首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generation of conditional Cited2 null alleles   总被引:1,自引:0,他引:1  
  相似文献   

2.
The Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism, and mutations in its components disrupt embryonic development in many organisms and cause inherited diseases in humans. We previously described construction and analysis of a hypomorphic allele of the Notch2 gene. Homozygosity for this allele leads to embryonic and perinatal lethality due to cardiovascular and kidney defects. We report here novel Notch2 mutant alleles generated by gene targeting in embryonic stem cells, including a conditional null allele in which exon 3 of the Notch2 gene is flanked by loxP sequences. These new Notch2 mutant alleles expand the set of tools available for studying the myriad roles of the Notch pathway during mammalian development and will enable analysis of Notch2 function at additional stages of embryogenesis and in adult mice.  相似文献   

3.
PDGF-C is a newly identified member of the platelet-derived growth factor (PDGF) family, which is involved in multiple cellular functions by signaling through PDGF receptor (PDGFR)-alphaalpha and alphabeta dimers. PDGF-C deficiency is perinatal lethal due to the formation of cleft palate. To further characterize the cellular function of PDGF-C during both embryonic and postnatal development, we have generated two conditional alleles of the Pdgf-c gene in which two loxP sites flank exon 5. Global Cre-mediated excision of the floxed exon 5 in these alleles resulted in a complete loss of PDGF-C expression and caused embryonic defects identical to those previously described for the PDGF-C null embryos. These conditional alleles will therefore be the important genetic tools for dissecting the spatial and temporal roles of PDGF-C during development and in adult tissues. Furthermore, from this work, we have also described a simple approach for creating mouse conditional alleles in an efficient manner.  相似文献   

4.
The Notch signaling pathway is an evolutionarily‐conserved intercellular signaling mechanism, and mutations in its components disrupt embryonic development in many organisms and cause inherited diseases in humans. The Jagged2 (Jag2) gene, which encodes a ligand for Notch pathway receptors, is required for craniofacial, limb, and T cell development. Mice homozygous for a Jag2 null allele die at birth from cleft palate, precluding study of Jag2 function in postnatal and adult mice. We have generated a Jag2 conditional null allele by flanking the first two exons of the Jag2 gene with loxP sites. Cre‐mediated deletion of the Jag2flox allele generates the Jag2del2 allele, which behaves genetically as a Jag2 null allele. This Jag2 conditional null allele will enable investigation of Jag2 function in a variety of tissue‐specific contexts. genesis 48:390–393, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Regulator of telomere length (RTEL) is a DNA helicase-like protein that has recently been demonstrated to be required for the maintenance of telomere length and genomic stability. Rtel null mice are embryonic lethal with the defects in the nervous system, the heart, the vasculature, and extra-embryonic tissues. Rtel could also be important for the postnatal development as its expression is strongly induced in the proliferating adult cells. To further characterize the role of RTEL in adult tissue function and homeostasis, we have generated the floxed (loxP-flanked) alleles allowing to inactivate RTEL through Cre-mediated recombination in a cell- or tissue-specific manner and also to circumvent the embryonic lethality of the Rtel null allele. Mice heterozygous or homozygous for these alleles are viable and fertile. Crossing the floxed Rtel allele with a ubiquitous Cre transgenic line resulted in embryonic defects identical to those previously described for the Rtel null embryos. These conditional alleles will therefore be the important genetic tools for dissecting the spatial and temporal roles of RTEL in the regulation of telomere length and genomic stability during postnatal development and tumorigenesis.  相似文献   

