首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The culture medium of Pseudomonas BAL 31 contains endonuclease activities which are highly specific for single-stranged DNA and for the single-stranded or weakly hydrogen-bonded regions in supercoiled closed circular DNA. Exposure of nicked DNA to the culture medium results in cleavage of the strang opposite the sites of preexisting single-strand scissions. At least some of the linear duplex molecules derived by cleavage of supercoiled closed circular molecules contain short single-stranded ends. Single-strand scissions are not introduced into intact, linear duplex DNA or unsupercoiled covalently closed circular DNA. Under these same reaction conditions, 0X174 phage DNA is extensively degraded and PM2 form I DNA is quantitatively converted to PM2 form III linear duplexes. Prolonged exposure of this linear duplex DNA to the concentrated culture medium reveals the presence of a double-strand exonuclease activity that progressively reduces the average length of the linear duplex. These nuclease activities persist at ionic strengths up to 4 M and are not eliminated in the presence of 5% sodium dodecyl sulfate. Calcium and magnesium ion are both required for optimal activity. Although the absence of magnesium ion reduces the activities, the absence of calcium ion irreversibly eliminates all the activities.  相似文献   

2.
Escherichia coli topoisomerases I and III (Topo I and Topo III) relax negatively supercoiled DNA and also catenate/decatenate DNA molecules containing single-stranded DNA regions. Although these enzymes share the same mechanism of action and have similar structures, they participate in different cellular processes. In bulk experiments Topo I is more efficient at DNA relaxation, whereas Topo III is more efficient at catenation/decatenation, probably reflecting their differing cellular roles. To examine the differences in the mechanism of these two related type IA topoisomerases, single-molecule relaxation studies were conducted on several DNA substrates: negatively supercoiled DNA, positively supercoiled DNA with a mismatch and positively supercoiled DNA with a bulge. The experiments show differences in the way the two proteins work at the single-molecule level, while also recovering observations from the bulk experiments. Overall, Topo III relaxes DNA efficiently in fast processive runs, but with long pauses before relaxation runs, whereas Topo I relaxes DNA in slow processive runs but with short pauses before runs. The combination of these properties results in Topo I having an overall faster total relaxation rate, even though the relaxation rate during a run for Topo III is much faster.  相似文献   

3.
The effect of progressive denaturation of open circular molecules (component II) and supercoiled covalently closed circular molecules (component I) of rat liver mitochondrial DNA has been followed by heating in the presence of formaldehyde and examination in the electron microscope. After heating at 49°C, two, three, or four regions of strand separation were visible in 25% of the component II molecules. Comparisons of the patterns of distribution of these regions in individual molecules indicated that they occurred at at least three specific positions around the molecule. Also, these regions, which were assumed to be rich in adenine and thymine, were within a segment which was less than 50% of the length of the molecule. After heating at 50°C, up to 14 regions of strand separation were observed, but when comparisons were made no clear groupings were found. At 51°C, component II molecules were completely separated into a single-stranded circle and a single-stranded linear piece of similar length. Strand separation was accompanied by shortening of the molecule. At 70°C, single-stranded circles had a mean length of 2.7 µ, compared with 5.0 µ for native molecules. Progressive heating of component I molecules resulted first in conversion to an open circle (I') and then to a second supercoiled form (I'). Visualization of further denaturation products of component I was prevented by crosslinking of the molecule by formaldehyde at high temperatures.  相似文献   

4.
In the absence of DNA aggregation, spermidine inhibited the relaxation of negatively supercoiled DNA by Escherichia coli topoisomerase I at concentrations of the polyamine normally found intracellularly. Spermidine also curtailed the cleavage of negatively supercoiled ColE1 DNA by the enzyme in the absence of Mg2+. On the contrary, knotting of M13 single-stranded DNA circles catalyzed by topoisomerase I was stimulated by the polyamine. Relaxation of supercoiled DNA by eukaryotic type 1 topoisomerases, such as calf thymus topoisomerase I and wheat germ topoisomerase, was significantly stimulated by spermidine in the same range of concentrations that inhibited the prokaryotic enzyme. In reactions catalyzed by S1 nuclease, the polyamine enhanced the digestion of single-stranded DNA and inhibited the nicking of negatively supercoiled DNA. These results suggest that spermidine modifies the supercoiled duplex substrate in these reactions by modulating the degree of single strandedness.  相似文献   

