in normal cardiac contractile function and defects in Ca2+ cycling are associated with cardiac dysfunction and heart disease. We therefore hypothesized that abnormalities in the sarcolemmal (SL) and sarcoplasmic reticulum (SR)-mediated regulation of intracellular Ca2+ contribute to altered cardiac contractile function of male and female rats owing to dietary CLA isomers. Healthy male and female Sprague-Dawley rats were fed different CLA isomers, (cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12)) individually and in combination (50:50 mix as triglyceride or fatty acids) from 4 to 20 weeks of age. We determined the mRNA levels of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) 2a, ryanodine receptor, phospholamban, calsequestrin, Na+-Ca2+-exchanger (NCX), and L-type Ca2+ channel in the left ventricle (LV) by RT-PCR. The SR function was assessed by measurement of Ca2+-uptake and -release. Significant gender differences were seen in the LV NCX, L-type Ca2+ channel, and ryanodine receptor mRNA expression levels in control male and female rats. Dietary CLA isomers in the various forms induced changes in the mRNA levels of SERCA 2a, NCX, and L-type Ca2+ channel in the LV of both male and female hearts. Whereas protein contents of the Ca2+ cycling proteins were altered, changes in SR Ca2+-uptake and -release were also detected in both male and female rats in response to dietary CLA. The results of this study demonstrate that long-term dietary supplementation can modulate cardiac gene expression and SR function in a gender-related manner and may, in part, contribute to altered cardiac contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号