首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究冰川中微生物的多样性对于揭示环境气候变迁,研究生物进化,开发微生物资源具有重要意义,现代分子生物学的发展为研究冰川微生物的多样性提供了行之有效的方法.简要综述了16S rDNA文库构建、变性梯度凝胶电泳、限制性片段长度多态性和荧光原位杂交等技术的原理及在冰川微生物生态研究中的应用现状.  相似文献   

2.

Background  

Despite increasing popularity and improvements in terminal restriction fragment length polymorphism (T-RFLP) and other microbial community fingerprinting techniques, there are still numerous obstacles that hamper the analysis of these datasets. Many steps are required to process raw data into a format ready for analysis and interpretation. These steps can be time-intensive, error-prone, and can introduce unwanted variability into the analysis. Accordingly, we developed T-REX, free, online software for the processing and analysis of T-RFLP data.  相似文献   

3.
In this study, the microbial community characteristics in continuous lab-scale anaerobic reactors were correlated to reactor functionality using the microbial resource management (MRM) approach. Two molecular techniques, denaturing gradient gel electrophoresis (DGGE) and terminal-restriction fragment length polymorphism (T-RFLP), were applied to analyze the bacterial and archaeal communities, and the results obtained have been compared. Clustering analyses showed a similar discrimination of samples with DGGE and T-RFLP data, with a clear separation between the meso- and thermophilic communities. Both techniques indicate that bacterial and mesophilic communities were richer and more even than archaeal and thermophilic communities, respectively. Remarkably, the community composition was highly dynamic for both Bacteria and Archaea, with a rate of change between 30% and 75% per 18 days, also in stable performing periods. A hypothesis to explain the latter in the context of the converging metabolism in anaerobic processes is proposed. Finally, a more even and diverse bacterial community was found to be statistically representative for a well-functioning reactor as evidenced by a low Ripley index and high biogas production.  相似文献   

4.
变性梯度凝胶电泳(DGGE)在微生物生态学中的应用   总被引:47,自引:3,他引:44  
由于从环境样品中分离和培养细菌的困难,分子生物学方法已发展用来描述和鉴定微生物群落。近年来基于DNA方法的群落分析得到了迅速的发展,如PCR扩增技术,克隆文库法,荧光原位杂交法,限制性酶切片段长度多态性法,变性和温度梯度凝胶电泳法。DGGE已广泛用于分析自然环境中细菌、蓝细菌,古菌、微微型真核生物、真核生物和病毒群落的生物多样性。这一技术能够提供群落中优势种类信息和同时分析多个样品。具有可重复和容易操作等特点,适合于调查种群的时空变化,并且可通过对切下的带进行序列分析或与特异性探针杂交分析鉴定群落成员。DGGE分析微生物群落的一般步骤如下:一是核酸的提取,二是16S rRNA,18S rRNA或功能基因如可容性甲烷加单氧酶羟化酶基因(mmoX)和氨加单氧酶a一亚单位基因(amoA)片段的扩增,三是通过DGGE分析PCR产物。DGGE使用具有化学变性剂梯度的聚丙烯酰胺凝胶,该凝胶能够有区别的解链PCR扩增产物。由PCR产生的不同的DNA片段长度相同但核苷酸序列不同。因此不同的双链DNA片段由于沿着化学梯度的不同解链行为将在凝胶的不同位置上停止迁移。DNA解链行为的不同导致一个凝胶带图案,该图案是微生物群落中主要种类的一个轮廓。DGGE使用所有生物中保守的基因片段如细菌中的16S rRNA基因片段和真菌中的18S rRNA基因片段。然而同其他分子生物学方法一样,DGGE也有缺陷,其中之一是只能分离较小的片段,使用于系统发育分析比较和探针设计的序列信息量受到了限制。在某些情况下,由于所用基因的多拷贝导致一个种类多于一条带,因此不易鉴定群落结构到种的水平。此外,该技术具有内在的如单一细菌种类16S rDNA拷贝之间的异质性问题,可导致自然群落中微生物数量的过多估计。DGGE是分析微生物群落的一种有力的工具。不过为了减少DGGE和其它技术的缺陷,建议研究者结合DGGE和其它分子及微生物学方法以便更详细的观察微生物的群落结构和功能。  相似文献   