5.
TrwC, the relaxase of plasmid R388, catalyzes a series of concerted DNA cleavage and strand transfer reactions on a specific site (nic) of its origin of transfer (oriT). nic contains the cleavage site and an adjacent inverted repeat (IR2). Mutation analysis in the nic region indicated that recognition of the IR2 proximal arm and the nucleotides located between IR2 and the cleavage site were essential for supercoiled DNA processing, as judged either by in vitro nic cleavage or by mobilization of a plasmid containing oriT. Formation of the IR2 cruciform and recognition of the distal IR2 arm and loop were not necessary for these reactions to take place. On the other hand, IR2 was not involved in TrwC single-stranded DNA processing in vitro. For single-stranded DNA nic cleavage, TrwC recognized a sequence embracing six nucleotides upstream of the cleavage site and two nucleotides downstream. This suggests that TrwC DNA binding and cleavage are two distinguishable steps in conjugative DNA processing and that different sequence elements are recognized by TrwC in each step. IR2-proximal arm recognition was crucial for the initial supercoiled DNA binding. Subsequent recognition of the adjacent single-stranded DNA binding site was required to position the cleavage site in the active center of the protein so that the nic cleavage reaction could take place.  相似文献   

6.

Background

The extracellular nuclease from Alteromonas espejiana, BAL 31 catalyzes the degradation of single-stranded and linear duplex DNA to 5′-mononucleotides, cleaves negatively supercoiled DNA to the linear duplex form, and cleaves duplex DNA in response to the presence of apurinic sites.

Principal Findings

In this work we demonstrate that BAL 31 activity is affected by the presence of guanine in single-stranded DNA oligomers. Specifically, nuclease activity is shown to be affected by guanine''s presence in minimal homopolymeric tracts in the middle of short oligomer substrates and also by its presence at the 3′ end of ten and twenty base oligomers. G•C rich regions in dsDNA are known to cause a decrease in the enzyme''s nuclease activity which has been attributed to the increased thermal stability of these regions, thus making it more difficult to unwind the strands required for enzyme access. Our results indicate that an additional phenomenon could be wholly or partly responsible for the loss of activity in these G•C rich regions. Thus the presence of a guanine tract per se impairs the enzyme''s functionality, possibly due to the tract''s bulky nature and preventing efficient progression through the active site.

Conclusions

This study has revealed that the general purpose BAL 31 nuclease commonly used in molecular genetics exhibits a hithertofore non-characterized degree of substrate specificity with respect to single-stranded DNA (ssDNA) oligomers. Specifically, BAL 31 nuclease activity was found to be affected by the presence of guanine in ssDNA oligomers.  相似文献   

7.
The streptococcal plasmid pMV158 encodes the relaxase protein, MobM, involved in its mobilisation. Purified MobM protein specifically cleaved supercoiled or single-stranded DNA containing the plasmid origin of transfer, oriT. Gel retardation and DNase I footprinting assays performed with DNA fragments containing the plasmid oriT provided evidence for specific binding of MobM by oriT DNA. Dissection of the MobM-binding sequence revealed that the oriT region protected by MobM spanned 28 nucleotides, and includes an inversely repeated sequence, termed IR2. MobM exhibits a high degree of similarity with the mob gene product of the Streptococcus ferus plasmid pVA380-1. Although the origins of transfer of pMV158 and pVA380-1 show 20% sequence divergence in a 24-bp sequence included in their oriT regions, the pMV158 MobM was able to cleave a supercoiled derivative of pVA380-1 in vitro.  相似文献   

