首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of myofibroblasts by skin grafts.   总被引:7,自引:0,他引:7  
The myofibroblast population was studied by electron microscopy in rat wounds healing by (1) contraction of granulation tissue, (2) by coverage with split-skin grafts, and (3) by coverage with full-thickness skin grafts. In all 3 types of wounds, myofibroblasts appeared early and reached a peak number at two weeks after wounding. At this time, 40 to 50 percent of the wound fibroblasts had myofibroblast characteristics. The granulating wounds contracted rapidly and completely, and had long persistence of myofibroblasts. Split-skin grafted wounds contracted less and had a more rapid decrease in myofibroblasts. The wounds covered with full thickness skin grafts had a minimum of contraction with a very rapid decrease in the number of myofibroblasts until by 4 weeks no myofibroblasts were present. Full-thickness skin grafts thus appeared to influence contracting wounds not by preventing the formation of myofibroblasts, but by speeding up completion of their life cycle.  相似文献   

2.
Ethanolic extract of leaves of O. sanctum was investigated for normal wound healing and dexamethasone depressed healing using incision, excision and dead space wound models in albino rats. The extract of O. sanctum significantly increased the wound breaking strength in incision wound model. The extract treated wounds were found to epithelialize faster and the rate of wound contraction was significantly increased as compared to control wounds. Significant increase in wet and dry granulation tissue weight, granulation tissue breaking strength and hydroxyproline content in dead space wound model was observed. The extract significantly decreased the antihealing activities of dexamethasone in all the wound models. The results indicated that the leaf extract promotes wound healing significantly and able to overcome the wound healing suppressing action of dexamethasone. Histological examination of granulation tissue to determine the pattern of lay-down for collagen confirmed the results.  相似文献   

3.
微生物谷氨酰胺转胺酶对大鼠创伤愈合作用的实验研究   总被引:1,自引:0,他引:1  
本文研究了微生物谷氨酰胺转胺酶对大鼠创伤的促愈合作用。建立大鼠背部刀割伤模型,用创面照像、透明膜描记扫描记录伤后第5、10、15、20 天创面面积,计算创伤愈合率;并用注水法测量伤腔容积,同时观测肉芽组织再生及其总蛋白、氨基已糖和己糖醛酸的含量变化情况。结果实验组创面愈合时间平均为18.1天,较对照组平均缩短了2-3天(P<0.05);创伤愈合率显著提高(P<0.05或P<0.01);伤腔容积明显缩小(P<0.05);实验组肉芽干湿重较对照组显著增加(P<0.05),肉芽中蛋白质、氨基已糖和己糖醛酸含量增加显著(P<0.05)。结果显示谷氨酰胺转胺酶具有促进大鼠皮肤创伤愈合的作用,其作用机理可能是促进肉芽组织中蛋白质,氨基多糖和胶原的合成有关。  相似文献   

4.
To gain insight into the molecular mechanisms underlying the wound repair process, we searched for genes that are regulated by skin injury. For this purpose we generated a subtractive cDNA library from normal mouse back skin and 1-day full-thickness excisional wounds. One of the differentially expressed genes encodes the chemokine C10. Using Northern blotting, RNase protection assay and Western blotting, we confirmed the injury-induced expression of C10 at the mRNA and protein level. Maximal levels of C10 mRNA and protein were seen at day 1 after wounding, and expression levels subsequently declined. In situ hybridization and immunohistochemistry revealed expression of C10 in macrophages of the clot and the granulation tissue as well as in keratinocytes of the epidermis and the hair follicles at the wound edge. Since C10 is a potent chemoattractant for macrophages, our results suggest that this chemokine contributes to the strong macrophage influx observed in the healing skin wound.  相似文献   

