首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To identify enterococci from Hussuwa, a Sudanese fermented sorghum product, and determine their technological properties and safety for possible inclusion in a starter culture preparation. METHODS AND RESULTS: Twenty-two Enterococcus isolates from Hussuwa were identified as Enterococcus faecium by using phenotypic and genotypic tests such as 16S rDNA gene sequencing, RAPD-PCR and restriction fragment length polymorphism of the 16S/23S intergenic spacer region fingerprinting. Genotyping revealed that strains were not clonally related and exhibited a considerable degree of genomic diversity. Some strains possessed useful technological properties such as production of bacteriocins and H2O2 or utilization of raffinose and stachyose. None produced alpha-amylase or tannase. A safety investigation revealed that all strains were susceptible to the antibiotics ampicillin, gentamicin, chloramphenicol, tetracycline and streptomycin, but some were resistant to ciprofloxacin, erythromycin, penicillin and vancomycin. Production of biogenic amines or presence of genes encoding virulence determinants occurred in some strains. CONCLUSIONS: Enterococcus faecium strains are associated with fermentation of Sudanese Hussuwa. Some strains exhibited useful technological properties such as production of antimicrobial agents and fermentation of indigestible sugars, which may aid in stabilizing and improving the digestibility of the product respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: Enterococci were shown to play a role in the fermentation of African foods. While beneficial properties of these bacteria are indicated, their presence in this food may also imply a hygienic risk as a result of antimicrobial resistances or presence of virulence determinants.  相似文献   

2.
The genus Enterococcus like other LAB has also been featured in dairy industry for decades due to its specific biochemical traits such as lipolysis, proteolysis, and citrate breakdown, hence contributing typical taste and flavor to the dairy foods. Furthermore, the production of bacteriocins by enterococci (enterocins) is well documented. These technological applications have led to propose enterococci as adjunct starters or protective cultures in fermented foods. Moreover, enterococci are nowadays promoted as probiotics, which are claimed for the maintenance of normal intestinal microflora, stimulation of the immune system and improvement of nutritional value of foods. At the same time, enterococci present an emerging pool of opportunistic pathogens for humans as they cause disease, possess agents for antibiotic resistance, and are frequently armed with potential virulence factors. Because of this “dualistic” nature, the use of enterococci remains a debatable issue. However, based on a long history of safe association of particular enterococci with some traditional food fermentations, the use of such strains appears to bear no particular risk for human health. Abundance of knowledge as well as progress in molecular techniques has, however, enabled exact characterization and safety assessment of strains. Therefore, a balanced evaluation of both, beneficial and undesirable nature of enterococci is required. A clear understanding of their status may, therefore, allow their safe use as a starter, or a probiotic strain. The present review describes the broader insight of the benefits and risks of enterococci in dairy foods and their safety assessment.  相似文献   

3.
A complex and heterogeneous microflora performs sugar and lactic acid fermentations in food products. Depending on the fermentable food matrix (dairy, meat, vegetable etc.) as well as on the species composition of the microbiota, specific combinations of molecules are produced that confer unique flavor, texture, and taste to each product. Bacterial populations within such "fermented food microbiota" are often of environmental origin, they persist alive in foods ready for consumption, eventually reaching the gastro-intestinal tract where they can interact with the resident gut microbiota of the host. Although this interaction is mostly of transient nature, it can greatly contribute to human health, as several species within the food microbiota also display probiotic properties. Such an interplay between food and gut microbiota underlines the importance of the microbiological quality of fermented foods, as the crowded environment of the gut is also an ideal site for genetic exchanges among bacteria. Selection and spreading of antibiotic resistance genes in foodborne bacteria has gained increasing interest in the past decade, especially in light of the potential transferability of antibiotic resistance determinants to opportunistic pathogens, natural inhabitants of the human gut but capable of acquiring virulence in immunocompromised individuals. This review aims at describing major findings and future prospects in the field, especially after the use of antibiotics as growth promoters was totally banned in Europe, with special emphasis on the application of genomic technologies to improve quality and safety of fermented foods.  相似文献   

4.
Enterococci, which are on the WHO list of priority pathogens, are commonly encountered in hospital acquired infection and are becoming increasing significant due to the development of strains resistant to multiple antibiotics. Enterococci are also important microorganisms in the environment, and their presence is frequently used as an indicator of faecal pollution. Their success is related to their ability to survive within a broad range of habitats and the ease by which they acquire mobile genetic elements, including plasmids, from other bacteria. The enterococci are frequently present within a bacterial biofilm, which provides stability and protection to the bacterial population along with an opportunity for a variety of bacterial interactions. Enterococci can accept extrachromosomal DNA both from within its own species and from other bacterial species, and this is enhanced by the proximity of the donor and recipient strains. It is this exchange of genetic material that makes the role of biofilms such an important aspect of the success of enterococci. There remain many questions regarding the most suitable model systems to study enterococci in biofilms and regarding the transfer of genetic material including antibiotic resistance in these biofilms. This review focuses on some important aspects of biofilm in the context of horizontal gene transfer (HGT) in enterococci.  相似文献   