8.
Reverse gyrase is a hyperthermophilic enzyme that can introduce positive supercoiling in substrate DNA. It is showed in our studies that positive DNA supercoils were induced in both pBR322 vector and an artificially synthesized mini-plasmid DNA by reverse gyrase. The left-handed structures adopted by positively supercoiled DNA molecules could be identified from their right-handed topoisomers through atomic force microscopic examination. Additional structural comparisons revealed that positively supercoiled DNA molecule AFM images exhibited increased contour lengths. Moreover, enzymatic assays showed that the positively supercoiled DNA could not be cleaved by T7 endonuclease. Together, this suggests that the overwound structure of positive supercoils could prevent genomic duplex DNA from randomly forming single-stranded DNA regions and intra-stranded secondary structures.  相似文献   

9.
Removal of negative superhelical turns in ColE1 plasmid DNA by Escherichia coli topoisomerase I was markedly enhanced by the presence of single-stranded DNA binding protein from E. coli. A lack of species specificity makes unlikely the possibility of physical association between topoisomerase I and single-stranded DNA binding proteins. Stabilization of single-stranded regions in supercoiled DNA by single-stranded DNA binding protein would appear to be the basis of the enhancement of topoisomerase activity.  相似文献   

10.
Pur alpha is a single-stranded (ss) DNA- and RNA-binding protein with three conserved signature repeats that have a specific affinity for guanosine-rich motifs. Pur alpha unwinds a double-stranded oligonucleotide containing purine-rich repeats by maintaining contact with the purine-rich strand and displacing the pyrimidine-rich strand. Mutational analysis indicates that arginine and aromatic residues in the repeat region of Pur alpha are essential for both ss- and duplex DNA binding. Pur alpha binds either linearized or supercoiled plasmid DNA, generating a series of regularly spaced bands in agarose gels. This series is likely due to localized unwinding by quanta of Pur alpha since removal of Pur alpha in the gel eliminates the series and since Pur alpha binding increases the sensitivity of plasmids to reaction with potassium permanganate, a reaction specific for unwound regions. Pur alpha binding to linear duplex DNA creates binding sites for the phage T4 gp32 protein, an ss-DNA binding protein that does not itself bind linearized DNA. In contrast, Pur beta lacking the Pur alpha C-terminal region binds supercoiled DNA but not linearized DNA. Similarly, a C-terminal deletion of Pur alpha can bind supercoiled pMYC7 plasmid, but cannot bind the same linear duplex DNA segment. Therefore, access to linear DNA initially requires C-terminal sequences of Pur alpha.  相似文献   

11.
A DNA-binding protein was partially purified from extracts of HeLa cells by high-speed centrifugation and chromatography on DEAE-cellulose, phosphocellulose and ultraviolet light-irradiated DNA-cellulose columns. It eluted from the phosphocellulose column with 0.375 M potassium phosphate and from the ultraviolet light-irradiated DNA-cellulose column between 0.5 M and 1 M NaCl. The protein binds preferentially to supercoiled PM2 DNA treated with ultraviolet light or N-acetoxy-N-acetyl-2-aminofluorene, as compared to native supercoiled PM2 DNA. The binding is non-cooperative. Nicked or linear forms of PM2 DNA (damaged or untreated) are not efficient substrates, indicating a requirement of DNA supercoiling for DNA binding. The sedimentation coefficient of the protein estimated by glycerol gradient centrifugation is 2.0–2.5 S, corresponding to a molecular weight of about 20 000–25 000 if the protein is spherical. The binding to DNA irradiated with ultraviolet light or treated with acetoxyacetylaminofluorene is optimal at around 100–200 mM NaCl and is relatively independent of temperature and pH. MgCl2 and MnCl2 at concentrations between 1 and 5 mM do not markedly affect the binding, but it is inhibited by sucrose, ATP and caffeine. The biological significance of the DNA-binding protein remains to be determined. It does not possess significant glycosylase, endonuclease or exonuclease activities. The dissociation equilibrium constant for the binding reaction of the protein to the ultraviolet light or acetoxyacetylaminofluorene-induced binding sites on DNA is estimated to be 4·10?11 M. There are at least 1·105 DNA-binding protein molecules/HeLa cell.  相似文献   

