首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein–protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.  相似文献   

2.
3.
Functional–structural plant models (FSPMs) explore and integrate relationships between a plant’s structure and processes that underlie its growth and development. In recent years, the range of topics being addressed by scientists interested in functional–structural plant modelling has expanded greatly. FSPM techniques are now being used to dynamically simulate growth and development occurring at the microscopic scale involving cell division in plant meristems to the macroscopic scales of whole plants and plant communities. The plant types studied also cover a broad spectrum from algae to trees. FSPM is highly interdisciplinary and involves scientists with backgrounds in plant physiology, plant anatomy, plant morphology, mathematics, computer science, cellular biology, ecology and agronomy. This special issue of Annals of Botany features selected papers that provide examples of comprehensive functional–structural models, models of key processes such as partitioning of resources, software for modelling plants and plant environments, data acquisition and processing techniques and applications of functional–structural plant models for agronomic purposes.  相似文献   

4.
Systems approaches have great potential for application in predictive ecology. In this paper, we present a range of examples, where systems approaches are being developed and applied at a range of scales in the field of global change and biogeochemical cycling. Systems approaches range from Bayesian calibration techniques at plot scale, through data assimilation methods at regional to continental scales, to multi-disciplinary numerical model applications at country to global scales. We provide examples from a range of studies and show how these approaches are being used to address current topics in global change and biogeochemical research, such as the interaction between carbon and nitrogen cycles, terrestrial carbon feedbacks to climate change and the attribution of observed global changes to various drivers of change. We examine how transferable the methods and techniques might be to other areas of ecosystem science and ecology.  相似文献   

5.
生态学中的尺度问题——尺度上推   总被引:7,自引:0,他引:7  
张娜 《生态学报》2007,27(10):4252-4266
尺度推绎是生态学理论和应用的核心。如何在一个异质景观中进行尺度推绎仍然是一个悬而未决的科学难题,是对当今生态学家在全球变化背景下研究环境问题的重大挑战。就目前的研究,一般可分为四大类尺度推绎途径:空间分析法(如分维分析法和小波分析法)、基于相似性的尺度上推方法、基于局域动态模型的尺度上推方法、随机(模型)法。基于相似性的尺度上推方法来源于生物学上的异量关联,可将其思想延伸至空间上,研究物种丰富度、自然河网、地形特征、生态学格局或过程变量和景观指数等。基于局域动态模型的尺度上推方法需要首先确定是否进行跨尺度推绎,以及是否考虑空间单元之间的水平相互作用和反馈,然后再应用具体的方法或途径,如简单聚合法、有效值外推法、直接外推法、期望值外推、显式积分法和空间相互作用模拟法等。随机(模型)法以其它尺度上推方法为基础,根据研究的是单个景观,还是多个景观,采用不同的途径。理解、定量和降低尺度推绎结果的不确定性已经变得越来越重要,但相关研究仍然极少。以上所有有关尺度推绎的方法、途径和结果分析共同构成了尺度推绎的概念框架。  相似文献   

