首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study looks at immunoincompetent CD4(+) T cells in adult peripheral blood (APB) using cytokine production in response to a superantigen as a measure of function. We compared the function of APB CD38(+)CD4(+) and CD38(-/low)CD4(+) T cells to that of cord blood (CB) CD4(+) T cells. APB CD4(+) T cell blasts produce substantial amounts of IL-2 in response to TSST-1 restimulation, while CB CD4(+) T cell blasts produce less. APB CD38(+)CD4(+) T cells produce low levels of IL-4 and IFN-gamma in response to TSST-1, even after activation, while APB CD38(-/low)CD4(+) T cells retain their ability to produce high levels of these cytokines despite high CD38 expression. These results suggest that the developmental stage of APB CD38(+)CD4(+) T cells lies between that of CB CD4(+) T cells and APB CD38(-/low)CD4(+) T cells and that APB CD38(+)CD45RO(-)CD4(+) T cells gradually cease to express CD38 as they acquire full function. We reconsider CD4(+) cell maturation and response to TSST-1 and discuss the implications of T cell maturity on infectious diseases.  相似文献   

2.
The immunoregulatory cytokine IL-10 plays an essential role in down-modulating adaptive and innate immune responses leading to chronic inflammatory diseases. In contrast, cysteinyl leukotrienes (cysLTs), important proinflammatory mediators of cell trafficking and innate immune responses, are thought to enhance immune reactions in the pathogenesis of diseases, such as bronchial asthma, atherosclerosis, and pulmonary fibrosis. The aim of this study was to determine the IL-10 regulatory role in cysLT-induced activation of human monocytes and monocyte-derived dendritic cells. Herein we show that cysLT-induced activation and chemotaxis of human monocytes and monocyte-derived immature dendritic cells (iDC) are inhibited by IL-10 pretreatment. IL-10 down-regulated cysLT type 1 and 2 receptors' mRNA in a time- and concentration-dependent fashion. cysLT-induced activation of monocytes and iDCs measured by intracellular calcium flux and immediate-early gene expression (FBJ murine osteosarcoma viral oncogen homolog B and early growth response-2) was potently decreased by IL-10 and by the cysLT antagonist MK571. Chemotaxis of monocytes and iDCs to increasing concentrations of leukotriene D(4) (LTD(4)) was also inhibited by IL-10. LTD(4) enhanced iDC migration in response to CCL5. IL-10 selectively inhibited LTD(4)-induced chemotaxis without affecting migration to CCL5. These data indicate that cysLT-induced activation of human monocytes and dendritic cells may be specifically inhibited by IL-10, suggesting a direct link between the 5-lipoxygenase proinflammatory pathway and IL-10 regulatory mechanisms. Antileukotriene therapies may reproduce some regulatory mechanisms played by IL-10 in inflammatory processes.  相似文献   

3.
4.
The major adenovirus (Ad) capsid proteins hexon, penton, and fiber influence the efficiency and tropism of gene transduction by Ad vectors. Fiber is the high-affinity receptor binding protein that serves to mediate cell attachment in vitro when using coxsackie-adenovirus receptor (CAR)-containing cell lines. This contrasts with transduction efficiency in macrophages or dendritic cells that lack high concentrations of CAR. To determine how fiber influences gene transduction and immune activation in a murine model, we have characterized Ad type 5 (Ad5) vectors with two classes of chimeric fiber, CAR binding and non-CAR binding. In a systemic infection, Ad5 fiber contributes to DNA localization and vector transduction in hepatic tissue. However, the majority of vector localization is due to Ad5 fiber-specific functions distinct from CAR binding. CAR-directed transduction occurs but at a modest level. In contrast to CAR binding vectors, the F7 and F7F41S non-CAR-binding vectors demonstrate a 2-log decrease in hepatic transduction, with a 10-fold decrease in the amount of vector DNA localizing to the hepatic tissue. To characterize the innate response to early infection using fiber chimeric vectors, intrahepatic cytokine and chemokine mRNAs were quantified 5 hours postinfection. Tumor necrosis factor alpha mRNA levels resulting from Ad5 fiber infections were elevated compared to viruses expressing serotype 7 or 41 fiber. Levels of chemokine mRNA (gamma interferon-inducible protein 10, T-cell activation gene 3, and macrophage inflammatory protein 1beta) were 10- to 20-fold higher with CAR binding vectors (Ad5 and F41T) than with non-CAR-binding vectors (F7 and F7F41S). In spite of quantitative differences in vector localization and innate activation, fiber pseudotyping did not significantly change the outcome of anti-Ad adaptive immunity. All vectors were cleared with the same kinetics as wild-type Ad5 vectors, and each induced neutralizing antibody. Although non-CAR-binding vectors were impaired in transduction by nearly 2 orders of magnitude, the level of antitransgene immunity was the same for each of the vectors. Using primary bone marrow-derived macrophages and dendritic cells, we demonstrate that transduction, induction of cytokine/chemokine, and phenotypic maturation of these antigen-presenting cells are independent of fiber content. Our data support a model where fiber-mediated hepatic localization enhances innate responses to virus infection but minimally impacts on adaptive immunity.  相似文献   