5.
The catalysts for many microbially mediated environmental processes such as the dechlorination of polychlorinated biphenyls (PCBs) have been difficult to identify by traditional isolation techniques. Numerous, as yet unsuccessful, attempts have been made to isolate and culture the dechlorinating species. To overcome this limitation, amplified rDNA restriction analysis (ARDRA) of a clone library, denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (TRFLP) were used concurrently to compare their effectiveness for characterizing an enriched microbial community. These methods were applied to enrichment cultures that selectively dechlorinated double-flanked chlorines in the PCB congener 2,3,4,5 chlorinated biphenyl. The methods have different biases, which were apparent from discrepancies in the relative clone frequencies (ARDRA), band intensities (DGGE) or peak heights (TRFLP) from the same enrichment culture. However, each method was effectively qualitative and identified the same organisms: a low G + C Gram-positive eubacterium, an organism most similar to the green non-sulphur bacteria, an Aminobacterium sp. and a Desulfovibrio sp. Overall, in community fingerprinting and preliminary identification, DGGE proved to be the most rapid and effective tool for the monitoring of microorganisms within a highly enriched culture. TRFLP results corroborated DGGE fingerprint analysis; however, identification required the additional step of creating a clone library. ARDRA provided an in-depth analysis of the community and this technique detected slight intraspecies sequence variation in 16S rDNA. These molecular methods are common in environmental microbiology, but rarely are they compared with the same sample site or culture. In general, all three methods detected similar community profiles, but inherent biases resulted in different detection limits for individual OTUs (operational taxonomic units).  相似文献   

6.
Characterization of microbial communities using single-strand conformation polymorphism (SSCP) was compared with that using denaturing gradient gel electrophoresis (DGGE). This comparison was based on the V3-4 region (Escherichia coli positions: 341-806) of 16S rRNA gene of bacterial or archaeal communities obtained from a methanogenic bioreactor. Significant differences in the bacterial banding profiles were observed while attempting to detect the diversity of the community and its succession during the reactor operation. The SSCP produced a number of sharp bands and differentiated the bacterial community structures to which the DGGE gave an identical pattern. On the other hand, the SSCP and DGGE provided similar succession patterns for archaeal community.  相似文献   

7.
Li RY  Zhang T  Fang HH 《Bioresource technology》2011,102(18):8445-8456
This paper reviews the application of molecular techniques in heterotrophic hydrogen production studies. Commonly used molecular techniques are introduced briefly first, including cloning-sequencing after polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), terminal-restriction fragment length polymorphism (T-RFLP), fluorescence in situ hybridization (FISH) and quantitative real-time PCR. Application of the molecular techniques in heterotrophic hydrogen production studies are discussed in details, focusing on identification of new isolates for hydrogen production, characterization of microbial compositions in bioreactors, monitoring microbial diversity variation, visualization of microbial distribution in hydrogen-producing granular sludge, and quantification of various microbial populations. Some significant findings in recent hydrogen production studies with the application of molecular techniques are discussed, followed by a research outlook of the heterotrophic biohydrogen field.  相似文献   

8.
Fingerprinting techniques provide access to understanding the ecology of uncultured microbial consortia. However, the application of current techniques such as terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) has been hindered due to their limitations in characterizing complex microbial communities. This is due to that different populations possibly share the same terminal restriction fragments (T-RFs) and DNA fragments may co-migrate on DGGE gels. To overcome these limitations, a new approach was developed to separate terminal restriction fragments (T-RFs) of 16S rRNA genes on a two-dimensional gel (T-RFs-2D). T-RFs-2D involves restriction digestion of terminal fluorescence-labelled PCR amplified 16S rRNA gene products and their high-resolution separation via a two-dimensional (2D) gel electrophoresis based on the T-RF fragment size (1(st) D) and its sequence composition on the denaturing gradient gel (2(nd) D). The sequence information of interested T-RFs on 2D gels can be obtained through serial poly(A) tailing reaction, PCR amplification and subsequent DNA sequencing. By employing the T-RFs-2D method, bacteria with MspI digested T-RF size of 436 (±1) bp and 514 (±1) bp were identified to be a Lysobacter sp. and a Dehalococcoides sp. in a polychlorinated biphenyl (PCB) dechlorinating culture. With the high resolution of 2D separation, T-RFs-2D separated 63 DNA fragments in a complex river-sediment microbial community, while traditional DGGE detected only 41 DNA fragments in the same sample. In all, T-RFs-2D has its advantage in obtaining sequence information of interested T-RFs and also in characterization of complex microbial communities.  相似文献   