5.
In this study, we examined the impact of matrix metalloproteinases (MMP) on epithelialization, granulation tissue development, wound contraction, and alpha-smooth muscle actin (ASMA) expression during cutaneous wound repair through systemic administration of the synthetic broad-spectrum MMP inhibitor GM 6001 (N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide). Four full-thickness excisional wounds (50 mm2) on the back of 22 young female Sprague-Dawley rats, 12 treated with GM 6001 100 mg/kg and 10 with vehicle, were allowed to heal by secondary intention. GM 6001-treated wounds were minimally resurfaced with neoepithelium, despite unaltered keratinocyte proliferation in wound edges, whereas control wounds were completely covered with 3-7 cell layers of parakeratinized epithelium on post-wounding day 7. Hydroxyproline concentration, a marker of collagen, and cell proliferation in granulation tissue did not differ significantly between GM 6001-treated and control groups. Impaired wound contraction (P < 0.01) was associated with a dramatic reduction of ASMA-positive myofibroblasts in granulation tissue of GM 6001 wounds. This was not due to GM6001 blocking transforming growth factor-beta1 (TGF-beta1)-induced myofibroblast differentiation since GM 6001 did not inhibit TGF-beta1-induced ASMA expression and force generation in cultured rat dermal fibroblasts. The profound impairment of skin repair by the nonselective MMP inhibitor GM 6001 suggests that keratinocyte resurfacing, wound contraction, and granulation tissue organization are highly MMP-dependent processes.  相似文献   

6.
Nonsteroidal antiinflammatory drugs like ibuprofen impede tissue repair by virtue of retarding inflammation. The present study was undertaken to explore if linking of nitrooxyethyl ester to ibuprofen reverses its healing-depressant propensity. Nitrooxyethyl ester of ibuprofen (NOE-Ibu) was synthesized in our laboratory through a well-established synthetic pathway. NOE-Ibu was screened for its influence on collagenation, wound contraction and epithelialization phases of healing, and scar size of healed wound in three wound models, namely, incision, dead space, and excision wounds. Besides, its influence on the oxidative stress (levels of GSH and TBARS) was also determined in 10-day-old granulation tissue. NOE-Ibu was further screened for its antiinflammatory activity in rat paw edema model. NOE-Ibu promoted collagenation (increase in breaking strength, granulation weight, and collagen content), wound contraction and epithelialization phases of healing. NOE-Ibu also showed a significant antioxidant effect in 10-day-old granulation tissue as compared to ibuprofen. Results vindicate that the esterification of ibuprofen with nitrooxyethyl group reverses the healing-suppressant effect of ibuprofen. The compound also showed equipotent antiinflammatory activity as ibuprofen.  相似文献   

7.
Proline (Pro) plays a versatile role in cell metabolism and physiology. Pro and hydroxypro are major imino acids present in collagen, an important connective tissue protein, essential for wound healing, which is a primary response to tissue injury. This study explains the role of l-pro on cutaneous wound healing in rats when administered both topically and orally. Open excision wounds were made on the back of rats, and 200 μl (200 mg) of pro was administered topically and orally once daily to the experimental rats until the wounds healed completely. The control wounds were left untreated. Granulation tissues formed were removed after day 4 and 8 of post excision wounding, and biochemical parameters such as total protein, collagen, hexosamine, and uronic acid were estimated. Levels of enzymatic and non-enzymatic antioxidants such as catalase, superoxide dismutase, glutathione peroxidase, ascorbic acid, and reduced glutathione were evaluated along with lipid peroxides in the granulation tissues. Tensile strength and period of epithelialization were also measured. It was observed that the treated wounds healed very fast as evidenced by augmented rates of epithelialization and wound contraction, which was also confirmed by histological examinations. The results strappingly authenticate the beneficial effects of the topical administration of l-proline in the acceleration of wound healing than the oral administration and control.  相似文献   

8.
The function of the endogenous angiogenesis inhibitor thrombospondin-1 (TSP-1) in tissue repair has remained controversial. We established transgenic mice with targeted overexpression of TSP-1 in the skin, using a keratin 14 expression cassette. TSP-1 transgenic mice were healthy and fertile, and did not show any major abnormalities of normal skin vascularity, cutaneous vascular architecture, or microvascular permeability. However, healing of full-thickness skin wounds was greatly delayed in TSP-1 transgenic mice and was associated with reduced granulation tissue formation and highly diminished wound angiogenesis. Moreover, TSP-1 potently inhibited fibroblast migration in vivo and in vitro. These findings demonstrate that TSP-1 preferentially interfered with wound healing-associated angiogenesis, rather than with the angiogenesis associated with normal development and skin homeostasis, and suggest that therapeutic application of angiogenesis inhibitors might potentially be associated with impaired wound vascularization and tissue repair.  相似文献   