5.
6.
The TH2-cytokines interleukins-4 and -13 severely alter gene expression of monocytic cells. We quantified the impact of interleukins-4 and -13 on the gene expression pattern of human peripheral blood monocytes applying a strategy that involved microarray hybridization, RT-PCR, immunohistochemistry and activity assays. After 3 days of continuous cytokine exposure the six most strongly upregulated gene products (15-lipoxygenase-1, fibronectin, monoamine oxidase-A, CD1c, CD23A, coagulation factor XIII) included four proteins with potential anti-inflammatory properties: (i) 15-lipoxygenase-1 (290-fold upregulation), (ii) fibronectin (180-fold upregulation), (iii) monoamine oxidase-A (56-fold upregulation) and (iv) coagulation factor XIII (35-fold upregulation). In addition, a number of other gene products, the expression of which is consistent with inflammatory resolution (annexin 1, collagen 1alpha2, laminin alpha5, TIMP3, heme oxygenase-1, CCL22, heat shock protein A8), were upregulated to a lower extent. In contrast, expression of classical pro-inflammatory gene products, such as tumor necrosis factor alpha, monocyte chemotactic protein-1, interleukins-1, -6, -8, -18, cyclooxygenase-2, as well as enzymes and receptors of the leukotriene cascade (5-lipoxygenase, 5-lipoxygenase activating protein, leukotriene B(4) receptor, cysteinyl leukotriene receptor 2) were significantly downregulated. These data suggest that medium-term treatment of human peripheral blood monocytes with interleukins-4/13 alters the gene expression pattern so that the cells might adopt a resolving phenotype.  相似文献   

7.
8.
9.
Helper-dependent adenovirus (HD-Ad) vectors with all adenoviral genes deleted mediate very long-term expression of therapeutic transgenes in a variety of animal models of disease. These vectors are associated with reduced toxicity and improved safety relative to traditional early region 1 deletion first-generation Ad (FG-Ad) vectors. Many studies have clearly demonstrated that FG-Ad vectors induce innate and adaptive immune responses in vivo; however, a comprehensive analysis of host immune responses to HD-Ad vectors has not yet been performed. In DBA/2 mice, intravenous injection of HD-Ad vectors encoding LacZ (HD-AdLacZ) or a murine secreted alkaline phosphatase (HD-AdSEAP) induced an early expression of inflammatory cytokine and chemokine genes in the liver, including interferon-inducible protein 10, macrophage inflammatory protein 2, and tumor necrosis factor alpha, and were expressed in a pattern similar to that induced by FG-Ad vectors encoding AdSEAP. Like AdSEAP, and consistent with the pattern of cellular gene expression, HD-AdLacZ and HD-AdSEAP induced the recruitment of CD11b-positive leukocytes to the transduced liver within hours of administration. AdSEAP also induced a second phase of liver inflammation, consisting of inflammatory gene expression and CD3-positive lymphocytic infiltrates 7 days posttransduction. In contrast, beyond 24 h no infiltrates or expression of inflammatory genes was detected in the livers of mice receiving HD-AdSEAP. Despite the lack of liver inflammation at 7 days, Ad-specific cytotoxic T lymphocytes could be detected in mice receiving HD-AdSEAP. This lack of liver inflammation was not due to reduced transduction since levels of transgene expression and the amounts of vector DNA in the liver were equivalent in mice receiving HD-AdSEAP and AdSEAP. These results demonstrate that HD-Ad vectors induce intact innate but attenuated adaptive immune responses in vivo.  相似文献   