9.
The genus Pseudomonas (sensu stricto) represents a group of microorganisms directly involved in functions conferring plant health. We performed a study in the DOK long-term agricultural field experiment on the basis of previously published Pseudomonas-selective PCR primers in order to investigate the community structure of the microbial groups defined by the target range of these primers. Three different agricultural management systems, i.e., conventional, biodynamic, and bio-organic, along with mineral and unfertilized controls were investigated, with each system planted with either winter wheat or a grass-clover ley. Amplified small-subunit rRNA gene fragments were analyzed using the genetic profiling techniques restriction fragment length polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE), revealing distinct differences between soils planted with winter wheat and grass clover but only minor differences between the management systems. Phylogenetic analyses of 59 clone sequences retrieved from bio-organic and unfertilized systems identified sequences related to Pseudomonas fluorescens and a novel cluster termed Cellvibrio-related Pseudomonadaceae (CRP). The CRP clones were exclusively isolated from winter wheat soil samples and were responsible for the crop-specific differences observed in RFLP and DGGE profiles. New primers were designed for the amplification of CRP targets directly from soil DNA, yielding strong signals exclusively for winter wheat soils. We concluded that crop-associated CRP exist in agricultural soils and that genetic profiling followed by specific probe design represents a valuable approach for identification as well as sensitive and rapid monitoring of novel microbial groups in the environment.  相似文献   

10.
Hydrogen production by the dark fermentation of food wastes is an economic and environmentally friendly technology to produce the clean energy source as well as to treat the problematic wastes. However, the long-term operations of the continuous anaerobic reactor for fermentative hydrogen production were frequently unstable. In this study, the structure of microbial community within the anaerobic reactor during unstable hydrogen production was examined by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) techniques. The changes in microbial community from H(2)-producing Clostridium spp. to lactic acid-producing Lactobacillus spp. were well coincident with the unexpected process failures and the changes of metabolites concentrations in the effluent of the anaerobic reactor. As the rate of hydrogen production decreased, effluent lactic acid concentration increased. Low rate of hydrogen production and changes in microbial community were related to the 'kimchi' content and storage temperature of food waste feed solution. After low temperature control of the storage tank of the feed solution, any significant change in microbial community within the anaerobic reactor did not occur and the hydrogen production was very stably maintained for a long time.  相似文献   

11.
Fungi fulfil a range of important ecological functions, yet current understanding of fungal biodiversity in soil is limited. Direct DNA extraction from soil, coupled with polymerase chain reaction amplification and community profiling techniques, has proved successful in investigations of bacterial ecology and shows great promise for elucidating the taxonomic and functional characteristics of soil fungal communities. These community profiling techniques include denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), single-strand conformation polymorphism (SSCP), terminal restriction fragment length polymorphism (T-RFLP), amplified rDNA restriction analysis (ARDRA), amplified ribosomal intergenic spacer analysis (ARISA) and cloning, and are generally coupled with DNA sequencing. The techniques and their potential limitations are discussed, along with recent advances that have been made possible through their application in soil fungal ecology. It is unlikely that a single approach will be universally applicable for assessing fungal diversity in all soils or circumstances. However, judicious selection of the methodology, keeping the experimental aims in mind, and the exploitation of emerging technologies will undoubtedly increase our understanding of soil fungal communities in the future.  相似文献   

