首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of appearance, in a population of mouse-human heterokaryons, of cells with intermixed mouse and human surface antigens may be used to estimate the rate of lateral diffusion of the antigens in a single cell. Most heterokaryons appear to restrict diffusion of their surface antigens. These restrictions are altered by exposing either heterokaryons or their parent cells to conditions that change cell surface membrane potential. Media containing unphysiological concentrations of potassium ion, drugs, affecting the Na+,K+ ATPase, or a channel-forming antibiotic, gramicidin, all affect lateral mobility of cell surface antigens in a manner consistent with a common effect on membrane potential.  相似文献   

2.
Ligands can be captured by a surface target through either direct bulk diffusion or surface diffusion following reversible adsorption to the surface. We have solved a steady state boundary value problem for a perfect sink disk target in the surface, taking into account bulk and surface diffusion coefficients D and Ds and adsorption/desorption kinetic rate constants ka and kd at non-target regions. Solutions have been successfully found by numerical computation. The results show that the rate of capture from the surface depends non-linearly on Ds, D, ka, kd and geometrical dimensions. In particular, we demonstrate that not only is the non-target region equilibrium constant Keq (= ka/kd) important in determining the rate of capture from the surface, but so are the kinetic rate constants ka and kd separately. In all cases, the surface adsorption/diffusion combination enhances the total rate of capture. The results should be useful for predicting reaction rates of biological membrane bound receptor clusters and substrate-immobilized enzymes.  相似文献   

3.
We have developed a mathematical framework for describing a bispecific monoclonal antibody interaction with two independent membrane-bound targets that are expressed on the same cell surface. The bispecific antibody in solution binds either of the two targets first, and then cross-links with the second one while on the cell surface, subject to rate-limiting lateral diffusion step within the lifetime of the monovalently engaged antibody-antigen complex. At experimental densities, only a small fraction of the free targets is expected to lie within the reach of the antibody binding sites at any time. Using ordinary differential equation and Monte Carlo simulation-based models, we validated this approach against an independently published anti-CD4/CD70 DuetMab experimental data set. As a result of dimensional reduction, the cell surface reaction is expected to be so rapid that, in agreement with the experimental data, no monovalently bound bispecific antibody binary complexes accumulate until cross-linking is complete. The dissociation of the bispecific antibody from the ternary cross-linked complex is expected to be significantly slower than that from either of the monovalently bound variants. We estimate that the effective affinity of the bivalently bound bispecific antibody is enhanced for about 4 orders of magnitude over that of the monovalently bound species. This avidity enhancement allows for the highly specific binding of anti-CD4/CD70 DuetMab to the cells that are positive for both target antigens over those that express only one or the other We suggest that the lateral diffusion of target antigens in the cell membrane also plays a key role in the avidity effect of natural antibodies and other bivalent ligands in their interactions with their respective cell surface receptors.  相似文献   

4.
We describe a method for determining chemical kinetic constants and diffusion coefficients by measuring the rates of decay of spontaneous concentration fluctuations. The equilibrium of the system is not disturbed during the measurement. We measure the number of molecules of a specified type in a defined open volume as a function of time and compute the time course of the deviations from the thermodynamic mean concentration. The method is based on the principle that the rates of decay of spontaneous microscopic fluctuations are determined by the same phenomenological rate coefficients as those of macroscopic departures from equilibrium which result from external perturbations. Hence, an analysis of fluctuations yields the same chemical rate constants and diffusion coefficients as are measured by conventional procedures. In practice the number of the specified molecules is measured by a property such as absorbance or fluorescence which is specific and sensitive to chemical change. The sample volume is defined by a light beam which traverses the cell. As the molecules appear in or disappear from the light beam, either due to diffusion or chemical reaction, their concentration fluctuations give rise to corresponding fluctuations of the intensity of absorbed or emitted light. This paper presents the theory needed to derive chemical rate constants and diffusion coefficients from these fluctuations in light intensity. The theory is applied to three examples of general interest: pure diffusion in the absence of chemical reaction; the binding of a small rapidly diffusing ligand to a larger slowly diffusing macromolecule; and a unimolecular isomerization. The method should be especially useful in studying highly cooperative systems, relatively noncooperative systems with intermediate states closely spaced in free energy, small systems, and systems not readily subject to perturbations of state.  相似文献   

