首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Phycobilisomes (PBS) are the major light-harvesting, protein-pigment complexes in cyanobacteria and red algae. PBS absorb and transfer light energy to photosystem (PS) II as well as PS I, and the distribution of light energy from PBS to the two photosystems is regulated by light conditions through a mechanism known as state transitions. In this study the quantum efficiency of excitation energy transfer from PBS to PS I in the cyanobacterium Synechococcus sp. PCC 7002 was determined, and the results showed that energy transfer from PBS to PS I is extremely efficient. The results further demonstrated that energy transfer from PBS to PS I occurred directly and that efficient energy transfer was dependent upon the allophycocyanin-B alpha subunit, ApcD. In the absence of ApcD, cells were unable to perform state transitions and were trapped in state 1. Action spectra showed that light energy transfer from PBS to PS I was severely impaired in the absence of ApcD. An apcD mutant grew more slowly than the wild type in light preferentially absorbed by phycobiliproteins and was more sensitive to high light intensity. On the other hand, a mutant lacking ApcF, which is required for efficient energy transfer from PBS to PS II, showed greater resistance to high light treatment. Therefore, state transitions in cyanobacteria have two roles: (1) they regulate light energy distribution between the two photosystems; and (2) they help to protect cells from the effects of light energy excess at high light intensities.  相似文献   

2.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

3.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

4.
Phycobilisomes (PBS) function as light-harvesting antenna complexes in cyanobacteria, red algae and cyanelles. They are composed of two substructures: the core and peripheral rods. Interposon mutagenesis of the cpcBA genes of Synechococcus sp. PCC 7002 resulted in a strain (PR6008) lacking phycocyanin and thus the ability to form peripheral rods. Difference absorption spectroscopy of whole cells showed that intact PBS cores were assembled in vivo in the cpcBA mutant strain PR6008. Fluorescence induction measurements demonstrated that the PBS cores are able to deliver absorbed light energy to photosystem (PS) II, and fluorescence induction transients in the presence of DCMU showed that PR6008 cells could perform a state 2 to state 1 transition with similar kinetics to that of the wild-type cells. Thus, PBS core assembly, light-harvesting functions and energy transfer to PS I were not dependent upon the assembly of the peripheral rods. The ratio of PS II:PS I in the PR6008 cells was significantly increased, nearly twice that of the wild-type cells, possibly a result of long-term adaptation to compensate for the reduced antenna size of PS II. However, the ratio of PBS cores:chlorophyll remained unchanged. This result indicates that approximately half of the PS II reaction centers in the PR6008 cells had no closely associated PBS cores.  相似文献   

5.
《BBA》2021,1862(12):148494
Quenching of excess excitation energy is necessary for the photoprotection of light-harvesting complexes. In cyanobacteria, quenching of phycobilisome (PBS) excitation energy is induced by the Orange Carotenoid Protein (OCP), which becomes photoactivated under high light conditions. A decrease in energy transfer efficiency from the PBSs to the reaction centers decreases photosystem II (PS II) activity. However, quantitative analysis of OCP-induced photoprotection in vivo is complicated by similar effects of both photochemical and non-photochemical quenching on the quantum yield of the PBS fluorescence overlapping with the emission of chlorophyll. In the present study, we have analyzed chlorophyll a fluorescence induction to estimate the effective cross-section of PS II and compared the effects of reversible OCP-dependent quenching of PBS fluorescence with reduction of PBS content upon nitrogen starvation or mutations of key PBS components. This approach allowed us to estimate the dependency of the rate constant of PS II primary electron acceptor reduction on the amount of PBSs in the cell. We found that OCP-dependent quenching triggered by blue light affects approximately half of PBSs coupled to PS II, indicating that under normal conditions, the concentration of OCP is not sufficient for quenching of all PBSs coupled to PS II.  相似文献   