12.
土壤微生物群落多样性解析法:从培养到非培养   总被引:9,自引:0,他引:9  
刘国华  叶正芳  吴为中 《生态学报》2012,32(14):4421-4433
土壤微生物群落多样性是土壤微生物生态学和环境科学的重点研究内容之一.传统的土壤微生物群落多样性解析技术是指纯培养分离法(平板分离和形态分析法以及群落水平生理学指纹法).后来,研究者们建立了多样性评价较为客观的生物标记法(磷脂脂肪酸法和呼吸醌指纹法).随着土壤基因组提取技术和基因片段扩增(PCR)技术的发展,大量的现代分子生物学技术不断地涌现并极大地推动了土壤微生物群落多样性的研究进程.这些技术主要包括:G+C%含量、DNA复性动力学、核酸杂交法(FISH和DNA芯片技术)、土壤宏基因组学以及DNA指纹图谱技术等.综述了这些技术的基本原理、比较了各种技术的优缺点并且介绍了他们在土壤微生物群落多样性研究中的应用,展望了这些技术的发展方向.  相似文献   

13.
Denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) were used to characterise the changes that occurred in Bacillus cereus group strains present in the phylloplane of clover Trifolium hybridum over 4 months. These strains had previously been analysed by multiple locus sequence typing (MLST). DGGE displayed many equally intense bands which indicated many equally abundant ribotypes. The bacterial community composition was variable and the leaves sampled as little as a week apart were found to have some temporal variability, indicating that diverse phylloplane bacterial communities follow sequential patterns from time to time. The B. cereus group community clearly clustered into early, mid and late branches, possibly due to multiple successional sequences occurring during growing seasons. The functionally and phylogenetically diverse microbial communities appeared to exhibit predictable successional patterns over shorter time scales. DGGE analysis with the molecular marker rpoB gave better resolution than 16S rRNA amplicons. There were no strong similarities between the dendrograms produced by DGGE, MLST and T-RFLP and the clustering produced by the automated T-RFLP method was variable even between the three restriction enzymes used. The DGGE–MLST method emerged as a superior method to T-RFLP–MLST for rapid typing of bacterial communities.  相似文献   

14.
15.
Zeng G  Yu Z  Chen Y  Zhang J  Li H  Yu M  Zhao M 《Bioresource technology》2011,102(10):5905-5911
Two composting piles were prepared by adding to a mixture of rice straw, vegetables and bran: (i) raw soil free from pentachlorophenol (PCP) contamination (pile A) and (ii) PCP-contaminated soil (pile B). It was shown by the results that compost maturity characterized by water soluble carbon (WSC), TOC/TN ratio, germination index (GI) and dehydrogenase activity (DA) was significantly affected by PCP exposure, which resulted in an inferior degree of maturity for pile B. DGGE analysis revealed an inhibited effect of PCP on compost microbial abundance. The bacteria community shifts were mainly consistent with composting factors such as temperature, pH, moisture content and substrates. By contrast, the fungal communities were more sensitive to PCP contamination due to the significant correlation between fungal community shifts and PCP removal. Therefore, the different microbial community compositions for properly evaluating the degree of maturity and PCP contamination were suggested.  相似文献   

16.
Interpreting the large amount of data generated by rapid profiling techniques, such as T-RFLP, DGGE, and DNA arrays, is a difficult problem facing microbial ecologists. This study compares the ability of two very different ordination methods, principal component analysis (PCA) and self-organizing map neural networks (SOMs), to analyze 16S-DNA terminal restriction-fragment length polymorphism (T-RFLP) profiles from microbial communities in glucose-fed methanogenic bioreactors during startup and changes in operational parameters. Our goal was not only to identify which samples were similar, but also to decipher community dynamics and describe specific phylotypes, i.e., phylogenetically similar organisms, that behaved similarly in different reactors. Fifteen samples were taken over 56 volume changes from each of two bioreactors inoculated from river sediment (S2) and anaerobic digester sludge (M3) and from a well-established control reactor (R1). PCA of bacterial T-RFLP profiles indicated that both the S2 and M3 communities changed rapidly during the first nine volume changes, and then became relatively stable. PCA also showed that an HRT of 8 or 6 days had no effect on either reactor communtity, while an HRT of 2 days changed community structure significantly in both reactors. The SOM clustered the terminal restriction fragments according to when each fragment was most abundant in a reactor community, resulting in four clearly discernible groups. Thirteen fragments behaved similarly in both reactors, eight of which composed a significant proportion of the microbial community as judged by the relative abundance of the fragment in the T-RFLP profiles. Six Bacteria terminal restriction fragments shared between the two communities matched cloned 16S rDNA sequences from the reactors related to Spirochaeta, Aminobacterium, Thermotoga, and Clostridium species. Convergence also occurred within the acetoclastic methanogen community, resulting in a predominance of Methanosarcina siciliae-related organisms. The results demonstrate that both PCA and SOM analysis are useful in the analysis of T-RFLP data; however, the SOM was better at resolving patterns in more complex and variable data than PCA ordination.  相似文献   