5.
Cell migration is a dynamic phenomenon requiring a physical interaction between the internal cell motile machinery and the external substratum in which adhesion receptors, such as integrins, serve as the transmembrane link. To analyze quantitatively this interaction, we apply a modified Brownian dynamics algorithm to simulate cytoskeleton-mediated transport of integrin on the dorsal surfaces of migrating fibroblasts. Previously, we experimentally demonstrated that integrin is transported in an intermittent fashion, with directed excursions interspersed by diffusive periods, preferentially toward the cell edge where the integrin is likely used in the formation of nascent adhesions. Integrins containing mutations in the cytoskeleton-binding region of the cytoplasmic domain display statistically different degrees of directed transport, indicating that this phenomenon is dependent on cytoskeletal associations. In the present work, we develop a computer algorithm generating simulated integrin transport trajectories, given estimates for the rate constants defining coupling (kc) and uncoupling (ku) of integrin with cytoskeletal components. Other parameters supplied to the program, the diffusion coefficient (D) for integrin in the membrane and the instantaneous velocity (vi) of the integrin/cytoskeleton complex, have been measured independently in our experimental system. By comparing the simulated trajectories with those obtained experimentally, we are able to estimate the coupling and uncoupling rate constants for the interaction of integrin with cytoskeletal elements in vivo. We find that integrin couples with cytoskeletal elements at a rate approximately 10 times slower than its rate of uncoupling (kc = 0.3 s-1, ku = 3 s-1). Comparison of these rate constants with an equivalent rate constant for diffusion, k+ = 0.4 s-1, indicates that the coupling interaction is likely a diffusion-limited process, as is typically expected for membrane processes. We further show by calculation that directed transport is necessary for integrin to traverse the length of an extending lamellipod to its leading edge; diffusion alone is not sufficiently fast to supply adhesion receptors to points of new cell/substratum contact.  相似文献   

6.
One of the most dominant methods cells use for a large class of cellular processes is reaction (or binding) diffusion kinetics, which are controlled by kinetic constants such as diffusion coefficients and on/off binding rate constants. Fluorescence recovery after photobleaching (FRAP) can be used to determine these kinetic constants in living cells. While an analytic expression for FRAP formulae for pure diffusion has been available for some time, an analytic FRAP formula for the binding diffusion model has not been reported yet. Here, we present an analytic FRAP formula for the binding diffusion model in an explicit form allowing for diffusion of the bound complex for either a uniform circle laser profile or a Gaussian laser profile.  相似文献   

7.
Frog rod outer segments were labeled with the sulfhydryl-reactive label iodoacetamido tetramethylrhodamine. The bulk of the label reacted with the major disk membrane protein, rhodopsin. Fluorescence photobleaching and recovery (FPR) experiments on labeled rods showed that the labeled proteins diffused rapidly in the disk membranes. In these FPR experiments we observed both the recovery of fluorescence in the bleached spot and the loss of fluorescence from nearby, unbleached regions of the photoreceptor. These and previous experiments show that the redistribution of the fluorescent labeled proteins after bleaching was due to diffusion. The diffusion constant, D, was (3.0 +/- 10(-9) cm2 s-1 if estimated from the rate of recovery of fluorescence in the bleached spot, and (5.3 +/- 2.4) x 10(-9) cm2 s-1 if estimated from the rate of depletion of fluorescence from nearby regions. The temperature coefficient, Q10, for diffusion was 1.7 +/- 0.5 over the range 10 degrees--29 degrees C. These values obtained by FPR are in good agreement with those previously obtained by photobleaching rhodopsin in fresh, unlabeled rods. This agreement indicates that the labeling and bleaching procedures required by the FPR method did not significantly alter the diffusion rate of rhodopsin. Moreover, the magnitude of the diffusion constant for rhodopsin is that to be expected for an object of its diameter diffusing in a bilayer with the viscosity of the disk membrane. In contrast to the case of rhodopsin, FPR methods applied to other membrane proteins have yielded much smaller diffusion constants. The present results help indicate that these smaller diffusion constants are not artifacts of the method but may instead be due to interactions the diffusing proteins have with other components of the membrane in addition to the viscous drag imposed by the lipid bilayer.  相似文献   

8.
Many cellular reactions involve a reactant in solution binding to or dissociating from a reactant confined to a surface. This is true as well for a BIAcore, an optical biosensor that is widely used to study the interaction of biomolecules. In the flow cell of this instrument, one of the reactants is immobilized on a flat sensor surface while the other reactant flows past the surface. Both diffusion and convection play important roles in bringing the reactants into contact. Usually BIAcore binding data are analyzed using well known expressions that are valid only in the reaction-limited case when the Damk?hler number Da is small. Asymptotic and singular perturbation techniques are used to analyze dissociation of the bound state when Da is small and O(1). Linear and nonlinear integral equations result from the analysis; explicit and asymptotic solutions are constructed for physically realizable cases. In addition, effective rate constants are derived that illustrate the effects of transport on the measured rate constants. All these expressions provide a direct way to estimate the rate constants from BIAcore binding data.  相似文献   

