首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhu H  Liu C  Sun J  Li M  Hua J 《Theriogenology》2012,77(9):1939-1950
The glycogen synthase kinase 3 (GSK3) inhibitor, 6-bromoindirubin-3′-oxime (BIO), is a key regulator of many signaling pathways to maintain pluripotency of human and mouse embryonic stem cells (ESCs). However, the effect of BIO on derivation of dairy goat male germline stem cells (mGSCs) remains unclear. The objectives of this study were to investigate whether BIO influences derivation of dairy goat mGSCs. Dairy goat mGSCs were cultured in mTeSR containing BIO medium and its effects on the proliferation ability of goat mGSCs (derived from goats ≤2 mo of age) were evaluated by 5-Bromo-2-deoxyuridine (BrdU) incorporation and alkaline phosphatase (AP) staining. Furthermore, its effects on maintenance of the undifferentiated state of mGSCs in late passages of cultures, as well as the capacity of mGSCs to differentiate into embryoid bodies (EBs) were examined. The presence of BIO increased the mitosis index and the number of AP positive colonies, as well as expression of pluripotent markers, Oct4, Nanog, Sox2, C-myc, Klf4, E-cadherin, and the proliferative markers, Pcna and C-myc. In contrast, there was no significant change in expression of apoptosis markers, P53, P21 and cyclin-related genes (Cyclin A, CDK2, Cyclin D1), as determined by RT-PCR analysis. When mGSCs were cultured in mTeSR medium containing BIO, EBs were formed, which were capable of further differentiating into various cell types found in the three embryonic germ layers, as determined by immunofluorescence and/or histologic staining. In conclusion, adding BIO to cultures BIO significantly promoted establishment of goat mGSC colonies and maintained their undifferentiated state.  相似文献   

2.
Spermatogonial stem cells (SSCs, also called germline stem cells) are self-renewing unipotent stem cells that produce differentiating germ cells in the testis. SSCs can be isolated from the testis and cultured in vitro for long-term periods in the presence of feeder cells (often mouse embryonic fibroblasts). However, the maintenance of SSC feeder culture systems is tedious because preparation of feeder cells is needed at each subculture. In this study, we developed a Matrigel-based feeder-free culture system for long-term propagation of SSCs. Although several in vitro SSC culture systems without feeder cells have been previously described, our Matrigel-based feeder-free culture system is time- and cost- effective, and preserves self-renewability of SSCs. In addition, the growth rate of SSCs cultured using our newly developed system is equivalent to that in feeder cultures. We confirmed that the feeder-free cultured SSCs expressed germ cell markers both at the mRNA and protein levels. Furthermore, the functionality of feeder-free cultured SSCs was confirmed by their transplantation into germ cell-depleted mice. These results suggest that our newly developed feeder-free culture system provides a simple approach to maintaining SSCs in vitro and studying the basic biology of SSCs, including determination of their fate.  相似文献   

3.
Large numbers of cells will be required for successful embryonic stem cell (ESC)-based cellular therapies or drug discovery, thus raising the need to develop scaled-up bioprocesses for production of ESCs and their derived progeny. Traditionally, ESCs have been propagated in adherent cultures in static flasks on fibroblasts layers in serum-containing medium. Direct translation of two-dimensional flatbed cultures to large-scale production of the quantities of cells required for therapy simply by increasing the number of dishes or flasks is not practical or economical. Here, we describe successful scaled-up production of ESCs on microcarriers in a stirred culture system in a serum-free medium. Cells expanded on CultiSpher S, Cytodex 3, and Collagen microcarriers showed superior cell-fold expansions of 439, 193, and 68, respectively, without excessive agglomeration, compared with 27 in static culture. In addition, the ESCs maintained their pluripotency after long-term culture (28 days) in serum-free medium. This is the first time mESCs have been cultured on microcarriers without prior exposure to serum and/or fibroblasts, while also eliminating the excessive agglomeration plaguing earlier studies. These protocols provide an economical, practical, serum-free means for expanding ESCs in a stirred suspension bioprocess.  相似文献   