10.
Telocytes, newly discovered in the last decade, are interstitial cells found in numerous organs, with multiple proposed potential biological functions. Toll‐like receptors (TLRs) play an important role in innate and adaptive immunity by recognizing pathogen‐associated molecular patterns (PAMPs). However, it is still unknown whether telocytes express these innate receptors. We sought to determine the expression and role of TLRs in telocytes. In our study, we primarily detected TLR1‐9 expression in telocytes. The proliferation, apoptosis and immunoregulatory activity of telocytes activated with or without TLR ligands were determined. Our results showed that purified telocytes expressed TLR2, TLR3 and TLR5. In particular, telocytes expressed high levels of TLR2 as observed using flow cytometry. When we stimulated telocytes with TLR2 or TLR3 agonists (Pam3CSK4, PolyI:C), iNOS expression was greatly increased after Pam3CSK4 treatment. Additionally, telocyte proliferation was reduced and cell apoptosis was increased after TLR agonist stimulation. A co‐culture experiment showed that supernatant from telocytes pretreated with Pam3CSK4 inhibited T cell activation much more than that from untreated telocytes and this effect was mediated by iNOS. Overall, our results demonstrated TLR expression on telocytes for the first time and provided evidence of an immunoregulatory role of telocytes, indicating their clinical potential.  相似文献   

11.
A major hurdle to the successful clinical use of some viral vectors relates to the innate, adaptive, and memory immune responses that limit the efficiency and duration of transgene expression. Some of these drawbacks may be circumvented by using vectors derived from nonhuman viruses such as canine adenovirus type 2 (CAV-2). Here, we evaluated the potential of CAV-2 vectors for gene transfer to the respiratory tract. We found that CAV-2 transduction was efficient in vivo in the mouse respiratory tract, and ex vivo in well-differentiated human pulmonary epithelia. Notably, the in vivo and ex vivo efficiency was poorly inhibited by sera from mice immunized with a human adenovirus type 5 (HAd5, a ubiquitous human pathogen) vector or by human sera containing HAd5 neutralizing antibodies. Following intranasal instillation in mice, CAV-2 vectors also led to a lower level of inflammatory cytokine secretion and cellular infiltration compared to HAd5 vectors. Moreover, CAV-2 transduction efficiency was increased in vitro in human pulmonary cells and in vivo in the mouse respiratory tract by FK228, a histone deacetylase inhibitor. Finally, by using a helper-dependent CAV-2 vector, we increased the in vivo duration of transgene expression to at least 3 months in immunocompetent mice without immunosuppression. Our data suggest that CAV-2 vectors may be efficient and safe tools for long-term clinical gene transfer to the respiratory tract.  相似文献   

12.
Advanced glycation end products (AGEs), inflammatory-activated macrophages are essential in the initiation and progression of diabetic nephropathy (DN). TGF-β-activated kinase 1 (TAK1) plays a vital role in innate immune responses and inflammation. However, little information has been available about the effects of AGEs on the regulation of TAK1 expression and underlying mechanisms in AGEs-stimulated macrophage activation. We hypothesized TAK1 signal pathway in AGEs conditions could be a vital factor contributing to macrophage activation and inflammation. Thus, in the present study, we used bone marrow-derived macrophages (BMMs) to explore the functional role and potential mechanisms of TAK1 pathway under AGEs conditions. Results indicated that TAK1 played important roles in AGEs-induced mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B protein (NF-κB) activation, which regulated the production of monocyte chemo-attractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) in AGEs-stimulated macrophages. The results also suggested that TAK1 inhibitor (5Z-7-oxozeaenol) could inhibit AGEs-induced macrophage activation to down-regulate inflammatory cytokine production via MAPKs and NF-κB pathways, indicating that 5Z-7-oxozeaenol might be an immunoregulatory agent against AGEs-stimulated inflammatory response in DN.  相似文献   

13.
The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP), two immunomodulatory neuropeptides that affect both innate and acquired immunity, down-regulate IL-12 p40 and inducible NO synthase expression in LPS/IFN-gamma-stimulated macrophages. We showed previously that VIP/PACAP inhibit NF-kappaB nuclear translocation through the stabilization of IkappaB and reduce IFN regulatory factor-1 (IRF-1) binding to the regulatory elements found in the IL-12 p40 and inducible NO synthase promoters. In this paper we studied the molecular mechanisms involved in the VIP/PACAP regulation of IRF-1 transactivating activity. Our studies indicate that the inhibition in IRF-1 binding correlates with a reduction in IRF-1 protein and mRNA in IFN-gamma-treated Raw 264.7 macrophages. In agreement with the described Janus kinase (Jak)1/Jak2/STAT1/IRF-1 activation pathway, VIP/PACAP inhibit Jak1/Jak2, STAT1 phosphorylation, and the binding of STAT1 to the GAS sequence motif in the IRF-1 promoter. The effects of VIP/PACAP are mediated through the specific VIP/PACAP receptor-1 and the cAMP/protein kinase A (PKA) transduction pathway, but not through the induction of suppressor of cytokine signaling-1 or suppressor of cytokine signaling-3. Because IFN-gamma is a major stimulator of innate immune responses in vivo, the down-regulation of IFN-gamma-induced gene expression by VIP and PACAP could represent a significant element in the regulation of the inflammatory response by endogenous neuropeptides.  相似文献   