5.
Enterococci are widespread bacteria forming the third largest genus among lactic acid bacteria. Some possess probiotic properties or they can produce beneficial proteinaceous antimicrobial substances called enterocins. On the other hand, some enterococci produce biogenic amines (BAs), so this study is focused on the sensitivity to enterocins of biogenic amine-producing faecal enterococci from ostriches and pheasants. Altogether, 60 enterococci isolated from faeces of ostriches and pheasants were tested for production of BAs. This target of the identified enterococci involved 46 strains selected from 140 ostriches and 17 from 60 pheasants involving the species Enterococcus hirae, E. faecium, E. faecalis, and E. mundtii. Although BAs histamine, cadaverine, putrescine, and tryptamine were not detected in the enterococci tested, in general high BA production by the tested enterococci was noted. The species E. hirae formed the majority of the enterococcal strains from ostrichs faeces (34 strains). High production of tyramine (TYM) was measured with an average amount of 958.16 ± 28.18 mg/ml. Among the enterococci from pheasants, the highest was production of TYM compared to phenylethylamine, spermidine, and spermine. Enterococci featured high BA production; however, they were sensitive to seven enterocins with inhibition activity ranging from 100 up to 25,600 AU/ml.  相似文献   

6.
Despite its ubiquity in fermented dairy products, the safety of lactic acid enterococcal bacteria remains controversial. In this study, five Enterococcus durans strains — A1, A2, B1, B2, and C1 — were isolated from traditional fermented yak milk from Tibet. To evaluate the strains’ safety, biogenic amine production, antibiotic resistance and presence of known virulence determinants were investigated. Strain A1 can produce biogenic amines for histamine, spermine, and spermidine (mean values: 8.64, 8.31, and 0.30 mg/L, respectively). Polymerase chain reaction amplification for Strain A1 found genes involved in expression of gelatinase (gleE), cytolysin (cylA, cylB, and cylM), sex pheromones (ccf and cpd) and cell wall adhesion (efaA). Strain A2 showed sensitivity or intermediate resistance to all tested antibiotics, and no virulence determinants except gelE and ccf, but did produce tyramine at a relatively high level (912.02 mg/L). Both strains B1 and B2 could produce histamine (10.43 and 10.56 mg/L, respectively), and showed vancomycin resistance; B1 also produced tyramine (504.02 mg/L). Strain C1 could produce all five biogenic amines tested in the study -putrescine, histamine, tyramine, spermine, and spermidine; concentrations were 6.51, 9.59, 205.85, 5.55, and 5.39 mg/L, respectively. All E. durans strains found in Tibetan traditional fermented yak milk thus offer potential risk.  相似文献   

7.
In the present study 14 bacteriocinogenic strains of Enterococcus faecium isolated from dairy foods and faecal sample were evaluated for the presence of virulence determinants, production of biogenic amines and their susceptibility to various antibiotics. Genetic diversity among them was evaluated by RAPD-PCR method. Further, they were evaluated for their probiotic potential under in vitro trials. The efaAfm was the only virulence trait detected in all E. faecium and tyramine was the only biogenic amine produced by 9 tested strains. No strain was resistant to all antibiotics and for some strains, multiple resistances were observed. E. faecium FH 99 showed highest good ability to tolerate acid and bile, while good bile salt hydrolase activity and were able to assimilate cholesterol from growth media. These results suggest that the tested E. faecium are generally free from virulence traits and having good probiotic potential and may be exploit in dairy industry and probiotic preparations.  相似文献   

8.
Enterococci, a complex group of facultative pathogens have become increasingly isolated in various hospital settings. They are considerable frequently cultured from traumatic and surgical wounds. We investigated 57 strains of the species E. faecalis, E. faecium and E. casseliflavus isolated from infected wounds. Their ability to produce virulence factors and their sensitivity to antibiotics were evaluated using phenotypic and genotyping methods. In the phenotype studies, significant portion of the isolates produced biofilm (66.7%) and gelatinase (36.8%). Nearly 30% of the strains expressed hemolytic properties. Only a few produced DNAse (15.8%) and lipase (7.0%). The genes esp, gelE, cylA, cylB, cylM and agg were detected in most of the isolates (38.6-87.7%). All the isolated enterococci were susceptible to vancomycin and were characterized by their low resistance to antibiotics, except aminoglycosides (HLR).  相似文献   