6.
7.
HIC1 is a tumor suppressor gene that is down-expressed in different malignancies, in part, because of promoter hypermethylation. However, the biological function of HIC1 in gastric cancer remains unclear. It is known that small double-stranded RNAs can induce gene expression by targeting promoter sequences. In the present study, we examined the expression levels of HIC1 in gastric cancer tissue. Several pieces of small double-stranded RNAs were used for the activation of HIC1. Tissue microarray analysis of gastric cancer indicated that down-regulation of HIC1 in gastric cancer tissue was dramatic compared with the adjacent gastric mucosa. Gastric cancer cell lines also showed down-regulated HIC1 expression compared with a human immortalized gastric mucosa cell line. One out of four dsRNAs produced activation of HIC1 as assessed by real-time PCR and Western blotting. Use of a cell counting kit 8 and clonogenicity assays indicated that dsRNA-mediated re-expression of HIC1 inhibited cell proliferation and clonogenicity in gastric cancer. Reactivation of HIC1 suppressed cell migration and induced cell cycle arrest in the G0/G1 phase, as well as induced apoptosis. These results suggest that HIC1 is a potential target of gene therapy against gastric cancer, and that dsRNAs could function as a therapeutic option for up-regulating tumor suppressor genes in gastric cancer and other malignancies.  相似文献   

8.
Breast cancer (BC) is an important cause of female cancer-related death. It has recently been demonstrated that metabolic disorders including lipid metabolism are a hallmark of cancer cells. Lipin-1 is an enzyme that displays phosphatidate phosphatase activity and regulates the rate-limiting step in the pathway of triglycerides and phospholipids synthesis. The objective of this study was to evaluate lipin-1 expression, its prognostic significance, and its correlation with p53 tumor suppressor in patients with BC. In this study, 55 pairs of fresh samples of BC and adjacent noncancerous tissue were used to analyze lipin-1, using quantitative real-time polymerase chain reaction and immunohistochemistry (IHC) staining. The expression of other clinicopathological variables and p53 was also examined using IHC technique. The cell migration was studied in MCF-7 and MDA-MB231 cells following the inhibition of lipin-1 by propranolol. Our results show that the relative expression of lipin-1 messenger RNA was significantly higher in BC tissues compared with the adjacent normal tissue and its inhibition reduced cell migration in cancer cells. This upregulation was negatively correlated with histological grade of tumor and p53 status (p = .001 and p = .034) respectively and positively correlated with the tumor size (p = .006). Our results also seem to indicate that the high lipin-1 expression is related to a good prognosis in patients with BC. The expression of lipin-1 may be considered as a novel independent prognostic factor. The inhibition of lipin-1 may also have therapeutic significance for patients with BC. The correlation between lipin-1 and p53 confirms the role of p53 in the regulation of lipid metabolism in cancer cells.  相似文献   

9.
Loss of Rb1 tumor suppressor gene function is involved in the genesis of most human cancers. Novel therapies targeting Rb1 have been slow to develop because of our incomplete understanding of its molecular mechanisms of action. Rb1 protein (pRb) binds a host of cellular genes and proteins, and these molecular interactions mediate its various functions. Given the potential complexity of these molecular interactions and the lack of established methods for pRb purification, it has been difficult to systematically identify gene and protein interactions relevant to tumor suppression in different tissues in vivo. To address this limitation, we have generated a dual affinity tagged Rb1 allele in the mouse. The tagged allele functions as wild type and the encoded protein can be purified by tandem affinity chromatography. This allele will facilitate identification and characterization of native pRb molecular interactions in any tissue accessible in the mouse. genesis 48:121–126, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
乳腺癌转移抑制基因1(BRMS1)是一个有活性的肿瘤转移抑制基因,参与抑制乳腺癌、黑素瘤、鼻咽癌、非小细胞肺癌、卵巢癌等恶性肿瘤的转移。BRMS1编码蛋白主要通过转录调控转移相关靶基因,参与调节细胞凋亡、细胞通讯、肿瘤血管新生等多种细胞事件。从BRMS1基因的分子结构、表达调控、生物学功能以及转移抑制机理等方面对BRMS1的研究进展做简要回顾。  相似文献   