4.
5.
6.
Self-renewal and differentiation of male germline stem cells (mGSCs) provide the basic function for continual spermatogenesis. Studies of in vitro culture of germline stem cells are important and meaningful for basic biological research and practical application. Growth factors, such as GDNF, bFGF, CSF1, and EGF, could maintain the self-renewal of mGSCs. Insulin-like growth factor 1 (IGF-1), an important growth factor, and its pathway have been reported to maintain the survival of several types of stem cells and play important roles in male reproduction. However, the mechanism through which the IGF-1 pathway acts to regulate the self-renewal of mGSCs remains unclear. We analyzed the effect of IGF-1 on the proliferation and apoptosis of bovine mGSCs. We evaluated the expression profile of long noncoding RNA (LncRNA) H19 in bovine and mouse tissues. Moreover, we investigated whether LncRNA H19 could regulate the IGF-1 pathway. Results showed that IGF-1 could activate the phosphorylation of AKT and ERK signaling pathways, and the IGF-1 pathway played an important role in regulating the proliferation and apoptosis of bovine mGSCs. The proliferation rate of mGSCs decreased, whereas the apoptosis rate of mGSCs increased when the IGF-1 receptor (IGF-1R) was blocked using the IGF-1R-specific inhibitor (picropodophyllin). LncRNA H19 could regulate the IGF-1 signaling pathway and, consequently, the proliferation and apoptosis of mGSCs. The number of cells in the seminiferous tubule decreased when H19 was interfered by injecting a virus-containing supernatant. Hence, LncRNA H19 participated in the regulation of the proliferation and apoptosis of mGSCs via the IGF-1 signaling pathway.  相似文献   

7.
Human embryonic stem cells (hESCs) can serve as an unlimited cell source for cellular transplantation and tissue engineering due to their prolonged proliferation capacity and their unique ability to differentiate into derivatives of all three-germ layers. In order to reliably and safely produce hESCs, use of reagents that are defined, qualified, and preferably derived from a non-animal source is desirable. Traditionally, mouse embryonic fibroblasts (MEFs) have been used as feeder cells to culture undifferentiated hESCs. We recently reported a scalable feeder-free culture system using medium conditioned by MEFs. The base and conditioned medium (CM) still contain unknown bovine and murine-derived components, respectively. In this study, we report the development of a hESC culture system that utilizes a commercially available serum-free medium (SFM) containing human sourced and recombinant proteins supplemented with recombinant growth factor(s) and does not require conditioning with feeder cells. In this system, which employs human laminin coated surface and high concentration of hbFGF, the hESCs maintained undifferentiated hESC morphology and had a twofold increase in expansion compared to hESCs grown in MEF-CM. The hESCs also expressed surface markers SSEA-4 and Tra-1-60 and maintained expression of hTERT, Oct4, and Cripto genes similar to cells cultured in MEF-CM. In addition, hESCs maintained in this culture system were able to differentiate in vitro and in vivo into cells of all three-germ layers. The cells maintained a normal karyotype after prolonged culture in SFM. In summary, this study demonstrates that the hESCs cultured in defined non-conditioned serum-free medium (NC-SFM) supplemented with growth factor(s) retain the characteristics and replicative potential of hESCs. The use of defined culture system with NC-SFM on human laminin simplifies scale-up and allows for reproducible generation of hESCs under defined and controlled conditions that would serve as a starting material for production of hESC derived cells for therapeutic use.  相似文献   

8.
Reproduction is required for the survival of all mammalian animals. Spermatogenesis is an essential and complex developmental process that ultimately results in production of haploid spermatozoa. Recent studies demonstrated that Boule and stimulated by retinoic acid 8 (Stra8) played important roles in initiation meiosis in male germ cells. miR‐34c is indispensable in the late steps of spermatogenesis; remarkably, the main function of miR‐34c is to reduce cell proliferation potentiality and promote cellular apoptosis. The objectives of this study were to investigate the expression patterns of Boule, Stra8, P53 and miR‐34c in dairy goat testis and their relationship in male germ line stem cells (mGSCs). The results first revealed the expression patterns of Boule, Stra8, P53 and miR‐34c in 30 dpp, 90 dpp and adult testes of dairy goats. The expression levels of Boule, Stra8, P53 and miR‐34c in adult dairy goat testes were significantly higher than that of 30 dpp. Overexpression of Boule and Stra8 promoted the expression of miR‐34c in dairy goat mGSCs. In our previous study, we showed that miR‐34c was P53 dependent in mGSCs. These results have shown that the up‐regulation of miR‐34c was not due to P53 protein activation but which might be caused by the up‐regulation of Boule and Stra8 promoting the advance of meiosis. In addition, we found retinoic acid would decrease the expression of P53 and miR‐34c, however, did not change the expression of c‐Myc greatly. It suggested that the function of driving differentiation of dairy goat mGSCs by retinoic acid might not be caused by P53. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
雄性生殖干细胞(male germ stem cells , mGSCs)来源于原始生殖细胞(primordial germ cells ,PGCs) ,且终生存在于性分化后的睾丸中。从20周胎牛分离睾丸细胞,2步连续贴壁速率差法能有效纯化胎牛mGSCs ,经流式细胞仪检测,CD9阳性细胞的比例达到95.8 %。原代与支持细胞共培养,出现隆突状和鸟巢状两种细胞集落。获得1株传至4代仍呈现集落生长的细胞株,且集落AKP染色阳性。对第3代鸟巢状细胞集落免疫组化和诱导分化分析,结果显示:SSEA1和Oct-4免疫组化染色阳性;短期内可自发形成c-kit染色阳性的分化态精原细胞;定向诱导分化形成了表达神经丝蛋白(Neuro filament ,NF)的神经样细胞和表达α-actin的心肌样细胞团。试验结果表明:20周胎牛雄性生殖干细胞在体外可形成具有多分化潜能性的类胚胎干(embryonic stem,ES)细胞。  相似文献   