12.
A small circular supercoiled DNA molecule species with a molecular weight of about 5.4 × 106 has been isolated from the extreme thermophile Thermus thermophilus HB8. This plasmid (pTT1) has a G plus C content of 68%, similar to that of the host chromosome. The superhelix density is the same as that of bacteriophage PM2 DNA. A physical map of the plasmid has been obtained using restriction endonucleases.  相似文献   

13.
14.
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA–protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.  相似文献   

15.
Cleavage of single-stranded DNA by plasmid pT181-encoded RepC protein.   总被引:14,自引:1,他引:13       下载免费PDF全文
RepC protein encoded by plasmid pT181 has single-stranded endonuclease and topoisomerase-like activities. These activities may be involved in the initiation (and termination) of pT181 replication by a rolling circle mechanism. RepC protein cleaves the bottom strand of DNA within the origin of replication at a single, specific site when the DNA is in the supercoiled or linear (double or single-stranded) form. We have found that RepC protein will also cleave single-stranded DNA at sites other than the origin of replication. We have mapped the secondary cleavage sites on pT181 DNA. When the DNA is in the supercoiled, or linear, double-stranded form, only the primary site within the origin is cleaved. However, when the DNA is present in the single-stranded form, several strong and weak cleavage sites are observed. The DNA sequence at these cleavage sites shows a strong similarity with the primary cleavage site. The presence of Escherichia coli SSB protein inhibited cleavage at all of the secondary nick sites while the primary nick site remained susceptible to cleavage.  相似文献   

16.
Recombinant plasmids pK1A108, pK3A108, pK4A108 and pK5/6T217 containing 80 +/- 1 base pair inserts with different curvature-inducing sequences were studied using the DNA structure probe osmium tetroxide in the presence of pyridine (Os, py). The insertion sequences of the plasmids pK1A108, pK3A108, and pK4A108 are strongly related while the degree of curvature increases from pK1A108 (no curvature) less than pK3A108 less than pK4A108 less than pK5/6T217. The Os, py probe reacts selectively with single-stranded and distorted double-stranded regions in the DNA double helix. Nuclease S1 was used to recognize and cleave regions made permanently single-stranded due to osmium recognize and cleave regions made permanently single-stranded due to osmium modification. In linearized plasmids treatment with Os, py produced no S1-detectable site-specific modification. This result is in agreement with models suggested for DNA curvature; in general, continuous base pairing and base stacking is considered through different sequence blocks as well as through structural junctions. Os, py-probing of the plasmids in the supercoiled state also resulted in no S1-detectable site-specific modification within the inserts of pK1A108, pK3A108, and pK4A108 plasmids (while the regions containing inverted repeat nucleotide sequences in these plasmids were site-specifically modified). In contrast, supercoiled pK5/6T217 DNA was site-specifically modified within the curvature-inducing insert sequence. The nucleotide sequence of the insert of this plasmid strongly differs from the insertion sequences of the other three plasmids; it is extremely AT-rich and contains regularly arranged dAGAGA and dATATA sequences. The structural distortion observed in supercoiled pK5/6T217 is most probably due to the presence of these sequences in a particular arrangement in the insertion sequence.  相似文献   

17.
Escherichia coli topoisomerases I and III can decatenate double-stranded DNA (dsDNA) molecules containing single-stranded DNA regions or nicks as well as relax negatively supercoiled DNA. Although the proteins share a mechanism of action and have similar structures, they participate in different cellular processes. Whereas topoisomerase III is a more efficient decatenase than topoisomerase I, the opposite is true for DNA relaxation. In order to investigate the differences in the mechanism of these two prototypical type IA topoisomerases, we studied DNA decatenation at the single-molecule level using braids of intact dsDNA and nicked dsDNA with bulges. We found that neither protein decatenates an intact DNA braid. In contrast, both enzymes exhibited robust decatenation activity on DNA braids with a bulge. The experiments reveal that a main difference between the unbraiding mechanisms of these topoisomerases lies in the pauses between decatenation cycles. Shorter pauses for topoisomerase III result in a higher decatenation rate. In addition, topoisomerase III shows a strong dependence on the crossover angle of the DNA strands. These real-time observations reveal the kinetic characteristics of the decatenation mechanism and help explain the differences between their activities.  相似文献   

