首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laura Bertini 《FEBS letters》2009,583(17):2865-2224
PR4 proteins possess antifungal activity against several pathogenic fungi suggesting a pivotal role in defence reactions against plant pathogen attack. We already showed that wheatwin1, a wheat PR protein of class 4, is endowed with ribonuclease activity. In this study we produced three mutants altering the active site and performed comparative analysis with the native protein also in the presence of the ribonuclease inhibitor 5′-ADP. We characterized the RNA binding site and its interaction with 5′-ADP by 3D modelling and docking studies. Moreover, in vitro antifungal assays have been carried out in order to study the relationship between antifungal and ribonuclease activities. Finally, localization of wheatwin1 in Fusarium culmorum spores was evaluated using fluorescence light microscope.  相似文献   

2.
Hu  Xu  Reddy  A.S.N. 《Plant molecular biology》1997,34(6):949-959
Pathogenesis-related (PR)-5 proteins are a family of proteins that are induced by different phytopathogens in many plants and share significant sequence similarity with thaumatin. We isolated a complementary DNA (ATLP-3) encoding a PR5-like protein from Arabidopsis which is distinct from two other previously reported PR5 cDNAs from the same plant species. The predicted ATLP-3 protein with its amino-terminal signal sequence is 245 amino acids in length and is acidic with a pI of 4.8. The deduced amino acid sequence of ATLP-3 shows significant sequence similarity with PR5 and thaumatin-like proteins from Arabidopsis and other plants and contains a putative signal sequence at the amino-terminus. The expression of ATLP-3 and a related gene (ATLP-1) that we previously isolated from Arabidopsis was induced by pathogen infection and salicylic acid, a known inducer of pathogenesis-related genes. Southern blot analysis indicates that the ATLP-1 and ATLP-3 are coded by single-copy genes. To study the effect of ATLP-1 and ATLP-3 proteins on fungal growth, the cDNA regions corresponding to putative mature protein were expressed in Escherichia coli and the cDNA encoded proteins were purified. ATLP-1 and ATLP-3 proteins cross-reacted with anti-osmotin and anti-zeamatin antibodies. ATLP-3 protein showed antifungal activity against several fungal pathogens suggesting that ATLP-3 may be involved in plant defense against fungal pathogens.  相似文献   

3.
Mature chestnut seeds, with one of the highest moisture contents described to date, accumulate certain defensive proteins at unusually elevated levels. In this work a major 23-kDa thaumatin-like protein, termed CsTL1, has been purified from mature chestnut ( Castanea sativa ) cotyledons. Amino acid sequencing and characterization of its full-length cDNA indicate that CsTL1 is synthesized as a preprotein with a signal peptide 22 amino acids in length. The mature protein contains 16 conserved cysteine residues presumably involved in disulfide bonding and has a high isoelectric point (ca. 9). Unlike most basic pathogenesis-related (PR) proteins, mature CsTL1 is localized to the extracellular matrix, as revealed by immunoelectron microscopy studies of cotyledonary cells. The isolated protein has in vitro antifungal activity against Trichoderma viride and Fusarium oxysporum and shows strong synergistic effects with CsCh1, the most abundant chestnut cotyledon endochitinase. Moreover, both CsTL1 and CsCh1 appear to be regulated in the same manner during seed development and germination. These observations, along with the recent finding of endoglucanase activity for some TL proteins, support the notion that CsTL1 and CsCh1 are part of a complex seed defensive system against microbial growth. Another possibility is that these, and probably other seed PR proteins, have antifreeze activity. Both functions would be particularly relevant for chestnut seeds given their remarkable moisture content at maturity.  相似文献   

4.
Chadha P  Das RH 《Planta》2006,225(1):213-222
A pathogenesis related protein (AhPR10) is identified from a clone of 6-day old Arachis hypogaea L. (peanut) cDNA library. The clone expressed as a ∼20 kDa protein in E. coli. Nucleotide sequence derived amino acid sequence of the coding region shows its homology with PR10 proteins having Betv1 domain and P loop motif. Recombinant AhPR10 has ribonuclease activity, and antifungal activity against the peanut pathogens Fusarium oxysporum and Rhizoctonia solani. Mutant protein AhPR10-K54N where lys54 is mutated to asn54 loses its ribonuclease and antifungal activities. FITC labeled AhPR10 and AhPR10-K54N are internalized by hyphae of F. oxysporum and R. solani but the later protein does not inhibit the fungal growth. This suggests that the ribonuclease function of AhPR10 is essential for its antifungal activity. Energy and temperature dependent internalization of AhPR10 into sensitive fungal hyphae indicate that internalization of the protein occurs through active uptake.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .The nucleotide sequence of AhPR10 reported in this paper is submitted to NCBI Nucleotide Sequence Database under the Accession number AY726607.  相似文献   