6.
Kazuhiko Satoh  David C. Fork 《BBA》1983,722(1):190-196
Time courses of chlorophyll fluorescence and fluorescence spectra at 77 K after various light treatments were measured in the red alga, Porphyra perforata. Photosystem (PS) I or II light (light 1 or 2) induced differences in the fluorescence spectra at 77 K. Light 2 decreased the two PS II fluorescence bands (F-685 and F-695) in parallel, while light 1 preferentially increased F-695. Light 1 and 2 also produced different effects on the activities of PS I and II. Preillumination with light 1 increased PS II activity and decreased PS I activity. However, preillumination with light 2 decreased PS II activity with no effect on PS I activity. These results show that there are at least two mechanisms that can alter the transfer of light energy in P. perforata. The dark state in this alga was found to be State 2 and light 1 induced a State 2-State 1 transition which retarded the transfer of light energy from PS II to PS I. Light 2 induced another change (which we have called a State 2-State 3 transition) that was accompanied by a change only in PS II activity.  相似文献   

7.
A chlorophyll a, c-fucoxanthin pigment-protein complex8 functions as the major light harvesting antenna in the Chrysophyte Ochromonas danica. The regulated distribution of excitation energy between the two photosystems was investigated in these organisms and was shown to be strongly wavelength dependent. A light state transition was induced by pre-illumination of cells using light 2 (640 nm) and light 1 (700 nm) of equal absorbed intensity, and detected by reversible changes in the 77 K chlorophyll fluorescence emission spectra. Peaks at 690 nm and 720 nm in the low temperature spectra are most likely associated with PS2 and PS1 respectively. A room temperature fluorescence emission at 680 nm induced by modulated light 2 (500 nm) was strongly quenched in the presence of background light 1 (720 nm). Removal of light 1 led to an increase in fluorescence followed by a slow quenching. The room temperature fluorescence changes were directly correlated with changes in the 77 K emission spectra that indicated a change in the distribution of excitation energy between the two photosystems. It was established that DCMU (1 mol) prevented the state 2. The conversion to state 1 followed a simple photochemical dose dependence and had a half-time of 20 s-1.5 min at 6 W m-2. In contrast, the conversion to state 2 was independent of light intensity. These data indicate that O. danica undergoes a light state transition in response to the preferential excitation of PS2 or PS1.Abbreviations PS2 photosystem 2 - PS1 photosystem 1 - LHC light harvesting chlorophyll a/b protein - fx fucoxanthin - PQ plastoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea  相似文献   

8.
Li D  Xie J  Zhao J  Xia A  Li D  Gong Y 《Biochimica et biophysica acta》2004,1608(2-3):114-121
State transitions induced by light and redox were investigated by observing the 77 K fluorescence spectra for the intact cells of Spirulina platensis. To clarify if phycobilisomes (PBSs) take part in the state transition, the contributions of PBSs to light-induced state transition were studied in untreated cells and the cells treated by betaine which fixed PBSs firmly on the thylakoid membranes. It was observed that the betaine-treated cells did not show any light-induced state transition. This result definitely confirmed that the light-induced excitation energy regulation between the two photosystems is mainly dependent on a spatial movement of PBSs on the thylakoid membranes, which makes PBS cores partially decoupled from photosystem II (PSII) while PBS rods more strongly coupled with photosystem I (PSI) during the transition from state 1 to state 2. On the other hand, an energy exchange between the two photosystems was observed in both untreated and betaine-treated cells during redox-induced state transition. These observations suggested that two different mechanisms were involved in the light-induced state transition and the redox-induced one. The former involves only a physical movement of PBSs, while the latter involves not only the movement of PBS but also energy spillover from PSII to PSI. A model for light-induced state transition was proposed based on the current results as well as well known knowledge.  相似文献   