9.
We have previously shown that the lateral diffusion, D, of the class I Major Histocompatibility Complex (MHC) glycoprotein H-2Ld is constrained by its glycosylation, when expressed in mouse L-cells. Removal of one or more of the 3 N-linked oligosaccharides of H-2Ld glycoproteins results in an increase in D. In order to further examine the influence of glycosylation on D, we compared lateral diffusion of H-2Ld expressed in wild-type CHO cells with lateral diffusion of the same molecule expressed in mutant CHO cells with aberrant surface glycosylation. In addition, we compared lateral diffusion of wild-type and unglycosylated H-2Ld antigens in these cells. In contrast to the large effect of glycosylation state on lateral diffusion of H-2Ld in mouse L-cells, there was little effect of glycosylation on lateral diffusion of H-2Ld in any of the CHO cells. This, together with similar results on hamster class I antigens, indicates that the constraints to D of H-2Ld and other class I MHC molecules are different in CHO cells than in L-cells. Measurements of lateral diffusion after treatment of cells with cytochalasin D make it clear that interactions between MHC class I molecules and a cytoskeleton are important in reducing the mobile fraction of diffusing molecules, R, though they cannot be shown to directly affect the diffusion coefficient, D.  相似文献   

10.
The theoretical basis of a new technique for measuring equilibrium adsorption/desorption kinetics and surface diffusion of fluorescent-labeled solute molecules at solid surfaces has been developed. The technique combines total internal reflection fluorescence (TIR) with either fluorescence photobleaching recovery (FPR) or fluorescence correlation spectroscopy (FCS). A laser beam totally internally reflects at a solid/liquid interface; the shallow evanescent field in the liquid excites the fluorescence of surface adsorbed molecules. In TIR/FPR, adsorbed molecules are bleaching by a flash of the focused laser beam; subsequent fluorescence recovery is monitored as bleached molecules exchange with unbleached ones from the solution or surrounding nonilluminated regions of the surface. In TIR/FCS, spontaneous fluorescence fluctuations due to individual molecules entering and leaving a well-defined portion of the evanescent field are autocorrelated. Under appropriate experimental conditions, the rate constants and surface diffusion coefficient can be readily obtained from the TIR/FPR and TIR/FCS curves. In general, the shape of the theoretical TIR/FPR and TIR/FCS curves depends in a complex manner upon the bulk and surface diffusion coefficients, the size of the iluminated or observed region, and the adsorption/desorption/kinetic rate constants. The theory can be applied both to specific binding between immobilized receptors and soluble ligands, and to nonspecific adsorption processes. A discussion of experimental considerations and the application of this technique to the adsorption of serum proteins on quartz may be found in the accompanying paper (Burghardt and Axelrod. 1981. Biophys. J. 33:455).  相似文献   

11.
We have studied the diffusion and aggregation of H-2Kk antigens labeled with a fluorescent anti-H-2Kk monoclonal antibody (IgG) on mouse splenic lymphocytes, employing fluorescence photobleaching recovery and fluorescence microscopy. The H-2Kk antigens were initially distributed homogeneously on all lymphocytes. Upon antibody binding, sub-micron patches were formed on 50-60% of the cells. A lateral diffusion coefficient, D, of 7.1 X 10(-10) cm2/s and a mobile fraction of 0.73 were found for H-2Kk antigens on diffusely-labeled cells, while these antigens were immobile (D less than or equal to 5 X 10(-12) cm2/s) on patched cells. The patched and nonpatched sub-populations did not correspond to B- and T-lymphocytes. Subjection to low temperature or treatment with NaN3 or cytoskeleton-disrupting drugs did not affect the diffusion or patching of H-2Kk, indicating no involvement of metabolic energy or drug-sensitive cytoskeletal components. These findings could be related to the interactions of H-2 antigens on the cell surface, and to the different susceptibilities of various cells to lysis by cytotoxic T-cells.  相似文献   