11.
12.
Mice with endothelial nitric oxide synthase (eNOS) deletions have defined the crucial role of eNOS in vascular development, homeostasis, and pathology. However, cell specific eNOS function has not been determined, although an important role of eNOS has been suggested in multiple cell types. Here, we have generated a floxed eNOS allele in which exons 9–12, encoding the sites essential to eNOS activity, are flanked with loxP sites. Mice homozygous for the floxed allele showed normal eNOS protein levels and no overt phenotype. Conversely, homozygous mice with Cre‐deleted alleles displayed truncated eNOS protein, lack of vascular NO production, and exhibited similar phenotype to eNOS knockout mice, including hypertension, low heart rate, and focal renal scarring. These findings demonstrate that the floxed allele is normal and it can be converted to a non‐functional eNOS allele through Cre recombination. This mouse will allow time‐ and cell‐specific eNOS deletion. genesis 50:685–692, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Smad5 is a member of the Smad family of intracellular mediators of BMP signals and in endothelial cells of TGF-beta signals. We and others previously showed that loss of Smad5 in the mouse results in embryonic lethality (between E9.5-E11.5) due to multiple embryonic and extraembryonic defects. To circumvent the early embryonic lethality and to allow tissue- and time-specific Smad5 inactivation, we created a conditional Smad5 allele in the mouse. Floxed Smad5 (Smad5(flE2,Neo/flE2,Neo)) mice were generated in which both exon2 and the Neo-cassette were flanked by loxP sites. Here we demonstrate that embryos with ubiquitous Cre-mediated deletion of Smad5 (Smad5(flDeltaE2/flDeltaE2)) phenocopy the conventional Smad5 knockout mice. Smad5(flE2/flE2) mice are now available and will be a valuable tool to analyze the role of Smad5 beyond its crucial early embryonic function throughout development and postnatal life.  相似文献   

14.
Hoxc8 is a homeobox gene family member, which is essential for growth and differentiation. Mgl1, a mouse homologue of the Drosophila tumor suppressor gene lgl, was previously identified as a possible target of Hoxc8. However, the biological effects and underlying molecular mechanism of Hoxc8 regulation on Mgl1 has not been fully established. The endogenous expression patterns of Hoxc8 were inversely correlated with those of Mgl1 in different types of cells and tissues. Here we showed that Hoxc8 overexpression downregulated the Mgl1 mRNA expression. Characterization of the ∼2 kb Mgl1 promoter region revealed that the upstream sequence contains several putative Hox core binding sites and chromatin immunoprecipitation assay confirmed that Hoxc8 directly binds to the 5′ upstream region of Mgl1. The promoter activity of this region was diminished by Hoxc8 expression but resumed by knockdown of Hoxc8 using siRNA against Hoxc8. Functional study of Mgl1 in C3H10T1/2 cells revealed a significant reduction in cell adhesion upon expression of Hoxc8. Taken together, our data suggest that Hoxc8 downregulates Mgl1 expression via direct binding to the promoter region, which in turn reduces cell adhesion and concomitant cell migration.  相似文献   

15.
Activation of the WT1 tumor suppressor gene promoter by Pea3   总被引:1,自引:0,他引:1  
  相似文献   

16.
Objective : To investigate expression and significance of PTEN gene in primary hepatocellular carcinoma (HCC). Methods: Immunohistochemical peroxidase-conjugated streptavidin (SP) method was used to detect expression of PTEN gene in 120 cases of primary HCC and its adjacent tissue 10 cases of normal liver tissue. The relationship between expression of tumor suppressor gene of PTEN and the percentage of lymph node metastasis of HCC was analyzed. Results: It was shown that PTEN gene was expressed in all 10 cases of normal liver tissues and paracancerous liver tissues. The staining was localized mainly in cytoplasm. Expression of PTEN in 120 cases of HCC were as follows: 12.5% were negative, 17.5% were weak positive, and 70% were strong positive. At time of diagnosis, 33/120 (27.5%) presented lymph node metastasis. Lymph node metastases were present in 80% (12 out of 15) PTEN negative HCC, 57.14% (12 out of 21) PTEN weak positive HCC and only 10.71% (9 out of 84) PTEN intense positive HCC, ( P <0.05). Therefore, PTEN tumor suppresor gene malfunction seems to be involed in mtastasing capacity of HCC. Conclusion: This study suggests that PTEN gene was deleted or weakly expressed in primary hepatocellar carcinoma, which is probably related to its tumorigenesis.  相似文献   