9.
Repair of incision wounds closed by suturing is evaluated by the progressive gain in wound breaking strength. Previously the closure of open wounds in rats ingesting vanadate, an inhibitor of tyrosine phosphate phosphatases, was shown to occur with deposition of more uniformly organized collagen fiber bundles. The hypothesis of this study was that deposition of more uniformly organized collagen fibers would enhance the gain in wound breaking strength of incisional wounds. Six adult rats received vanadate-supplemented saline drinking water for 1 week before placement of two 6-cm, parallel, suture-closed wounds on their backs. Six control rats received identical wounds and were given saline drinking water. The drinking water regimen was continued for 1 week after wounding, and then wound strength was tested with a tensiometer and tissue samples were obtained for histologic evaluation. Wound breaking strength doubled in vanadate-treated rats compared with controls. Bright-field and polarized light microscopy showed that the connective tissue matrix of granulation tissue from control rats was oriented perpendicular to the surface of the skin. In contrast, the connective tissue matrix of granulation tissue from vanadate-treated rats was oriented parallel to the skin surface. The gap in granulation tissue between the edges of the wounds in the vanadate-treated rats was greater than that in controls. Electron microscopy showed that wounds in the vanadate-treated contained uniform collagen fibers that were 20 percent greater in diameter and more evenly spaced than they were in controls. It is proposed that these changes in the organization of collagen fibers within incisional wounds were responsible for the increased wound breaking strength observed in rats ingesting vanadate.  相似文献   

10.
Hemibody irradiation in multiple fractionated doses is frequently used for the treatment of various neoplastic disorders. It produces both acute and late effects on the skin and subcutaneous tissues that have profound implications in the healing of surgical wounds. Because of the crucial practical importance of hemibody radiation exposure associated with skin wounds, it is imperative to investigate the efficacy of cost-effective herbal products in the reconstruction of irradiated wounds. Therefore, the effect of pretreatment of curcumin was studied on the healing of excision wound in mice exposed to 2, 4, 6, or 8 Gy of hemibody gamma-radiation. A full-thickness skin wound was created by removing the skin flap of the dorsum of 8- to 10-week-old Swiss albino mice partially (lower half, below the rib cage) exposed to 2, 4, 6, or 8 Gy of gamma-radiation. The progression of wound contraction was monitored periodically by capturing video images of the wound, where the first image of each wound from different groups was obtained 1 day after wounding and that day was considered as day 0. Eight animals were used in each group at each exposure dose for wound contraction studies. Furthermore, the effect of curcumin on mean healing time after exposure of mice to 2, 4, 6, or 8Gy of hemibody gamma-radiation was also evaluated, where eight animals were used in each group at each exposure dose. Collagen, hexosamine, DNA, nitric oxide, and histologic profiles were also evaluated during the course of healing of excision wounds at days 4, 8, and 12 after irradiation treated or not with curcumin before exposure to 0 or 6 Gy of gamma-radiation. Six animals were used in each group at each interval for each biochemical parameter studied, except for histologic evaluations, where four animals were used in each group at each interval. Exposure of mice to different doses of gamma-radiation resulted in a dose-dependent delay in contraction and wound-healing time of excision wound, whereas curcumin pretreatment caused a significant elevation in the rate of wound contraction and a decrease in the mean wound-healing time. Treatment with curcumin before irradiation enhanced the synthesis of collagen, hexosamine, DNA, nitrite, and nitrate, and histologic assessment of wound biopsy specimens revealed improved collagen deposition and an increase in fibroblast and vascular densities. The authors' study demonstrates that curcumin pretreatment has a conducive effect on the irradiated wound and could be a substantial therapeutic strategy for ameliorating radiation-induced delay in wound repair in cases of radiation-induced skin injuries.  相似文献   