17.
We compared two denaturing gradient gel electrophoresis (DGGE) systems—DCode (Biorad, Hercules, CA, USA) and PhorU (Ingeny, Leiden, NL), performing community level 16S and 18S rRNA gene fragment-PCR-DGGE with total DNA extracted from upland pasture soil used for outdoor cattle husbandry. The methodological evaluation of the DGGE apparatus as parameter influencing DGGE fingerprinting, based on cluster analysis of soil bacterial and fungal community fingerprints, was made in terms of the resulting information about microbial community structures and their response to different degrees of cattle impact. Although the comparative DGGE analysis with different DGGE systems provided similar clustering of microbial community structures in correlation with the degree of cattle impact, our results suggest the DGGE system to be a factor influencing DGGE analysis. To our knowledge this is the first attempt to investigate the hypothetical impact of the DGGE system due to different technical characteristics, recommending the use of one and the same DGGE apparatus throughout an experiment, if the monitoring of microbial community structures requires multiple gel-to-gel analysis.  相似文献   

18.
分子生物学方法在水体微生物生态研究中的应用   总被引:11,自引:2,他引:9  
微生物是生态系统的重要组成部分,研究水体中微生物的多样性和群落结构对于开发微生物资源、进行水体生物修复具有重要意义。现代分子生物学的发展为研究水体微生物提供了行之有效的方法。综述了16S rDNA文库构建、变性梯度凝胶电泳、限制性片段长度多态性、末端标记限制性片段长度多态性等技术的原理以及在水体微生物研究中的主要应用。  相似文献   

19.
女性阴道内寄居着多种微生物群落,这些微生物种群间的平衡状态与妇女阴道疾病的发生密切相关。鉴定女性阴道菌群结构多样性的特征,有助于了解其在阴道疾病发生和转归中所发挥的作用。目前基于16SrRNA的聚合酶链式反应(PCR)及宏基因组相关技术在微生物群落研究中被广泛运用,这不仅可以帮助人们最大程度地获得阴道菌群的宏基因组信息,还可有效弥补单纯微生物培养法所产生的实验数据不充足等弊端。本文对阴道微生物菌群多样性的研究中应用的宏基因组学技术如基因测序、变性/温度梯度凝胶电泳(DGGE/TGGE)、分子克隆、末端限制性酶切长度多态性(T-RFLP)等进行综述。  相似文献   

20.
In a contaminated water-table aquifer, we related microbial community structure on aquifer sediments to gradients in 24 geochemical and contaminant variables at five depths, under three recharge conditions. Community amplified ribsosomal DNA restriction analysis (ARDRA) using universal 16S rDNA primers and denaturing gradient gel electrophoresis (DGGE) using bacterial 16S rDNA primers indicated: (i). communities in the anoxic, contaminated central zone were similar regardless of recharge; (ii). after recharge, communities at greatest depth were similar to those in uncontaminated zones; and (iii). after extended lack of recharge, communities at upper and lower aquifer margins differed from communities at the same depths on other dates. General aquifer geochemistry was as important as contaminant or terminal electron accepting process (TEAP) chemistry in discriminant analysis of community groups. The Shannon index of diversity (H) and the evenness index (E), based on DGGE operational taxonomic units (OTUs), were statistically different across community groups and aquifer depths. Archaea or sulphate-reducing bacteria 16S rRNA abundance was not clearly correlated with TEAP chemistry indicative of methanogenesis or sulphate reduction. Eukarya rRNA abundance varied by depth and date from 0 to 13% of the microbial community. This contaminated aquifer is a dynamic ecosystem, with complex interactions between physical, chemical and biotic components, which should be considered in the interpretation of aquifer geochemistry and in the development of conceptual or predictive models for natural attenuation or remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号