9.
Enterococci in the Environment   总被引:3,自引:0,他引:3  
Summary: Enterococci are common, commensal members of gut communities in mammals and birds, yet they are also opportunistic pathogens that cause millions of human and animal infections annually. Because they are shed in human and animal feces, are readily culturable, and predict human health risks from exposure to polluted recreational waters, they are used as surrogates for waterborne pathogens and as fecal indicator bacteria (FIB) in research and in water quality testing throughout the world. Evidence from several decades of research demonstrates, however, that enterococci may be present in high densities in the absence of obvious fecal sources and that environmental reservoirs of these FIB are important sources and sinks, with the potential to impact water quality. This review focuses on the distribution and microbial ecology of enterococci in environmental (secondary) habitats, including the effect of environmental stressors; an outline of their known and apparent sources, sinks, and fluxes; and an overview of the use of enterococci as FIB. Finally, the significance of emerging methodologies, such as microbial source tracking (MST) and empirical predictive models, as tools in water quality monitoring is addressed. The mounting evidence for widespread extraenteric sources and reservoirs of enterococci demonstrates the versatility of the genus Enterococcus and argues for the necessity of a better understanding of their ecology in natural environments, as well as their roles as opportunistic pathogens and indicators of human pathogens.  相似文献   

10.
Enterococci are now frequent causative agents of nosocomial infections. In this study, we analyzed the frequency and distribution of antibiotic resistance and virulence genotypes of Enterococcus isolates from broiler chickens. Fecal and cecal samples from nine commercial poultry farms were collected to quantify total enterococci. Sixty-nine presumptive enterococci were isolated and identified by API 20 Strep, and their susceptibilities to antibiotics were determined. Genotypes were assessed through the use of a novel DNA microarray carrying 70 taxonomic, 17 virulence, and 174 antibiotic resistance gene probes. Total enterococcal counts were different from farm to farm and between sample sources (P < 0.01). Fifty-one (74%) of the isolates were identified as E. faecium, whereas nine (13%), seven (10%), and two (3%) isolates were identified as E. hirae, E. faecalis, and E. gallinarum, respectively. Multiple-antibiotic resistance was evident in E. faecium and E. faecalis isolates. The most common multiple-antibiotic resistance phenotype was Bac Ery Tyl Lin Str Gen Tet Cip. Genes conferring resistance to aminoglycoside (aac, aacA-aphD, aadB, aphA, sat4), macrolide (ermA, ermB, ermAM, msrC), tetracycline (tetL, tetM, tetO), streptogramin (satG_vatE8), bacitracin (bcrR), and lincosamide (linB) antibiotics were detected in corresponding phenotypes. A range of 9 to 12 different virulence genes was found in E. faecalis, including ace, agg, agrB(Efs) (agrB gene of E. faecalis), cad1, the cAM373 and cCF10 genes, cob, cpd1, cylAB, efaA(Efs), and gelE. All seven E. faecalis isolates were found to carry the gelE gene and to hydrolize gelatin and bile salts. Results from this study showed the presence of enterococci of public and environmental health concerns in broiler chicken farms and demonstrated the utility of a microarray to quickly and reliably analyze resistance and virulence genotypes of Enterococcus spp.  相似文献   

11.

Background  

Enterococci have become major nosocomial pathogens due to their intrinsic and acquired resistance to a broad spectrum of antibiotics. Their increasing drug resistance prompts us to search for prominent antigens to develop vaccines against enterococci. Given the success of polysaccharide-based vaccines against various bacterial pathogens, we isolated and characterized the immunochemical properties of polysaccharide antigens from five strains of Enterococcus faecalis and one strain of vancomycin-resistant E. faecium.  相似文献   