5.
6.
The role of plant defence proteins in fungal pathogenesis   总被引:4,自引:0,他引:4  
It is becoming increasingly evident that a plant–pathogen interaction may be compared to an open warfare, whose major weapons are proteins synthesized by both organisms. These weapons were gradually developed in what must have been a multimillion-year evolutionary game of ping-pong. The outcome of each battle results in the establishment of resistance or pathogenesis. The plethora of resistance mechanisms exhibited by plants may be grouped into constitutive and inducible, and range from morphological to structural and chemical defences. Most of these mechanisms are defensive, exhibiting a passive role, but some are highly active against pathogens, using as major targets the fungal cell wall, the plasma membrane or intracellular targets. A considerable overlap exists between pathogenesis-related (PR) proteins and antifungal proteins. However, many of the now considered 17 families of PR proteins do not present any known role as antipathogen activity, whereas among the 13 classes of antifungal proteins, most are not PR proteins. Discovery of novel antifungal proteins and peptides continues at a rapid pace. In their long coevolution with plants, phytopathogens have evolved ways to avoid or circumvent the plant defence weaponry. These include protection of fungal structures from plant defence reactions, inhibition of elicitor-induced plant defence responses and suppression of plant defences. A detailed understanding of the molecular events that take place during a plant–pathogen interaction is an essential goal for disease control in the future.  相似文献   

7.
In this study an antifungal protein from Urginea indica bulbs was purified to homogeneity by acid precipitation, Diol 300 Gel-filtration, and C(18) reverse phase HPLC. Its molecular mass was estimated to be 29 kDa and periodic acid-Schiff (PAS) staining showed that identified antifungal molecule is a glycoprotein. The neutralization of antifungal activity after periodate oxidation of 29 kDa glycoprotein suggests that the glycan part of the molecule appears to be involved in antifungal activity. N-terminal amino acid sequence of the purified protein was determined as SQLKAXIXDF. This sequence had no sequence similarity with any antifungal proteins. A polyclonal antiserum was raised against purified protein and used in immunolocalization analysis. Results suggest that it is localized to the cell wall of the bulb. Antifungal tests have demonstrated that U. indica protein exerts a fungistatic effect. It completely inhibits the germination of spores and hyphal growth of Fusarium oxysporum.  相似文献   

8.
9.
Pathogenesis-related (PR) proteins are plant proteins that are induced in response to pathogen attack. PR proteins are grouped into independent families based on their sequences and properties. The PR-4 family comprises class I and class II chitinases. We have isolated a full-length cDNA encoding a chitinase from maize which shares a high degree of nucleotide and amino acid sequence homology with the class II chitinases of the PR-4 family of PR proteins. Our results indicate that fungal infection, and treatment either with fungal elicitors or with moniliformin, a mycotoxin produced by the fungus Fusarium moniliforme, increase the level of ZmPR4 mRNA. In situ mRNA hybridization analysis in sections obtained from fungus-infected germinating embryos revealed that ZmPR4 mRNA accumulation occurs in those cell types that first establish contact with the pathogen. ZmPR4 mRNA accumulation is also stimulated by treatment with silver nitrate whereas the application of the hormones gibberellic acid or acetylsalicylic acid has no effect. Wounding, or treatment with abscisic acid or methyl jasmonate, results in accumulation of ZmPR4 mRNA in maize leaves. Furthermore, the ZmPR4 protein was expressed in Escherichia coli, purified and used to obtain polyclonal antibodies that specifically recognized ZmPR4 in protein extracts from fungus-infected embryos. Accumulation of ZmPR4 mRNA in fungus-infected maize tissues was accompanied by a significant accumulation of the corresponding protein. The possible implications of these findings as part of the general defence response of maize plants against pathogens are discussed.  相似文献   