9.
Monomeric and trimeric Photosystem I core complexes from the cyanobacterium Synechocystis PCC 6803 and LHC-I containing Photosystem I (PS I-200) complexes from spinach have been characterized by steady-state, polarized light spectroscopy at 77 K. The absorption spectra of the monomeric and trimeric core complexes from Synechocystis were remarkably similar, except for the amplitude of a spectral component at long wavelength, which was about twice as large in the trimeric complexes. This spectral component did not contribute significantly to the CD-spectrum. The (77 K) steady-state emission spectra showed prominent peaks at 724 nm (for the Synechocystis core complexes) and at 735 nm (for PS I-200). A comparison of the excitation spectra of the main emission band and the absorption spectra suggested that a significant part of the excitations do not pass the red pigments before being trapped by P-700. Polarized fluorescence excitation spectra of the monomeric and trimeric core complexes revealed a remarkably high anisotropy (0.3) above 705 nm. This suggested one or more of the following possibilities: 1) there is one red-most pigment to which all excitations are directed, 2) there are more red-most pigments but with (almost) parallel orientations, 3) there are more red-most pigments, but they are not connected by energy transfer. The high anisotropy above 705 nm of the trimeric complexes indicated that the long-wavelength pigments on different monomers are not connected by energy transfer. In contrary to the Synechocystis core complexes, the anisotropy spectrum of the LHC I containing complexes from spinach was not constant in the region of the long-wavelength pigments, and decreased significantly below 720 nm, the wavelength where the long-wavelength pigments on the core complexes start to absorb. These results suggested that in spinach the long-wavelength pigments on core and LHC-I are connected by energy transfer and have a non-parallel average Qy(0-0) transitions.Abbreviations PS Photosystem - P Primary donor - Chl chlorophyll - LHC light-harvesting complex - CD circular dichroism - LD linear dichroism - BisTris 2-[bis(2-hydroxyethyl)amino]-2-hydroxy-methylpropane-1,3-diol - RC reaction center  相似文献   

10.
The excited-state dynamics of delayed fluorescence in photosystem (PS) II at 77 K were studied by time-resolved fluorescence spectroscopy and decay analysis on three samples with different antenna sizes: PS II particles and the PS II reaction center from spinach, and the PS II core complexes from Synechocystis sp. PCC 6803. Delayed fluorescence in the nanosecond time region originated from the 683-nm component in all three samples, even though a slight variation in lifetimes was detected from 15 to 25 ns. The relative amplitude of the delayed fluorescence was higher when the antenna size was smaller. Energy transfer from the 683-nm pigment responsible for delayed fluorescence to antenna pigment(s) at a lower energy level was not observed in any of the samples examined. This indicated that the excited state generated by charge recombination was not shared with antenna pigments under the low-temperature condition, and that delayed fluorescence originates directly from the PS II reaction center, either from chlorophyll aD1 or P680. Supplemental data on delayed fluorescence from spinach PS I complexes are included.  相似文献   

11.
《BBA》1985,806(2):237-246
The sequential energy-transfer pathway through the phycobilin pigments to chlorophyll a was investigated as a function of the state transition in the cyanobacterium Anacystis nidulans and the red alga Porphyridium cruentum. The fluorescence decay kinetics of the phycobilin pigments and chlorophyll a were determined for cells frozen at 77 K in state 1 and state 2 using a single-photon timing fluorescence spectroscopy apparatus with picosecond resolution. Time-resolved 77 K fluorescence emission spectra were also obtained for both species in state 1 and state 2. In both A. nidulans and P. cruentum the transition to state 1 was accompanied by a large increase in the apparent fluorescent lifetime of chlorophyll a associated with PS II (emission peak at 695 nm). There were smaller increases in the lifetime of the terminal phycobilin emitter (685 nm) in both species and no change in phycocyanin (645 nm) or allophycocyanin (660 nm). Time-resolved spectra showed sequential emission from phycocyanin, allophycocyanin, the terminal phycobilin emitter and chlorophyll a. Spectral red shifts were observed with time for all emission peaks with the exception of the terminal phycobilin emitter. In A. nidulans this peak showed a small blue shift with time. The results are interpreted as evidence for an effective uncoupling of PS II chlorophyll a from subsequent energy transfer to PS I chlorophyll a upon transition to state 1. Our recently proposed model for the mechanism of the state transition in phycobilisome-containing organisms is discussed in terms of a decrease in the energy transfer overlap between PS II chlorophyll a and PS I chlorophyll a in state 1.  相似文献   