12.
Enterococci are important nosocomial pathogens, with Enterococcus faecalis most commonly responsible for human infections. In this study, we used several measures to test the hypothesis that house flies, Musca domestica (L.), acquire and disseminate antibiotic-resistant and potentially virulent E. faecalis from wastewater treatment facilities (WWTF) to the surrounding urban environment. House flies and sludge from four WWTF (1–4) as well as house flies from three urban sites close to WWTF-1 were collected and cultured for enterococci. Enterococci were identified, quantified, screened for antibiotic resistance and virulence traits, and assessed for clonality. Of the 11 antibiotics tested, E. faecalis was most commonly resistant to tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin, and these traits were intra-species horizontally transferrable by in vitro conjugation. Profiles of E. faecalis (prevalence, antibiotic resistance, and virulence traits) from each of WWTF sludge and associated house flies were similar, indicating that flies successfully acquired these bacteria from this substrate. The greatest number of E. faecalis with antibiotic resistance and virulence factors (i.e., gelatinase, cytolysin, enterococcus surface protein, and aggregation substance) originated from WWTF-1 that processed meat waste from a nearby commercial meat-processing plant, suggesting an agricultural rather than human clinical source of these isolates. E. faecalis from house flies collected from three sites 0.7–1.5 km away from WWTF-1 were also similar in their antibiotic resistance profiles; however, antibiotic resistance was significantly less frequent. Clonal diversity assessment using pulsed-field gel electrophoresis revealed the same clones of E. faecalis from sludge and house flies from WWTF-1 but not from the three urban sites close to WWTF-1. This study demonstrates that house flies acquire antibiotic-resistant enterococci from WWTF and potentially disseminate them to the surrounding environment.  相似文献   

13.
AIMS: To characterize bacteriocin production, antimicrobial spectrum and plasmid content in bacteriocinogenic enterococci from foods. METHODS AND RESULTS: Bacteriocinogenic Enterococcus faecium (14 isolates) and Enterococcus faecalis (three isolates) showed two different patterns of bacteriocin production in liquid broth: exponential-phase and stationary-phase production. Bacteriocin concentrates from all enterococci were inactivated by trypsin, but seldom by heat (100-117 degrees C), extremes of pH (2.0 to 9.0) or reducing agents (such as dithiothreitol). All bacteriocin concentrates were active against Listeria innocua and Listeria monocytogenes, and most were also active against many Ent. faecalis and Ent. faecium isolates. Enterococci clustered in three main groups according to their plasmid content (which included plasmids from 2.0 to 53 kb). Several isolates from different foods showed almost identical plasmid profiles. The enterocin P structural gene (entP) was detected by hybridization on plasmids of c. 19, 26 and/or 35-38 kb. CONCLUSIONS: Enterococci from food show different patterns of bacteriocin production and different plasmid content in spite of carrying similar bacteriocin-encoding genes. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides information on the diversity of bacteriocinogenic enterococci from food sources carrying apparently similar enterocin genes.  相似文献   

14.
Enterococci are ubiquitous organisms used to both improve the flavor and texture of fermented foods, and provide protective mechanisms as either a probiotic or antimicrobial additive. However, two species, E. faecalis and E. faecium, are also associated with 10% of nosocomial infections of the bloodstream, wounds, urinary tract and heart. While the genes involved in the pathogenicity of these organisms are slowly identified along with the mechanisms behind their regulation, the environmental signals involved in the conversion to pathogenicity remain unclear. The distribution of virulence genes was determined in 13 E. faecalis isolates from medical, food and animal sources. Regardless of their source of isolation, all isolates harbored between eight and thirteen virulence genes. Relative differences in expression of the virulence associated genes clpP, clpX, gls24, agg, efaA, gelE, and cylBL(L) were examined in E. faecalis TMW 2.63 and TMW 2.622 exposed to different environments (LB, BHI, respective supernatants, pig fecal extract, LB+6.5% NaCl, LB+pH5, LB+6.5% NaCl+pH5, and sausage medium) using RT-PCR and Lightcycler technology. Significant differences in expression were influenced by growth phase, environment, and isolate, which suggests that these three factors be taken into consideration during the selection of enterococci for use in foods or as probiotics rather than their source of isolation or set of virulence genes.  相似文献   

15.
Virulence properties of pathogenic bacteria, as well as resistance to antibiotics, are thought to arise through a specialization process favoured by the strong selection pressure imposed in clinical treatments. Nevertheless, in the case of opportunistic pathogens, it is unclear whether strains can be classified into virulent and non-virulent isolates. Clones of the opportunistic pathogen Pseudomonas aeruginosa do not seem to be associated to a particular biovar or pathovar, which suggests that virulence characteristics in opportunistic pathogens may already be present in environmental (non-clinical) isolates. We have explored this possibility, studying environmental isolates (mainly from oil-contaminated soils) and clinical isolates (from bacteraemia and cystic fibrosis patients) of P. aeruginosa . All environmental strains were found to actively efflux quinolones, which are synthetic antibiotics not expected to be present in the environment. These strains contained multidrug resistance determinants, were capable of invading epithelial cells and presented genes from the quorum-sensing and type III secretion systems. Some of them expressed either haemolytic or proteolytic activities or both, characteristics considered to be typical of virulent strains. All the strains tested, of clinical or environmental origin, could use alkanes (oil hydrocarbons) as a carbon source. Our results suggest that clinical and non-clinical P. aeruginosa strains might be functionally equivalent in several traits relevant for their virulence or environmental properties. Selection of clinically relevant traits, such as antibiotic resistance or cellular invasiveness, in opportunistic pathogens present in soil ecosystems is discussed.  相似文献   