10.
Trichoderma harzianum parasitizes a large variety of phytopathogenic fungi. Trichoderma harzianum mycoparasitic activity depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall. A gene ( SS10 ) encoding a subtilisin-like protease was cloned from T. harzianum T88, a biocontrol agent effective against soil-borne fungal pathogens. The full-length cDNA was isolated by 5' and 3' rapid amplification of the cDNA ends. The coding region of the gene is 1302 bp long, encoding 433 amino acids of a predicted protein with a molecular mass of 45 kDa and a pI of 6.1. Analysis of the deduced amino acid sequence revealed that this protein had homology to the serine proteases of the subtilisin-like superfamily (subtilases) (EC 3.4.21.) and had a predicted active site made up of the catalytic residues Asp 187, His 218 and Ser 376. Northern experiments demonstrated that SS10 was induced in response to different fungal cell walls. Subtilisin-like protease gene SS10 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. The enzyme activity culminates (17.8 U mL−1) 60 h after induction with galactose. The optimal enzyme reaction temperature was 50 °C and the optimal pH was 8. The subtilisin-like protease exerted broad-spectrum antifungal activity against Alternaria alternata, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia sclerotiorum and Cytospora chrysosperma .  相似文献   

11.
12.
An abundant 17 kDa protein which was isolated and characterized from 10-day old healthy root tissue of white lupin (Lupinus albus) proved to have a high sequence similarity to pathogenesis-related proteins found in other species. Subsequently, a corresponding clone (LaPR-10) was identified in a cDNA library prepared from the same tissue that exhibited a high amino acid sequence similarity to a number of the PR-10 family proteins. The clone contains an open reading frame encoding a polypeptide of 158 amino acids, with a predicted molecular mass of 16905 Da and an isoelectric point of 4.66. Southern blot analysis indicates that LaPR-10 is likely a single-copy gene, or a member of a small gene family. The clone was expressed in Escherichia coli, and its protein product was purified to near homogeneity. Both the native and the recombinant proteins were immunorecognized by antibodies raised against pea PR-10 proteins, and exhibited a ribonucleolytic activity against several RNA preparations, including lupin root total RNA. Characterization of its enzymatic properties indicates that the LaPR-10 protein belongs to the class II ribonucleases. We present evidence that the white lupin 17 kDa protein is constitutively expressed during all stages of root development and, to a lesser extent, in other plant parts. In addition, we demonstrate the presence, in the LaPR-10 amino acid sequence, of a number of motifs that are common to most PR-10 proteins, as well as a RGD motif that is shared only with the alfalfa SRG1 sequence.  相似文献   

13.
Six rice genotypes showing susceptible and resistant reactions to brown planthopper (BPH), Nilaparvata lugens were studied for feeding‐induced changes in defence enzymes and pathogenesis‐related (PR) proteins. The high resistant genotypes PTB 33, ADT 45 and ASD 7 and moderately resistant genotypes CO 43 and KAU 1661 recorded the greater expression of defence enzymes peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, total phenol and β‐1,3 glucanase in response to N. lugens feeding at 1 day after infestation (DAI) compared with susceptible genotype TN1. The greater activity of chitinase was observed in resistant cultivars at 3 DAI and the activity was sustained for more than 1 week compared with susceptible TN1. In conclusion, the current study revealed that these defence enzymes and PR proteins might attribute to the resistance mechanisms in rice plants against BPH infestation.  相似文献   

14.
A two-dimensional gel electrophoresis system that combines a cationic polyacrylamide gel electrophoresis at pH near neutrality with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to analyze the spectrum of basic polypeptides that accumulate in bean (Phaseolus vulgaris) abscission zones after treatment with ethylene. Results showed that, as abscission progressed, at least seven basic proteins accumulated in the abscission zone prior to the accumulation of 9.5 cellulase. Six of the seven proteins correspond to pathogenesis-related (PR) proteins. Among them, two isoforms of β-1,3-glucanase and multiple isoforms of chitinase were identified. A 22 kilodalton polypeptide that accumulated to high levels was identified as a thaumatin-like protein by analysis of its N-terminal sequence (up to 20 amino acids) and its serological relationship with heterologous thaumatin antibodies. A 15 kilodalton polypeptide serologically related to PR P1 (p14) from tomato was identified as bean PR P1 (p14)-like protein. The kinetics of accumulation of glucanases, chitinases, thaumatin-like and PR P1 (p14)-like proteins during ethylene treatment were similar and they showed that PR proteins accumulated in abscission zones prior to the increase in 9.5 cellulase. Addition of indoleacetic acid, a potent inhibitor of abscission, reduced the accumulation of these proteins to a similar extent (60%). The synchronized accumulation of this set of PR proteins, early in the abscission process, may play a role in induced resistance to possible fungal attack after a plant part is shed. The seventh protein does not correspond to any previously characterized PR protein. This new 45 kilodalton polypeptide accumulated in abscission zones on exposure to ethylene concomitantly with the increase in 9.5 cellulase. Its N-terminal sequence (up to 15 amino acids) showed some homology with the amino terminal sequence of chitinase. Polyclonal antibodies against chitinase recognized the 45 kilodalton polypeptide, but polyclonal antibodies against the 45 kilodalton protein recognized chitinase weakly. When abscission was inhibited by addition of indoleacetic acid, the accumulation of the 45 kilodalton protein was strongly inhibited (80%). This result suggests that the 45 kilodalton polypeptide may play a more direct role in abscission.  相似文献   