11.
Fetal wounds pass from scarless repair to healing with scar formation during gestation. This transition depends on both the size of the wound and the gestational age of the fetus. This study defines the transition period in the fetal rat model and provides new insight into scarless collagen wound architecture by using confocal microscopy. A total of 16 pregnant Sprague-Dawley rats were operated on. Open full-thickness wounds, 2 mm in diameter, were created on fetal rats at gestational ages 14.5 days (E14; n = 10), 16.5 days (E16; n = 42), and 18.5 days (E18; n = 42) (term = 21.5 days). Wounds were harvested at 24 (n = 18 per gestational age) and 72 hours (n = 24 per gestational age). Skin at identical gestational ages to wound harvest was used for controls. The wounds were fixed and stained with hematoxylin and eosin, antibody to type I collagen, and Sirius red for confocal microscopic evaluation. No E14 rat fetuses survived to wound harvest. Wounds created on E16 fetal rats healed completely and without scarring. E16 fetal rat hair follicle formation and collagen architecture was similar to that of normal, nonwounded skin. Wounds created on E18 fetal rats demonstrated slower healing; only 50 percent were completely healed at 72 hours compared with 100 percent of the E16 fetal rat wounds at 72 hours. Furthermore, the E18 wounds healed with collagen scar formation and without hair follicle formation. Confocal microscopy demonstrated that the collagen fibers were thin and arranged in a wispy pattern in E16 fetal rat wounds and in nonwounded dermis. E18 fetal rat wounds had thickened collagen fibers with large interfiber distances. Two-millimeter excisional E16 fetal rat wounds heal without scar formation and with regeneration of normal dermal and epidermal appendage architecture. E18 fetal rat wounds heal in a pattern similar to that of adult cutaneous wounds, with scar formation and absence of epidermal appendages. Confocal microscopy more clearly defined the dermal architecture in normal skin, scarless wounds, and scars. These data further define the transition period in the fetal rat wound model, which promises to be an effective system for the study of in vivo scarless wound healing.  相似文献   

12.
OBJECTIVE: Epithelial wound repair assures the recovery of the epithelial barrier after wounding. During wound healing epithelial cells migrate to cover the wound surface. For healing of skin wounds the skin keratinocytes can be replaced by oral mucosa epithelial cells grown in vitro. The presented experiments were carried out in order to compare the proliferation, morphology, and migration between human keratinocytes isolated from human skin and oral mucosa. MATERIALS AND METHODS: Human epidermal and oral mucosa keratinocytes from primary culture were used in all experiments. Cell motility and shape were determined using computer-aided methods. RESULTS AND CONCLUSIONS: It was demonstrated that although both cell types exhibit the same typical epithelial morphology, oral mucosa keratinocytes locomote significantly faster than skin keratinocytes. They also differ in proliferation activity. Oral mucosa keratinocytes exhibited faster growth and different actin cytoskeleton organisation than skin keratinocytes under in vitro conditions. Autologous oral mucosa keratinocytes may be expanded in vitro and used for skin wound healing in vivo.  相似文献   

13.
Sheets of cultured allogeneic human keratinocytes have been used for the treatment of burns and chronic leg ulcers but there has been no animal assay for the therapeutic action of these cultures. In order to analyze the effects of frozen cultures of human keratinocytes on wound healing, we have developed such an assay based on the rate of repair of full-thickness skin wounds in immunocompetent NMR1 mice. Reepithelialization of the control wounds, originating from the murine epithelium at the edge of the wound, occurred at a constant rate of advance of 150 microm/day. When frozen cultured human epidermal sheets were thawed at room temperature for 5-10 min and applied to the surface of the wound, the murine epithelium advanced at 267 microm/day. Most wounds treated with frozen cultures completely healed after 10 days, whereas most control wounds required 16 days. The accelerated reepithelialization did not depend on the presence of proliferative human keratinocytes in the frozen cultures. The cultures also promoted early formation of granulation tissue and laminin deposition over the surface of the wound bed. This simple assay should permit quantitative analysis of the effects on healing exerted not only by cultured cells, but also by proteins and small molecules.  相似文献   