6.
植物性状研究的机遇与挑战:从器官到群落   总被引:4,自引:0,他引:4  
何念鹏  刘聪聪  张佳慧  徐丽  于贵瑞 《生态学报》2018,38(19):6787-6796
植物性状(Plant trait)或植物功能性状(Plant functional trait)通常是指植物对外界环境长期适应与进化后所表现出的可量度、且与生产力优化或环境适应等密切相关的属性。近几十年来,植物性状研究在性状-生产力、性状-养分、性状间相互关系、性状-群落结构维持等方面取得了卓越成就。然而,由于大多数性状调查都是以植物群落内优势种或亚优势种为对象,使其在探讨群落尺度的性状-功能关系、性状数据如何用于改进或优化模型、性状数据如何与遥感连接等问题时,存在空间尺度和量纲不匹配的极大挑战。为了破解上述难题,亟需发展新的、基于单位土地面积的群落性状(Community trait)概念体系、数据源和计算方法等,推动植物性状数据与快速发展的宏观生态学新技术(遥感、模型和通量观测等)相结合,既拓展了植物性状研究范畴,又可推动其更好地服务于区域生态环境问题的解决。所定义的群落性状(如叶片氮含量、磷含量、比叶面积、气孔密度、叶绿素含量等),是在充分考虑群落内所有物种的性状实测数据,再结合比叶面积、生物量异速生长方程和群落结构数据等,推导而成的基于单位土地面积的群落性状。受测试方法的影响,传统的直接算术平均法或相对生物量加权平均法所获得的群落水平的植物性状(如叶片氮含量g/kg或%),虽然可以有效地探讨群落结构维持机制,由于无法实现对群落性状在量纲上向单位土地面积转换,使它很难与模型和遥感数据相匹配。基于单位土地面积的群落性状,可在空间尺度匹配(或量纲匹配)的前提下实现个体水平测定的植物性状数据与生态模型和遥感观测相联系,更好地探讨区域尺度下自然生态系统结构和功能的关系及其对全球变化的响应与适应。同时,它也可更好地建立群落水平的性状-功能的定量关系(非物种水平),为更好地探讨自然群落结构维持机制和生产力优化机制提供了新思路。  相似文献   

7.
ABSTRACT

Background: Plant communities are usually characterised by species composition and abundance, but also underlie a multitude of complex interactions that we have only recently started unveiling. Yet, we are still far from understanding ecological and evolutionary processes shaping the network-level organisation of plant diversity, and to what extent these processes are specific to certain spatial scales or environments.

Aims: Understanding the systemic mechanisms of plant–plant network assembly and their consequences for diversity patterns.

Methods: We review recent methods and results of plant–plant networks.

Results: We synthetize how plant–plant networks can help us to: (a) assess how competition and facilitation may balance each other through the network; (b) analyse the role of plant–plant interactions beyond pairwise competition in structuring plant communities, and (c) forecast the ecological implications of complex species dependencies. We discuss pros and cons, assumptions and limitations of different approaches used for inferring plant–plant networks.

Conclusions: We propose novel opportunities for advancing plant ecology by using ecological networks that encompass different ecological levels and spatio-temporal scales, and incorporate more biological information. Embracing networks of interactions among plants can shed new light on mechanisms driving evolution and ecosystem functioning, helping us to mitigate diversity loss.  相似文献   

8.
Systems biology is based on computational modelling and simulation of large networks of interacting components. Models may be intended to capture processes, mechanisms, components and interactions at different levels of fidelity. Input data are often large and geographically disperse, and may require the computation to be moved to the data, not vice versa. In addition, complex system-level problems require collaboration across institutions and disciplines. Grid computing can offer robust, scaleable solutions for distributed data, compute and expertise. We illustrate some of the range of computational and data requirements in systems biology with three case studies: one requiring large computation but small data (orthologue mapping in comparative genomics), a second involving complex terabyte data (the Visible Cell project) and a third that is both computationally and data-intensive (simulations at multiple temporal and spatial scales). Authentication, authorisation and audit systems are currently not well scalable and may present bottlenecks for distributed collaboration particularly where outcomes may be commercialised. Challenges remain in providing lightweight standards to facilitate the penetration of robust, scalable grid-type computing into diverse user communities to meet the evolving demands of systems biology.  相似文献   