15.
Ergosterol is the main sterol of most fungi. Production of reactive oxygen species after the treatment of tobacco and tomato cells by nano-molar concentrations of ergosterol was previously observed as well as the activation of some stress activated mitogen-activated protein kinases on alfalfa cells. In this paper, the expression of some defence-related genes after the ergosterol treatment of tobacco Nicotiana tabacum plants is reported. The gene expression of pathogenesis related proteins of families PR1, PR3, PR5 and proteinase inhibitors of class I and II together with enzymes participating in the defence response, such as phenylalanine-ammonia lyase and sesquiterpene cyclase, were monitored by RT-qPCR. In addition, the concentrations of salicylic acid, an important signalling molecule, increased in time due to the enzyme activation. On the other hand, ergosterol did not provoke tissue necrosis and the possible cross-talk between the signalling pathways of salicylate and jasmonate was observed. Collected data shows that ergosterol is able to activate the expression of a number of defence genes and could increase resistance against pathogens.  相似文献   

16.
Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4 . Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling.  相似文献   

17.
The pathogenesis-related (PR) proteins of plants have originally been identified as proteins that are strongly induced upon biotic and abiotic stress. These proteins fall into 17 distinct classes (PR1–PR17). The mode of action of most of these PR proteins has been well characterized, except for PR1, which belongs to a widespread superfamily of proteins that share a common CAP domain. Proteins of this family are not only expressed in plants but also in humans and in many different pathogens, including phytopathogenic nematodes and fungi. These proteins are associated with a diverse range of physiological functions. However, their precise mode of action has remained elusive. The importance of these proteins in immune defence is illustrated by the fact that PR1 overexpression in plants results in increased resistance against pathogens. However, PR1-like CAP proteins are also produced by pathogens and deletion of these genes results in reduced virulence, suggesting that CAP proteins can exert both defensive and offensive functions. Recent progress has revealed that plant PR1 is proteolytically cleaved to release a C-terminal CAPE1 peptide, which is sufficient to activate an immune response. The release of this signalling peptide is blocked by pathogenic effectors to evade immune defence. Moreover, plant PR1 forms complexes with other PR family members, including PR5, also known as thaumatin, and PR14, a lipid transfer protein, to enhance the host's immune response. Here, we discuss possible functions of PR1 proteins and their interactors, particularly in light of the fact that these proteins can bind lipids, which have important immune signalling functions.  相似文献   

18.
19.
High levels of active HIV-1 protease (PR) were produced in Escherichia coli, amounting to 8-10% of total cell protein. High production levels were achieved by altering the following parameters: (1) codon preference of the coding region, (2) A+T-richness at the 5' end of the coding region, and (3) promoter. To circumvent the toxicity of HIV-1 PR in E. coli, the gene was expressed as a fusion protein with two different proteolytic autocleavage sequences. In both the cases, the fusion protein could be cleaved in vivo to give an active molecule with the native sequence at the N terminus.  相似文献   

20.
Plants produce a variety of secondary metabolites, many of which have antifungal activity. Saponins are plant glycosides that may provide a preformed chemical barrier against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici and other tomato pathogens produce extracellular enzymes known as tomatinases, which deglycosylate alpha-tomatine to yield less toxic derivatives. We have cloned and characterized the cDNA and genomic DNA encoding tomatinase from the vascular pathogen of tomato F. oxysporum f. sp. lycopersici. This gene encodes a protein (FoTom1) with no amino acid sequence homology to any previously described saponinase, including tomatinase from Septoria lycopersici. Although FoTom1 is related to family 10 glycosyl hydrolases, which include mainly xylanases, it has no detectable xylanase activity. We have overexpressed and purified the protein with a bacterial heterologous system. The purified enzyme is active and cleaves alpha-tomatine into the less toxic compounds tomatidine and lycotetraose. Tomatinase from F. oxysporum f. sp. lycopersici is encoded by a single gene whose expression is induced by alpha-tomatine. This expression is fully repressed in the presence of glucose, which is consistent with the presence of two putative CREA binding sites in the promoter region of the tomatinase gene. The tomatinase gene is expressed in planta in both roots and stems throughout the entire disease cycle of F. oxysporum f. sp. lycopersici.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号