12.
The mechanism of excitation energy distribution between the two photosystems (state transitions) is studied in Synechocystis 6714 wild type and in wild type and a mutant lacking phycocyanin of Synechocystis 6803. (i) Measurements of fluorescence transients and spectra demonstrate that state transitions in these cyanobacteria are controlled by changes in the efficiency of energy transfer from PS II to PS I (spillover) rather than by changes in association of the phycobilisomes to PS II (mobile antenna model). (ii) Ultrastructural study (freeze-fracture) shows that in the mutant the alignment of the PS II associated EF particles is prevalent in state 1 while the conversion to state 2 results in randomization of the EF particle distribution, as already observed in the wild type (Olive et al. 1986). In the mutant, the distance between the EF particle rows is smaller than in the wild type, probably because of the reduced size of the phycobilisomes. Since a parallel increase of spillover is not observed we suggest that the probability of excitation transfer between PS II units and between PS II and PS I depends on the mutual orientation of the photosystems rather than on their distance. (iii) Measurements of the redox state of the plastoquinone pool in state 1 obtained by PS I illumination and in state 2 obtained by various treatments (darkness, anaerobiosis and starvation) show that the plastoquinone pool is oxidized in state 1 and reduced in state 2 except in starved cells where it is still oxidized. In the latter case, no important decrease of ATP was observed. Thus, we propose that in Synechocystis the primary control of the state transitions is the redox state of a component of the cytochrome b 6/f complex rather than that of the plastoquinone pool.Abbreviations DCCD dicyclohexylcarbodiimide - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - EF exoplasmic face - PQ plasto-quinone - PS photosystem - PBS phycobilisome  相似文献   

13.
The photosynthetic apparatus of Synechocystis sp. PCC 6714 cells grown chemoheterotrophically (dark with glucose as a carbon source) and photoautotrophically (light in a mineral medium) were compared. Dark-grown cells show a decrease in phycocyanin content and an even greater decrease in chlorophyll content with respect to light-grown cells. Analysis of fluorescence emission spectra at 77 K and at 20 °C, of dark- and light-grown cells, and of phycobilisomes isolated from both types of cells, indicated that in darkness the phycobiliproteins were assembled in functional phycobilisomes (PBS). The dark synthesized PBS, however, were unable to transfer their excitation energy to PS II chlorophyll. Upon illumination of dark-grown cells, recovery of photosynthetic activity, pigment content and energy transfer between PBS and PS II was achieved in 24–48 h according to various steps. For O2 evolution the initial step was independent of protein synthesis, but the later steps needed de novo synthesis. Concerning recovery of PBS to PS II energy transfer, light seems to be necessary, but neither PS II functioning nor de novo protein synthesis were required. Similarly, light, rather than functional PS II, was important for the recovery of an efficient energy transfer in nitrate-starved cells upon readdition of nitrate. In addition, it has been shown that normal phycobilisomes could accumulate in a Synechocystis sp. PCC 6803 mutant deficient in Photosystem II activity.Abbreviations APC allophycocyanin - CAP chloroamphenicol - Chl chlorophyll - DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - CP-47 chlorophyll-binding Photosystem II protein of 47 kDa - EF exoplasmic face - PBS phycobilisome - PC phycocyanin - PS Photosystem  相似文献   