9.
In recent years, research interest in plant water uptake strategies has rapidly increased in many disciplines, such as hydrology, plant ecology and ecophysiology. Quantitative modelling approaches to estimate plant water uptake and spatiotemporal dynamics have significantly advanced through different disciplines across scales. Despite this progress, major limitations, for example, predicting plant water uptake under drought or drought impact at large scales, remain. These are less attributed to limitations in process understanding, but rather to a lack of implementation of cross-disciplinary insights into plant water uptake model structure. The main goal of this review is to highlight how the four dominant model approaches, that is, Feddes approach, hydrodynamic approach, optimality and statistical approaches, can be and have been used to create interdisciplinary hybrid models enabling a holistic system understanding that, among other things, embeds plant water uptake plasticity into a broader conceptual view of soil–plant feedbacks of water, nutrient and carbon cycling, or reflects observed drought responses of plant–soil feedbacks and their dynamics under, that is, drought. Specifically, we provide examples of how integration of Bayesian and hydrodynamic approaches might overcome challenges in interpreting plant water uptake related to different travel and residence times of different plant water sources or trade-offs between root system optimization to forage for water and nutrients during different seasons and phenological stages.  相似文献   

10.
Plant water‐use efficiency (WUE, the carbon gained through photosynthesis per unit of water lost through transpiration) is a tracer of the plant physiological controls on the exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere. At the leaf level, rising CO2 concentrations tend to increase carbon uptake (in the absence of other limitations) and to reduce stomatal conductance, both effects leading to an increase in leaf WUE. At the ecosystem level, indirect effects (e.g. increased leaf area index, soil water savings) may amplify or dampen the direct effect of CO2. Thus, the extent to which changes in leaf WUE translate to changes at the ecosystem scale remains unclear. The differences in the magnitude of increase in leaf versus ecosystem WUE as reported by several studies are much larger than would be expected with current understanding of tree physiology and scaling, indicating unresolved issues. Moreover, current vegetation models produce inconsistent and often unrealistic magnitudes and patterns of variability in leaf and ecosystem WUE, calling for a better assessment of the underlying approaches. Here, we review the causes of variations in observed and modelled historical trends in WUE over the continuum of scales from leaf to ecosystem, including methodological issues, with the aim of elucidating the reasons for discrepancies observed within and across spatial scales. We emphasize that even though physiological responses to changing environmental drivers should be interpreted differently depending on the observational scale, there are large uncertainties in each data set which are often underestimated. Assumptions made by the vegetation models about the main processes influencing WUE strongly impact the modelled historical trends. We provide recommendations for improving long‐term observation‐based estimates of WUE that will better inform the representation of WUE in vegetation models.  相似文献   

11.
Ren LH  Ding YS  Shen YZ  Zhang XF 《Amino acids》2008,35(3):565-572
Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. This research requires the ability to simulate particular biological systems as cells, organs, organisms, and communities. In this paper, a novel bio-network simulation platform is proposed for system biology studies by combining agent approaches. We consider a biological system as a set of active computational components interacting with each other and with an external environment. Then, we propose a bio-network platform for simulating the behaviors of biological systems and modelling them in terms of bio-entities and society-entities. As a demonstration, we discuss how a protein-protein interaction (PPI) network can be seen as a society of autonomous interactive components. From interactions among small PPI networks, a large PPI network can emerge that has a remarkable ability to accomplish a complex function or task. We also simulate the evolution of the PPI networks by using the bio-operators of the bio-entities. Based on the proposed approach, various simulators with different functions can be embedded in the simulation platform, and further research can be done from design to development, including complexity validation of the biological system.  相似文献   

12.
Zhang  Xi  Man  Yi  Zhuang  Xiaohong  Shen  Jinbo  Zhang  Yi  Cui  Yaning  Yu  Meng  Xing  Jingjing  Wang  Guangchao  Lian  Na  Hu  Zijian  Ma  Lingyu  Shen  Weiwei  Yang  Shunyao  Xu  Huimin  Bian  Jiahui  Jing  Yanping  Li  Xiaojuan  Li  Ruili  Mao  Tonglin  Jiao  Yuling  Sodmergen  Ren  Haiyun  Lin  Jinxing 《中国科学:生命科学英文版》2021,64(9):1392-1422
In multicellular and even single-celled organisms, individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation. Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes. Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project. In plant science, network analysis has similarly been applied to study the connectivity of plant components at the molecular, subcellular, cellular, organic, and organism levels. Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype. In this review, we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities. We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants. Finally, we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.  相似文献   