10.
Boule is a conserved gene in meiosis, which encodes RNA binding protein required for spermatocyte meiosis. Deletion of Boule was found to block meiosis in spermatogenesis, which contributes to infertility. Up to date, the expression and function of Boule in the goat testis are not known. The objectives of this study were to investigate the expression pattern of Boule in dairy goat testis and their function in male germline stem cells (mGSCs). The results first revealed that the expression level of Boule in adult testes was significantly higher than younger and immature goats, and azoospermia and male intersex testis. Over‐expression of Boule promoted the expression of meiosis‐related genes in dairy goat mGSCs. The expression of Stra8 was up‐regulated by over‐expression of Boule analyzed by Western blotting and Luciferase reporter assay. While, Cdc25a, the downstream regulator of Boule, was found not to affect the expression of Stra8, and our data illustrated that Cdc25a did not regulate meiosis via Stra8. The expression of Stra8 and Boule was up‐regulated by RA induction. Taken together, results suggest the Boule plays an important role in dairy goat spermatogenesis and that over‐expression of Boule may promote spermatogenesis and meiosis in dairy goat. J. Cell. Biochem. 114: 294–302, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Spermatogenesis is a complex process that produces functional sperm by establishing male germline stem cells (mGSCs) in adult testes. To study Drosophila spermatogenesis in vitro , we examined various culture conditions of spermatogonia. Spermatogonia from larval testes began to differentiate soon after culture, whereas mGSCs did not undergo self-renewal division. Strikingly, 16-cell spermatogonia from early and late larval testes differentiated into motile spermatids autonomously. Furthermore, individual spermatogonia developed into motile spermatids even after mechanical dissociation from encapsulating cyst cells. This is the first study to report that spermatogonia in larval testes retain the ability to differentiate into spermatids in the absence of gonadal tissue. Our in vitro system should provide an excellent opportunity to study spermatogenesis in detail and apply genetic manipulation.  相似文献   

12.
Dazl (deleted in azoospermia-like) is a conserved gene in mammalian meiosis, which encodes RNA binding protein required for spermatocyte meiosis. Up to date, the expression and function of Dazl in the goat testis are unknown. The objectives of this study were to investigate the expression pattern of Dazl in dairy goat testis and their function in male germline stem cells (mGSCs). The results first revealed that the expression level of Dazl in adult testes was significantly higher than younger and immature goats, and azoospermia and male intersex testis. The dairy goat Dazl is highly conserved analysed by several online and bioinformatics software, respectively. Over-expression of Dazl promoted the expression of meiosis-related genes in dairy goat mGSCs. The expression of Stra8 was up-regulated by over-expression of Dazl analysed by Luciferase reporter assay. Taken together, results suggest the Dazl plays an important role in dairy goat spermatogenesis and that over-expression of Dazl may promote Stra8 expression in dairy goat mGSCs.  相似文献   

13.
无血清无饲养层条件下培养小鼠胚胎干细胞   总被引:2,自引:0,他引:2  
目的研究在无血清无饲养层条件下小鼠胚胎干细胞的培养方法,为最终建立无血清无饲养层培养系统打下基础。方法比较小鼠胚胎干细胞ES-S8株在无血清培养体系和有血清培养体系中的生长情况,分析ES-S8细胞克隆形成效率,测定其生长速度;然后在撤去血清和饲养层的条件下培养ES-S8细胞,进行AKP染色和表面标记物SSEA-1免疫荧光检测。结果ES-S8细胞在无血清培养条件下细胞生长速度减缓,克隆形成率降低,但AKP染色、SSEA-1免疫荧光均显阳性;在无血清无饲养层条件下ES-S8细胞培养仍能形成克隆,且AKP染色、SSEA-1免疫荧光均显阳性。结论研究表明ES-S8细胞能够在无血清无饲养层的培养条件下生长,保持其良好的未分化特性。  相似文献   