14.
The mechanism of excitation energy redistribution (state transition) in organisms containing phycobilins is reviewed. Recent measurements using time-resolved fluorescence spectroscopy in the picosecond range confirm that the state transition in cyanobacteria and red algae is controlled by changes in the kinetics of energy transfer from PS 2 to PS 1 (spillover) rather than by physical dislocation of the phycobilisome and reassociation between the two photosystems (mobile antenna model). Contrary to the analogous situation in higher plants, there is no compelling evidence for the involvement of a protein phosphorylation event in the rapid time range of the state transition, but a variety of data indicate that a membrane conformational change occurs that might change the relative distance between, and/or orientation of the two photosystems within the thylakoid. The state transition is most probably initiated by the redox state of the intersystem electron transport chain, and the conversion to state 1 is driven by coupled PS1 cyclic electron transport. The cryptomonads also undergo wavelength dependent changes in excitation energy distribution by a mechanism very similar to that observed in the red algae and cyanobacteria. However, the changes in energy distribution in this group are most likely related to a photoprotection mechanism for PS2 rather than to a state transition.Abbreviations APC allophycocyanin - EF exoplasmic face - PE phycoerythrin - PC phycocyanin - PF protoplasmic face - LHC light harvesting chlorophyll a/b protein - PBS phycobilisome - LD linear dichroism - RC reaction center  相似文献   

15.
Using 77 K chlorophyll a (Chl a) fluorescence spectra in vivo, the development was studied of Photosystems II (PS II) and I (PS I) during greening of barley under intermittent light followed by continuous light at low (LI, 50 μmol m−2 s−1) and high (HI, 1000 μmol m−2 s−1) irradiances. The greening at HI intermittent light was accompanied with significantly reduced fluorescence intensity from Chl b excitation for both PS II (F685) and PS I (F743), in comparison with LI plants, indicating that assembly of light-harvesting complexes (LHC) of both photosystems was affected to a similar degree. During greening at continuous HI, a slower increase of emission from Chl b excitation in PS II as compared with PS I was observed, indicating a preferred reduction in the accumulation of LHC II. The following characteristics of 77 K Chl a fluorescence spectra documented the photoprotective function of an elevated content of carotenoids in HI leaves: (1) a pronounced suppression of Soret region of excitation spectra (410–450 nm) in comparison with the red region (670–690 nm) during the early stage of greening indicated a strongly reduced excitation energy transfer from carotenoids to the Chl a fluorescing forms within PS I and PS II; (2) changes in the shape of the excitation band of Chl b and carotenoids (460–490 nm) during greening under continuous light confirmed that the energy transfer from carotenoids to Chl a within PS II remained lower as compared with the LI plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Efficient production of ATP and NADPH by the light reactions of oxygen-evolving photosynthesis demands continuous adjustment of transfer of absorbed light energy from antenna complexes to Photosystem I (PS I) and II (PS II) reaction center complexes in response to changes in light quality. Treatment of intact cyanobacterial cells with N-ethylmaleimide appears to disrupt energy transfer from phycobilisomes to Photosystem I (PS I). Energy transfer from phycobilisomes to Photosystem II (PS II) is unperturbed. Spectroscopic analysis indicates that the individual complexes (phycobilisomes, PS II, PS I) remain functionally intact under these conditions. The results are consistent with the presence of connections between phycobiliproteins and both PS II and PS I, but they do not support the existence of direct contacts between the two photosystems.Abbreviations Chl chlorophyll - EPR electron paramagnetic resonance - NEM N-ethylmaleimide - PBS phycobilisome - PS photosystem  相似文献   

17.
Goc  J.  Klecha  K.  Waskowiak  A.  Miyake  J.  Frackowiak  D. 《Photosynthetica》2002,40(1):41-48
The polarized absorption, photoacoustic, fluorescence emission, and fluorescence excitation spectra of whole cells of cyanobacteria Synechocystis sp. embedded in a polymer film were measured. The bacteria cells, as it follows from anisotropy of absorption and fluorescence spectra, were even in a non-stretched polyvinyl alcohol film oriented to a certain extent. The measurements were done for such film in order to avoid the deformation of cyanobacteria shapes. Part of the samples was bleached by irradiation with strong polarized radiation with electric vector parallel to the orientation axis of cells. The anisotropy of photoacoustic spectra was higher than that of absorption spectra and it was stronger changed by the irradiation. Polarized fluorescence was excited in four wavelength regions characterised by different contribution to absorption from various bacteria pigments. The shapes of emission spectra were different depending on wavelength of excitation, polarization of radiation, and previous irradiation of the sample. The fluorescence spectra were analysed on Gaussian components belonging to various forms of pigments from photosystems (PS) 1 and 2. The results inform about excitation energy transfer between pools of pigments, differently oriented in the cells. Energy of photons absorbed by phycobilisomes was transferred predominantly to the chlorophyll of PS2, whereas photons absorbed by carotenoids to chlorophylls of PS1.  相似文献   