17.
Germline mutations of the LKB1 tumor suppressor gene result in Peutz-Jeghers syndrome (PJS) characterized by intestinal hamartomas and increased incidence of epithelial cancers. Inactivating mutations in LKB1 have also been found in certain sporadic human cancers and with particularly high frequency in lung cancer. LKB1 has now been demonstrated to play a crucial role in pulmonary tumorigenesis, controlling initiation, differentiation, and metastasis. Recent evidences showed that LKB1 is a multitasking kinase, with great potential in orchestrating cell activity. Thus far, LKB1 has been found to play a role in cell polarity, energy metabolism, apoptosis, cell cycle arrest, and cell proliferation, all of which may require the tumor suppressor function of this kinase and/or its catalytic activity. This review focuses on remarkable recent findings concerning the molecular mechanism by which the LKB1 protein kinase operates as a tumor suppressor and discusses the rational treatment strategies to individuals suffering from PJS and other common disorders related to LKB1 signaling.  相似文献   

18.
Tumor suppressor genes have been shown to be necessary for proper maintenance of cell growth control. Inactivation of these genes in the germline of humans is linked to inherited cancer predisposition. Moreover, sporadically arising human tumors often have somatic mutations in tumor suppressor genes. During the past few years, advances in molecular and cellular biology have led to the creation of animal models that have germline mutations of various tumor suppressor genes. Such mice potentially represent important animal models for familial cancer predisposition syndromes, and the study of the tumorigenesis process has been greatly assisted by their development. Such models have also demonstrated the importance of tumor suppressor function in embryonic development. In this review, we describe mice with inactivated germline tumor suppressor genes that are genetically analogous to 10 different inherited cancer syndromes in humans. We describe the variable usefulness of the mutant mice as models for human disease.  相似文献   

19.
p120 Ras GTPase-activating protein (RasGAP) encoded by the rasa1 gene in mice is a prototypical member of the RasGAP family of proteins involved in negative-regulation of the p21 Ras proto-oncogene. RasGAP has been implicated in signal transduction through a number of cell surface receptors. In humans, inactivating mutations in the coding region of the RASA1 gene cause capillary malformation arteriovenous malformation. In mice, generalized disruption of the rasa1 gene results in early embryonic lethality associated with defective vasculogenesis and increased apoptosis of neuronal cells. The early lethality in this mouse model precludes its use to further study the importance of RasGAP as a regulator of cell function. Therefore, to circumvent this problem, we have generated a conditional rasa1 knockout mouse. In this mouse, an exon that encodes a part of the RasGAP protein essential for catalytic activity has been flanked by loxP recognition sites. With the use of different constitutive and inducible Cre transgenic mouse lines, we show that deletion of this exon from the rasa1 locus results in effective loss of expression of catalytically-active RasGAP from a variety of adult tissues. The conditional rasa1 mouse will be useful for the analysis of the role of RasGAP in mature cell types.  相似文献   

20.
Twist1 is the mouse ortholog of TWIST1, the human gene mutated in Saethre-Chotzen syndrome. Previously, a Twist1 null allele was generated by gene targeting in mouse embryonic stem cells. Twist1 heterozygous mice develop polydactyly and a craniofacial phenotype similar to Saethre-Chotzen patients. Mice homozygous for the Twist1 null allele die around embryonic day 11.5 (E11.5) with cranial neural tube closure and vascular defects, hindering in vivo studies of Twist1 function at later stages of development. Here, we report the generation of a Twist1 conditional null allele in mice that functions like a wild-type allele but can be converted to a null allele upon Cre-mediated recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号