14.
小鼠胚胎干细胞在六种培养体系的培养观察   总被引:12,自引:2,他引:12  
目的 观察小鼠胚胎干细胞在六种培养体系中的生长情况。方法 小鼠胚胎干细胞 (ESD3细胞株 )在以下六种培养体系中培养 :1 .原代小鼠胚胎成纤维细胞 (MEF)有血清培养 ,2 .MEF无血清培养 ,3.SNL细胞有血清培养 ,4.LIF(白血病抑制因子 )有血清无饲养层培养 ,5.LIF无血清无饲养层培养 ,6.大鼠肝细胞 (BRL)条件培养基培养。经体外培养 1 0代后 ,观察其克隆形态 ,同时进行碱性磷酸酶检测并将ES细胞接种于裸小鼠皮下 ,观察ESD3的未分化状态和多潜能性。结果 六种培养体系培养的ESD3具有典型的ES细胞克隆形态 :巢状 (集落状 )隆起生长 ,边缘清楚 ,表面平滑 ,结构致密 ;AKP强阳性 ;裸小鼠体内形成了由多种组织构成的畸胎瘤。结论 六种培养体系均能支持ESD3生长 ,并能保持其未分化性和多潜能性 ,为ES细胞的应用研究奠定了良好的基础。  相似文献   

15.
16.
Development and improvement of in vitro culture system supporting self-renewal and unlimited proliferation of porcine pluripotent stem cells (pPSCs) is an indispensable process for the naïve pPSCs establishment. In this study, we modified the previous culture system and attempted to develop a novel chemically defined medium (KOFL) for the establishment of pPSCs. It has been cultured >45 passages with flat colony morphology and normal karyotypes in in vitro environment. These cells exhibited alkaline phosphatase activity and expressed pluripotency markers such as OCT4, SOX2, and NANOG, and also possessed differentiation abilities both in vitro and in vivo, proving by the formation of embryonic bodies and teratomas into three germ layers. Then the cells transfected with a green fluorescent protein (GFP) and the GFP positive cells contribute to the porcine preimplantation embryo development. In addition, these cells maintained long duration under feeder-free condition. In conclusion, our results demonstrated that the pPSCs could be derived from preimplantation porcine embryos in serum-free medium and cultured under the feeder-free condition, providing an effective reference for further optimization of the pPSCs culture system.  相似文献   

17.
Historically, our understanding of molecular genetic aspects of germ cell development has been limited. Recently, results demonstrated that the derivation of pluripotent stem cells may provide the necessary genetic system to study germ cell development. Here, we characterized an induced pluripotent stem cell (iPSC) line, which can spontaneously differentiate into embryonic bodies (EBs) after 3 days of suspension culture, expressing specific markers of three germ layers. Then, we induced the iPSCs to differentiate into germ cells by culturing adherent EBs in retinoic acid (RA) and porcine follicular fluid (PFF) differentiation medium or seminiferous tubule transplantation. Our results indicated that RA and PFF were beneficial for the derivation of germ cells and oocyte‐like cells from iPSCs, and iPSCs transplantation could make a contribution to repairing the testis of infertile mice. Our study offers an approach for further study on the development and the differentiation of germ cells derived from iPSCs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
19.
PLZF与哺乳动物雄性生殖干细胞的发育分化   总被引:1,自引:0,他引:1  
早幼粒细胞白血病锌指蛋白(promyelocytic leukemia zinc finger,PLZF),也被称为ZBTB16(zinc finger and BTB domain containing 16,ZBTB16)或锌指蛋白145(zinc finger protein 145,ZFP145),是我国学者发现与人类疾病相关的蛋白质.人类PLZF的是由673个氨基酸残基组成的转录抑制因子,属于蛋白质超家族. 该超家族以N端的BTB/POZ(bric-à-brac, tramtrack, brad complex(BTB)/poxvirus zinc finger (POZ) domain)结构为特征. PLZF蛋白的BTB/POZ结构与个体发育、胚胎发生、染色体的重构等事件相关.近年发现,PLZF在哺乳动物雄性生殖干细胞(male germline stem cells,mGSCs)发育分化过程中也发挥重要作用.探讨PLZF的生物学功能和作用机制,将有助于理解其在mGSCs发育过程中的重要作用. 本文就PLZF在维持mGSCs自我更新和在发育分化调控中的作用给予综述.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号