13.
There have been numerous attempts to derive general models for the structure and function of resource delivery networks in biology. Such theories typically predict the quantitative structure of vascular networks across scales. For example, fractal branching models of plant structure predict that the network dimensions within plant stems or leaves should be scale-free. However, very few empirical examples of such networks are available with which to evaluate such hypotheses. Here, we apply recently developed leaf network extraction software to a global leaf dataset. We find that leaf networks are neither entirely scale-free nor governed entirely by a characteristic scale. Indeed, we find many network properties, such as vein length distributions, which are governed by characteristic scales, and other network properties, notably vein diameter distributions, which are typified by power-law behaviour. Our findings suggest that theories of network structure will remain incomplete until they address the multiple constraints on network architecture.  相似文献   

14.
Systems thinking is an increasingly recognized paradigm in education in both natural and social sciences, a particular focus being, naturally, in biology. This article argues that plant biology, and in particular, plant hormonal signaling, provides highly illustrative models for learning and teaching in a systems paradigm, because it offers examples of highly complex networks, ranging from the molecular‐ to ecosystem‐scale, and in addition lends itself to the use of real‐life biological objects.  相似文献   

15.
16.
17.
A number of research groups in various areas of plant biology as well as computer science and applied mathematics have addressed modelling the spatiotemporal dynamics of growth and development of plants. This has resulted in development of functional–structural plant models (FSPMs). In FSPMs, the plant structure is always explicitly represented in terms of a network of elementary units. In this respect, FSPMs are different from more abstract models in which a simplified representation of the plant structure is frequently used (e.g. spatial density of leaves, total biomass, etc.). This key feature makes it possible to build modular models and creates avenues for efficient exchange of model components and experimental data. They are being used to deal with the complex 3-D structure of plants and to simulate growth and development occurring at spatial scales from cells to forest areas, and temporal scales from seconds to decades and many plant generations. The plant types studied also cover a broad spectrum, from algae to trees. This special issue of Annals of Botany features selected papers on FSPM topics such as models of morphological development, models of physical and biological processes, integrated models predicting dynamics of plants and plant communities, modelling platforms, methods for acquiring the 3-D structures of plants using automated measurements, and practical applications for agronomic purposes.  相似文献   

18.
19.
The metabolic capabilities of many environmentally and medically important microbes can be quantitatively explored using systems biology approaches to metabolic networks. Yet, as we learn more about the complex microbe-microbe and microbe-environment interactions in microbial communities, it is important to understand whether and how system-level approaches can be extended to the ecosystem level. Here we summarize recent work that addresses these challenges at multiple scales, starting from two-species natural and synthetic ecology models, up to biosphere-level approaches. Among the many fascinating open challenges in this field is whether the integration of high throughput sequencing methods and mathematical models will help us capture emerging principles of ecosystem-level metabolic organization and evolution.  相似文献   

20.
Systems biology views and studies the biological systems in the context of complex interactions between their building blocks and processes. Given its multi-level complexity, metabolic syndrome (MetS) makes a strong case for adopting the systems biology approach. Despite many MetS traits being highly heritable, it is becoming evident that the genetic contribution to these traits is mediated via gene–gene and gene–environment interactions across several spatial and temporal scales, and that some of these traits such as lipotoxicity may even be a product of long-term dynamic changes of the underlying genetic and molecular networks. This presents several conceptual as well as methodological challenges and may demand a paradigm shift in how we study the undeniably strong genetic component of complex diseases such as MetS. The argument is made here that for adopting systems biology approaches to MetS an integrative framework is needed which glues the biological processes of MetS with specific physiological mechanisms and principles and that lipotoxicity is one such framework. The metabolic phenotypes, molecular and genetic networks can be modeled within the context of such integrative framework and the underlying physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号