18.
Cyanobacteria, as the most simple organisms to perform oxygenic photosynthesis differ from higher plants especially with respect to the thylakoid membrane structure and the antenna system used to capture light energy. Cyanobacterial antenna systems, the phycobilisomes (PBS), have been shown to be associated with Photosystem 2 (PS 2) at the cytoplasmic side, forming a PS 2-PBS-supercomplex, the structure of which is not well understood. Based on structural data of PBS and PS 2, a model for such a supercomplex is presented. Its key features are the PS 2 dimer as prerequisite for formation of the supercomplex and the antiparallel orientation of PBS-cores and the two PS 2 monomers which form the contact area within the supercomplex. Possible consequences for the formation of superstructures (PS 2-PBS rows) within the thylakoid membrane under so-called state 1 conditions are discussed. As there are also indications for specific functional connections of PBS with Photosystem 1 (PS 1) under so-called state 2 conditions, we show a model which reconciles the need for a structural interaction between PBS and PS 1 with the difference in structural symmetry (2-fold rotational symmetry of PBS-cores, 3-fold rotational symmetry of trimeric PS 1). Finally, the process of dynamic coupling and uncoupling of PBS to PS 1 and PS 2, based on the presented models, shows analogies to mechanisms for the regulation of photosynthetic electron flow in higher plants-despite the very different organization of their thylakoid membranes in comparison to cyanobacteria.Abbreviations APC allophycocyanin - b 6 f cytochrome b 6 f complex - CP chlorophyll protein - FNR ferredoxin-NADP+-oxidoreductase - LD linkerprotein-domain - LHC light-harvesting complex - Pc plastocyanin - PC phycocyanin - PD phycobiliprotein-domain - PS 1 Photosystem 1 - PS 2 Photosystem 2 - PBS phycobilisome Dedicated to Prof. Dr. Horst Senger on the occasion of his 65th birthday.  相似文献   

19.
Li  Y.  Sun  Z.-Y.  Ai  X.-C.  Zhao  J.-Q.  Zhang  X.-K. 《Photosynthetica》2004,42(3):465-467
The kinetic component (39 ps) for the energy transfer from a phycobilisome (PBS) to the photosystems was temperature-dependent while the components related to the kinetic processes within PBS, photosystem 2 (PS2) or PS1 were temperature-independent. The 39 ps component possessed the amplitude maximum at 647 nm but the minimum at 715 nm (room temperature) or 685 nm (0 °C), suggesting a direct energy transfer from C-phycocyanin to PS1 at room temperature but to PS2 at 0 °C. The temperature-induced kinetic change originated from a position shift of PBS along the thylakoid membrane.  相似文献   

20.
The excited-state dynamics of delayed fluorescence in photosystem (PS) II at 77 K were studied by time-resolved fluorescence spectroscopy and decay analysis on three samples with different antenna sizes: PS II particles and the PS II reaction center from spinach, and the PS II core complexes from Synechocystis sp. PCC 6803. Delayed fluorescence in the nanosecond time region originated from the 683-nm component in all three samples, even though a slight variation in lifetimes was detected from 15 to 25 ns. The relative amplitude of the delayed fluorescence was higher when the antenna size was smaller. Energy transfer from the 683-nm pigment responsible for delayed fluorescence to antenna pigment(s) at a lower energy level was not observed in any of the samples examined. This indicated that the excited state generated by charge recombination was not shared with antenna pigments under the low-temperature condition, and that delayed fluorescence originates directly from the PS II reaction center, either from chlorophyll a(D1) or P680. Supplemental data on delayed fluorescence from spinach PS I complexes are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号