12.
A mathematical model based on receptor-ligand interactions at a cell surface has been modified and further developed to represent heterogeneous DNA-DNA hybridization on a solid surface. The immobilized DNA molecules with known sequences are called probes, and the DNA molecules in solution with unknown sequences are called targets in this model. Capture of the perfectly complementary target is modeled as a combined reaction-diffusion limited irreversible reaction. In the model, there are two different mechanisms by which targets can hybridize with the complementary probes: direct hybridization from the solution and hybridization by molecules that adsorb nonspecifically and then surface diffuse to the probe. The results indicate that nonspecific adsorption of single-stranded DNA on the surface and subsequent two-dimensional diffusion can significantly enhance the overall reaction rate. Heterogeneous hybridization depends strongly on the rate constants for DNA adsorption/desorption in the non-probe-covered regions of the surface, the two-dimensional (2D) diffusion coefficient, and the size of probes and targets. The model shows that the overall kinetics of DNA hybridization to DNA on a solid support may be an extremely efficient process for physically realistic 2D diffusion coefficients, target concentrations, and surface probe densities. The implication for design and operation of a DNA hybridization surface is that there is an optimal surface probe density when 2D diffusion occurs; values above that optimum do not increase the capture rate. Our model predicts capture rates in agreement with those from recent experimental literature. The results of our analysis predict that several things can be done to improve heterogeneous hybridization: 1) the solution phase target molecules should be about 100 bases or less in size to speed solution-phase and surface diffusion; 2) conditions should be created such that reversible adsorption and two-dimensional diffusion occur in the surface regions between DNA probe molecules; 3) provided that 2) is satisfied, one can achieve results with a sparse probe coverage that are equal to or better than those obtained with a surface totally covered with DNA probes.  相似文献   

13.
Immunotherapy has been widely investigated for its potential use in cancer therapy and it becomes more and more apparent that the selection of target antigens is essential for its efficacy. Indeed, limited clinical efficacy is partly due to immune evasion mechanisms of neoplastic cells, e.g. downregulation of expression or presentation of the respective antigens. Consequently, antigens contributing to tumor cell survival seem to be more suitable therapeutic targets. However, even such antigens may be subject to immune evasion due to impaired processing and cell surface expression. Since development and progression of tumors is not only dependent on cancer cells themselves but also on the active contribution of the stromal cells, e.g. by secreting growth supporting factors, enzymes degrading the extracellular matrix or angiogenic factors, the tumor stroma may also serve as a target for immune intervention. To this end several antigens have been identified which are induced or upregulated on the tumor stroma. Tumor stroma-associated antigens are characterized by an otherwise restricted expression pattern, particularly with respect to differentiated tissues, and they have been successfully targeted by passive and active immunotherapy in preclinical models. Moreover, some of these strategies have already been translated into clinical trials.  相似文献   

14.
The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid.  相似文献   

15.
HLA-A2 and -B7 antigens were introduced into EL4 (H-2b) cells by cell-liposome fusion and were used as targets or stimulators for cytotoxic T lymphocytes (CTL) generated in C57B1/6 (H-2b) mice. It was found that such EL4-HLA cells were not recognized by CTL that had been raised against either a human cell line bearing these HLA antigens or the purified HLA-A2 and -B7 antigens reconstituted into liposomes. In addition, EL4-HLA cells were not capable of inducing CTL that could recognize a human cell line bearing HLA-A2 and -B7 antigens. Instead, EL4-HLA cells induced CTL that specifically lysed EL4-HLA cells and not human cells expressing HLA-A2 and -B7. CTL recognition required the presence of HLA antigens on the EL4 cell surface and was inhibited by antibodies against either H-2b or HLA-A/B. Monoclonal antibody binding studies showed that the expected polymorphic determinants of the HLA-A2 and -B7 antigens were still present on EL4-HLA cells. However, the specificity of CTL or their precursors that are capable of recognizing HLA-A2 or -B7 was altered after these antigens became associated with the EL4 surface. Possible explanations for these results are discussed.  相似文献   

16.
Functional properties of EL-4 tumor cells with lipid-altered membranes.   总被引:2,自引:0,他引:2  
The effect of fatty acid substitution of membrane phosphatides on a number of surface-mediated phenomena in EL-4 cells was examined. Tumor cells were grown in the presence of fatty acids that could be expected, on the basis of their physical properties, either to stiffen or fluidize the plasma membrane. Substitution of EL-4 cell membrane phosphatides with as much as 74% nonadecanoic acid (19:0) had no effect on either conjugation with effector cells or subsequent cytolysis by the effector cells. Substitution with linolenic acid (18:3) or elaidic acid (18:1trans) likewise affected neither conjugation nor cytolysis. Substitution with these fatty acids also had no effect on the susceptibility of EL-4 cells to cytolysis by antibody plus complement. On the other hand, the rate of patching of H-2 surface antigens was very sensitive to substitution by both 19:0 and 18:3. Although not conclusive, these results suggest that alterations of the fluid state of the membrane that affect lateral movements of surface proteins may not affect cytolytic processes.  相似文献   