14.
Recently, we demonstrated a strong upregulation of activin expression after skin injury. Furthermore, overexpression of this transforming growth factor beta family member in the skin of transgenic mice caused dermal fibrosis, epidermal hyperthickening and enhanced wound repair. However, the role of endogenous activin in wound healing has not been determined. To address this question we overexpressed the soluble activin antagonist follistatin in the epidermis of transgenic mice. These animals were born with open eyes, and the adult mice had larger ears, longer tails and reduced body weight compared with non-transgenic littermates. Their skin was characterized by a mild dermal and epidermal atrophy. After injury, a severe delay in wound healing was observed. In particular, granulation tissue formation was significantly reduced, leading to a major reduction in wound breaking strength. The wounds, however, finally healed, and the resulting scar area was smaller than in control animals. These results implicate an important function of endogenous activin in the control of wound repair and scar formation.  相似文献   

15.
Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds.  相似文献   

16.
Induction of tenascin in healing wounds   总被引:18,自引:6,他引:12       下载免费PDF全文
《The Journal of cell biology》1988,107(6):2757-2767
The distribution of the extracellular matrix glycoprotein, tenascin, in normal skin and healing skin wounds in rats, has been investigated by immunohistochemistry. In normal skin, tenascin was sparsely distributed, predominantly in association with basement membranes. In wounds, there was a marked increase in the expression of tenascin at the wound edge in all levels of the skin. There was also particularly strong tenascin staining at the dermal-epidermal junction beneath migrating, proliferating epidermis. Tenascin was present throughout the matrix of the granulation tissue, which filled full-thickness wounds, but was not detectable in the scar after wound contraction was complete. The distribution of tenascin was spatially and temporally different from that of fibronectin, and tenascin appeared before laminin beneath migrating epidermis. Tenascin was not entirely codistributed with myofibroblasts, the contractile wound fibroblasts. In EM studies of wounds, tenascin was localized in the basal lamina at the dermal-epidermal junction, as well as in the extracellular matrix of the adjacent dermal stroma, where it was either distributed homogeneously or bound to the surface of collagen fibers. In cultured skin explants, in which epidermis migrated over the cut edge of the dermis, tenascin, but not fibronectin, appeared in the dermis underlying the migrating epithelium. This demonstrates that migrating, proliferating epidermis induces the production of tenascin. The results presented here suggest that tenascin is important in wound healing and is subject to quite different regulatory mechanisms than is fibronectin.  相似文献   

17.
目的:观察间歇和持续负压下缺血创面不同处理与愈合的关系。方法:实验前1天,用脱毛剂(Nair,美国)对兔耳背脱毛。动物用1%戊巴比妥钠耳缘静脉注射麻醉(30 mg/kg体重),固定于手术台。75%乙醇消毒双侧耳背皮肤。距耳根3-3.5cm处分离、结扎兔耳中央神经血管束。在耳背中部形成直径2.5cm全层皮肤缺损创面(保留软骨膜)[1]。止血后置动物于特制木盒内。42只大白兔共84个创面,随机分为-50mmHg-75mmHg和-100mmHg 3大组,分别施以间歇负压(运行2分钟,停1分钟)和持续负压组。实验分别运用-50mmHg,-75mmHg,-100mmHg三个不同负压值进行连续、间歇治疗兔耳缺血性创面,观察伤后1,3,7,10,14,20d创面愈合情况,取伤后7d组织标本进行Western blot、HE染色,观察VEGF(vascular endothelial growth factor)的表达及创面上皮的再生和肉芽组织生长情况[1]。以及各时间点细胞凋亡的检测。结果:-50mmHg(纱布+海绵)间歇负压引流技术治疗兔耳缺血性创面的愈合最快,-75mmHg治疗组次之,-100mmHg治疗组创面愈合最慢。在同一时间点上,-50mmHg治疗组与-75mmHg,-100mmHg治疗组和空白对照组之间相比,能够更快地促进创面VEGF的表达和肉芽组织的再生,毛细血管增多。封闭负压治疗能够降低创面组织细胞的凋亡的发生。结论:(1)封闭负压治疗能够促进缺血创面的肉芽组织再生及VEGF的表达,减少创面组织细胞的凋亡的发生;(2)-50mmHg间歇封闭负压治疗效果最好。  相似文献   