18.
Nucleoid-associated proteins play an important role in condensing chromosomal DNA and regulating gene expression. We report here the characterization of the nucleoid-associated protein YejK, which was detected in a yeast two-hybrid screen using the ParE subunit of topoisomerase IV as bait. The purified protein likely exists in a monomer-dimer equilibrium in solution and can form tetramers. Cross-linking of the protein bound to DNA suggests that the active form could be either a dimer or tetramer. YejK, which is present at about 24,000 copies of monomer per mid-log phase cell, binds double-stranded DNA with a site size of 12–14 base pairs/monomer, does not display a significant preference for either bent compared with straight DNA or supercoiled compared with relaxed DNA, and untwists DNA somewhat as it binds. YejK binds RNA, but not single-stranded DNA, with 65% of the avidity with which it binds DNA. However, cells deleted for yejK do not show defects in either RNA or protein synthesis. YejK interacts with all the subunits of both DNA gyrase and topoisomerase IV and has measurable effects on their activities. In the presence of YejK, relaxation of negatively supercoiled DNA by topoisomerase IV becomes distributive, whereas relaxation of positively supercoiled DNA is stimulated. Relaxation of negatively supercoiled DNA by DNA gyrase is inhibited, whereas the extent of supercoiling of relaxed DNA is limited. A YejK-GFP chimera is an effective marker for the nucleoid in live cell imaging.  相似文献   

19.
The ability of Escherichia coli ribosomes to protect small specific regions of single-stranded bacteriophage DNA from digestion by pancreatic DNAase has been investigated. A procedure is described by which ribosome-protected fragments can be isolated from the DNA of bacteriophage f1 and φX174. Size determination by polyacrylamide gel electrophoresis or thin layer homochromatography together with fingerprinting analysis following chemical depurination or digestion with E. coli endonuclease IV were employed to show that these fragments represent a small specific portion of these DNAs. The protection reaction is largely dependent upon components necessary for ribosome binding to mRNA, including GTP, formylmethionyl-tRNA, and initiation factors. Thus, ribosomal binding to DNA mimics the ribosome-mRNA interaction. Furthermore, the regions in f1 and φX174 DNA which are protected differ in sequence from each other.When E. coli endonuclease IV is substituted for pancreatic DNAase in the ribosome protection reaction, a fragment of φX174 DNA is obtained about 150 bases in length which contains all of the pyrimidine tracts in the shorter 50-base fragment obtained with pancreatic DNAase, and a number of additional polypyrimidines.Double-stranded DNAs such as φX174 replicative form do not bind at all to ribosomes in their native state. Heat denaturation of such double-stranded DNAs allows ribosome binding. Protection of the same specific regions as those protected in single-stranded φX174 DNA was observed. A similar specific protection was observed following heat denaturation and ribosome binding with DNA from polyoma virus.  相似文献   

20.
Mungbean yellow mosaic India virus (MYMIV) is a whitefly-transmitted begomovirus with a bipartite genome. We investigate the functions of the MYMIV-AV2 protein, the open reading frame present upstream of the coat protein gene in DNA A component. The ability of MYMIV-AV2 mutants to replicate, spread and cause symptoms in legume hosts, blackgram, cowpea and French bean was analysed. Plants agroinoculated with mutants K73R, C86S and the double mutant C84S,C86S showed increase in severity of symptoms compared with the wild type. However, mutants W2S and H14Q,G15E caused marked attenuation of symptoms. While the double mutants C84S,C86S caused a 50-fold increase in double-stranded supercoiled and single-stranded DNA accumulation, the mutations W2S and H14Q,G15E showed a decrease in double-stranded supercoiled and single-stranded viral DNA accumulation. Because AV2 mutants affect the ratio between open circular and supercoiled DNA forms, we hypothesize that these mutations may modulate the functions of the replication initiation protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号