16.
Enterococcus faecalis and Enterococcus faecium are human commensals frequently found in fermented foods or used as probiotics, but also recognized as opportunistic pathogens. We investigated 62 Enterococcus strains isolated from clinical, food and environmental origins towards a rationale for safety evaluation of strains in food or probiotic applications. All isolates were characterised with respect to the presence of the virulence determinants fsrB, sprE, gelE, ace, efaAfs/fm, as, esp, cob and the cytolysin operon. In addition RAPD-PCR was used to obtain genomic fingerprints that were clustered and compared to phenotypic profiles generated by MALDI-TOF-MS. The gelatinase phenotype (GelE) and the haemolytic activity (β-haemolysis) were analysed. E. faecium strains contained esp and efaAfm only, and none of them contained any CRISPR elements. The amenability of E. faecalis strains to acquisition of virulence factors was investigated along the occurrence of CRISPR associated (cas) genes. While distribution of most virulence factors, and RAPD versus MALDI-TOF-MS typing patterns were unrelated, 2 out of 5 RAPD clusters almost exclusively contained clinical E. faecalis isolates, and an occurrence of CRISPR elements versus reduced number of virulence factors was observed. The presence of the cytolysin operon, cob and as encoding pheromone and aggregation substance, respectively, significantly corresponded to absence of cas. As their production promote genetic exchange, their absence limits further gene acquisition and distribution. Thus, absence of the cytolysin operon, cob and as in a cas positive environment suggests itself as promising candidate for E. faecalis evaluation towards their occurrence in food fermentation or use as probiotics.  相似文献   

17.
Enterococci are important food-borne pathogens that cause serious infections. Several virulence factors have been described including aggregation substance, gelatinase, cytolysin, and enterococcal surface protein. The ability to cause infections is mainly dependent on the response to oxidative stress due to the production of reactive oxygen species by immune cells. The aim of our study was to analyze the resistance of enterococcal strains from food to clinically relevant antiseptic agents with regard to the presence of selected virulence factors, and to uncover potential mechanisms of the antioxidative resistance. Eighty-two enterococcal isolates from Bryndza cheese were tested using in vitro growth assays to study the ability of these isolates to survive exposure to antiseptic agents — hydrogen peroxide, hypochlorite, and Chlorhexidine. Virulence genotypes of the isolates were determined by PCR, and RT real time PCR was used for gene expression under oxidative stress. Resistance against antiseptic agents depends on the concentration of applied chemicals, on the time of exposure, but also on virulence factors of the enterococcal strains. Oxidative stress induces the expression of antioxidative enzymes and down-regulates the expression of prooxidative enzymes. These effects are dependent on the virulence genotype of the enterococcal strains. These findings are important for future research, especially concerning the role of enterococci in oral diseases.  相似文献   

18.
Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence.  相似文献   

19.
近年来肠球菌逐渐成为院内感染的重要病原菌,尤其引人关注的是万古霉素耐药性肠球菌(VRE)有不断增多的趋势。了解VRE的耐药机制对有效控制其扩散传播具有重要意义。我们就VRE基因组学及蛋白质组学的研究进展情况进行简要概述。  相似文献   

20.
一种利用RT-HPLC分析乳酸菌产生物胺的方法   总被引:3,自引:0,他引:3  
孟甜  田丰伟  陈卫  张灏 《微生物学通报》2010,37(1):0141-0146
具有脱羧酶活性的乳酸菌可通过氨基酸的脱羧反应产生具有潜在安全风险的生物胺。本文利用脱羧酶培养基初步筛查61株乳酸菌产生物胺情况,再通过RT-HPLC法测定其在发酵液和发酵乳中的生物胺含量。用10%的三氯乙酸提取样品中的生物胺,采用苯甲酰氯衍生处理后,以甲醇/水为流动相,进行梯度洗脱,流速0.8mL/min,紫外检测器波长为254nm。结果显示,组胺和酪胺得到良好的分离,在给定的浓度范围内呈现良好的线性关系(R20.995)。在发酵液和发酵乳中添加生物胺混合标准溶液,平均回收率为97.92%-101.14%,相对偏差RSD5%。结果表明,发酵液与发酵乳中生物胺的RT-HPLC法,是一种快捷、稳定、灵敏度高的检测方法,其与脱羧酶培养基法结合可以准确地实现对乳酸菌产生物胺的评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号