18.
The aqueous extract of C. papaya fruit (100 mg kg(-1) day(-1) for 10 days) was evaluated for its wound healing activity in streptozotocin-induced diabetic rats using excision and dead space wound models. Extract-treated animals exhibited 77% reduction in the wound area when compared to controls which was 59%. The extract treated wounds were found to epithelize faster as compared to controls. The wet and dry granulation tissue weight and hydroxyproline content increased significantly when compared to controls. The extract exhibited antimicrobial activity against the five organisms tested. Carica papaya promotes significant wound healing in diabetic rats and further evaluation of this activity in humans is suggested.  相似文献   

19.
Nerve dependency in scarless fetal wound healing   总被引:9,自引:0,他引:9  
The human fetus is capable of healing cutaneous wounds without scar up to the third trimester of development This process of tissue repair is more akin to newt limb regeneration than classic adult scar forming wound repair. Regeneration of the newt limb is dependent on neural input in its early stages. This study was an attempt to determine whether a similar dependence on neural input exists for mammalian fetal wounds to heal without scar. The left hind limb of six fetal lambs was denervated during the early second trimester of development (day 55; term = 145 days). Two weeks after denervation, the animals were again exposed to create bilateral incisional and 6-mm-diameter excisional wounds on their innervated right and denervated left lower extremities. Five days after creation of these defects, the wounds were examined for alterations in repair. Four fetal lambs survived, and three were suitable for evaluation. There were marked alterations in wound healing seen after denervation. Excisional wounds on the innervated side contracted and decreased their surface area by 14 percent. In contrast, the denervated wounds not only failed to contract, but increased in size by 60 percent. Changes in the incisional wounds were equally distinctive. Innervated incisional wounds healed completely without scar and had a wound breaking strength comparable to that of normal skin (Table I). In contrast, two of the three denervated incisional wounds dehisced and failed to heal, even in the regions where the skin was approximated by suture. The third denervated incisional wound did heal but with a significant amount of scar. Electron microscopy confirmed this finding by clearly demonstrating thickened and irregular collagen deposition in the extracellular matrix of all the denervated incisional specimens. In summary, like the regenerating newt limb, scarless fetal skin wound repair requires neural stimulation for tissue regeneration to occur. Therefore, in the mammal, the primary regulator for this unique type of tissue repair may have a central neural, rather than a local, tissue origin.  相似文献   

20.
Aerosolized epidermal cell suspension was previously found to be effective for the epithelialization of full-thickness wounds. This suspension is less expensive than and requires a shorter preparation time than the currently used cultured epithelial autografts. Still, convex and irregular wounds present unfavorable conditions for homogenous dispersion of the aerosolized cell suspension. The authors hypothesized that the addition of fibrin glue to the aerosol of cells would reduce cell movement and ensure homogenous dispersion of the cells, thereby promoting wound epithelialization. The objectives of the study were to evaluate the healing of wounds with unfavorable topography after autotransplantation of an epidermal cell aerosol with and without fibrin glue.Six Yorkshire piglets were studied. An epidermal suspension was made from full-thickness groin skin. Dispase was used to separate the epidermis from the dermis, and trypsin was used to separate the epidermal cells from one another. Twenty-four hours later, full-thickness wounds with unfavorable topography were created adjacent to the vertebral column of six pigs. Twelve wounds were treated with an aerosol of epidermal cell suspension mixed with fibrin glue (study group), and 12 wounds were treated with the same suspension without the fibrin glue (control group). The percentages of total wound contraction and the epithelialized and nonepithelialized areas were evaluated 1, 2, 3, and 4 weeks after aerosolization. The histologic characteristics of the newly formed skin were examined by light microscopy using slides stained with hematoxylin and eosin.Study wounds were characterized by central epithelialization, whereas control wounds were characterized by peripheral epithelialization. Study wounds contracted at a slower rate than control wounds, but wound size was the same in both groups after 4 weeks. The addition of fibrin glue facilitated epithelialization: Study wounds showed 75.5 +/- 22.4 percent (mean +/- SD) and 94.2 +/- 8.8 percent epithelialization after 3 and 4 weeks, respectively, compared with 46.3 +/- 9.5 percent and 47.9 +/- 13.1 percent epithelialization of the control wounds at the same times. These differences between the study and control groups were statistically significant (p < 0.001, paired t test).The addition of fibrin glue to an aerosol of epidermal cells significantly enhances the epithelialization of wounds with unfavorable topography in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号