17.
T L Hill 《Biophysical journal》1986,49(5):1017-1031
Simple linear tubular aggregates with up to eight strands are studied theoretically at equilibrium and under conditions of steady growth or shortening. The surface structure and free energy at an end of the polymer fluctuate as a consequence of the gain or loss of individual subunits. The surface free energy governs the probability distribution of surface structures at equilibrium. At steady state, on and off rate constants are crucial for this purpose; these depend on the gain or loss of neighbor interactions at the polymer end when a subunit is gained or lost. The observed on and off rate constants are averages of microscopic rate constants. A consequence of this is that the subunit flux onto the polymer end is, in general, not a linear function of the free subunit concentration, as is usually assumed. Monte Carlo calculations are needed at steady state for three or more strands. The general approach can be applied to microtubules, which have 13 strands. Actin is a special case, included here, with two strands.  相似文献   

18.
We used a fluorescence method to measure the rate constants for the elongation of pyrene-labeled actin filaments in a number of different solvents. The absolute values of the rate constants were established by electron microscopy. Using glycerol, sucrose, or ethylene glycol to vary the solution viscosity, the association rate constant (k+) was 10(7) M-1 s-1 viscosity-1 (in centipoise). Consequently, plots of 1/k+ versus viscosity are linear and extrapolate to near the origin as expected for a diffusion-limited reaction where the rate constant approaches infinity at zero viscosity. By electron microscopy, we found that this inhibitory effect of glycerol is almost entirely at the fast growing, barbed end. For the pointed end, plots of 1/k+ versus viscosity extrapolate to a maximum rate of about 10(6) M-1 s-1 at zero viscosity, so that elongation at the pointed is not limited by diffusion. In contrast to these small molecules, polyethylene glycol, dextran, and ovalbumin all cause a concentration (and therefore viscosity)-dependent increase in k+. At any given viscosity, their effects are similar to each other. For example, at 3 centipoise, k+ = 2.2 X 10(7) M-1 s-1. We presume that this is due to an excluded volume effect that causes an increase in the thermodynamic activity of the actin. If the proteins in the cytoplasmic matrix have a similar effect, the association reactions of actin in cells may be much faster than expected from experiments done in dilute buffers.  相似文献   

19.
Membrane potential and the rate constants for anion self-exchange in dog, cat, and human red blood cells have been shown to vary with cell volume. For dog and cat red cells, the outward rate constants for SO4 and Cl increase while the inward rate constant for SO4 decreases as cells swell or shrink. These changes coincide with the membrane potential becoming more negative as a result of changes in cell volume. Human red cells exhibit a similar change in the rate constants for SO4 and Cl efflux in response to cell swelling, but shrunken cells exhibit a decreased rate constant for SO4 efflux and a more positive membrane potential. Hyperpolarization of shrunken dog and cat red cells is due to a volume-dependent rate constant for SO4 efflux and a more positive membrane potential. Hyperpolarization of shrunken dog and cat red cells is due to a volume-dependent increase in PNa. If this increase in PNa is prevented by ATP depletion or if the outward Na gradient is removed, the response to shrinking is identical to human red cells. These results suggest that the volume dependence of anion permeability may be secondary to changes in the anion equilibrium ratio which in red cells is reflected by the membrane potential. When the membrane potential and cell volume of human red cells were varied independently by a method involving pretreatment with nystatin, it was found that the rate of anion transport (for SO4 and Cl) does not vary with cell volume but rather with membrane potential (anion equilibrium ratio); that is, the rate constant for anion efflux is decreased and that for influx is increased as the membrane potential becomes more positive (internal anion concentration increases) while the opposite is true with membrane hyperpolarization (a fall in internal anion concentration).  相似文献   

20.
Fetal nucleated cells circulating in maternal peripheral blood are a noninvasive source of fetal DNA for prenatal genetic diagnoses. The successful isolation of fetal cells from maternal blood depends upon identification of differences between fetal and maternal cell surface antigen expression. To our best knowledge, a monoclonal antibody that binds only fetal blood cells has not yet been identified. We studied antigens recognized by six different monoclonal antibodies for their biologic expression on fetal blood cells as a function of gestational age, and compared their ability to bind fetal but not maternal cells. The results suggest a relationship between gestational age and nucleated cell surface antigen expression. The monoclonal antibodies FB3-2, H3-3, CD71 and 2-6B/6 are suitable reagents for first or early second trimester fetal cell isolation, although FB3-2 and H3-3 are more specific for fetal cells due to significantly lower expression of these antigens on maternal mononuclear cells. The observation that samples from fetuses with chromosome abnormalities or multiple structural anomalies express higher levels of these antigens indicates that these reagents will potentiate the detection of abnormal fetal cells in maternal blood samples. Received: 23 November 1996 / Accepted: 13 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号