14.
15.
Several families of endogenous glycan-binding proteins have been implicated in a wide variety of immunological functions including first-line defence against pathogens, cell trafficking, and immune regulation. These include, among others, the C-type lectins (collectins, selectins, mannose receptor, and others), S-type lectins (galectins), I-type lectins (siglecs and others), P-type lectins (phosphomannosyl receptors), pentraxins, and tachylectins. This review will concentrate on the immunoregulatory roles of galectins (particularly galectin-1) and collectins (mannose-binding lectins and surfactant proteins) to illustrate the ability of endogenous glycan-binding proteins to act as cytokines, chemokines or growth factors, and thereby modulating innate and adaptive immune responses under physiological or pathological conditions. Understanding the pathophysiologic relevance of endogenous lectins in vivo will reveal novel targets for immunointervention during chronic infection, autoimmunity, transplantation and cancer.  相似文献   

16.
17.
Vitamin D receptor (VDR) agonists are well known for their capacity to control calcium metabolism and to regulate growth and differentiation of many cell types. More recently, it has become clear that VDR agonists possess immunoregulatory properties and, in particular, pronounced pro-tolerogenic activities. VDR agonists can act directly on T cells, but DCs appear to be their primary targets. The capacity of VDR agonists to modulate DC and T cell functions is mediated by VDR expression in both cell types and by the presence of common targets in their signal transduction pathways, such as the nuclear factor NF-kappaB that is downregulated by VDR agonists in APCs and in T cells. A potentially very important activity of VDR agonists is their capacity to induce in vitro and in vivo tolerogenic DCs able to enhance CD4+CD25+ suppressor T cells that, in turn, inhibit Th1 cell responses. These mechanisms of action can explain some of the immunoregulatory properties of VDR agonists in the treatment of Th1-mediated autoimmune diseases, but may also represent a physiologic element in the VDR-mediated regulation of innate and adaptive immune responses.  相似文献   

18.
Myeloid differentiation protein 2 (MD-2) is a co-receptor of toll-like receptor 4 (TLR4) for innate immunity. Here, we delineated a new mechanism of 1-dehydro-10-gingerdione (1D10G), one of pungent isolates from ginger (Zingiber officinale), in the suppression of lipopolysaccharide (LPS)-induced gene expression of inflammatory cytokines. 1D10G inhibited LPS binding to MD-2 with higher affinity than gingerol and shogaol from dietary ginger. Moreover, 1D10G down-regulated TLR4-mediated expression of nuclear factor-κB (NF-κB) or activating protein 1 (AP1)-target genes such as tumor necrosis factor α (TNF-α) and interleukin-1β, as well as those of interferon (IFN) regulatory factor 3 (IRF3)-target IFN-β gene and IFN-γ inducible protein 10 (IP-10) in LPS-activated macrophages. Taken together, MD-2 is a molecular target in the anti-inflammatory action of 1D10G.  相似文献   

19.
Although monocytes can be directed to develop into dendritic cells (DC) in vitro, the molecular mechanisms that induce their transformation in vivo are largely unknown. In the present study we employed an in vivo SCID mouse model to investigate the impact of two proinflammatory chemotaxins, the anaphylatoxin C5a and the chemokine macrophage inflammatory protein-1alpha (CCL3), on the differentiation of human monocytes and immature DC generated from monocytes in the presence of GM-CSF and IL-4. Both C5a and macrophage inflammatory protein-1alpha recruited human monocytes and immature DC into the peritoneal cavity of SCID mice, but only C5a induced their differentiation into phenotypically mature DC by 48 h after injection. Macrophages derived from monocytes by in vitro culture were resistant to C5a-mediated transformation in vivo. The effect of C5a was indirect, since C5a-stimulated TNF-alpha and PGE(2) were found to be obligatory as well as sufficient to induce differentiation of monocytes. In contrast to monocytes, in vitro generated immature DC required TNF-alpha, but not PGE(2), for their C5a-mediated maturation in vivo. C5a-transformed monocytes represented an inflammatory type of DC, as they constitutively secreted high amounts of TNF-alpha, but also retained the capacity to release the Th1 cytokine IL-12 p70 upon stimulation with CD40 ligand. In summary, we identified for the first time a cascade of inflammatory signals that can induce the transformation of monocytes into DC in vivo. This novel function emphasizes the important immunoregulatory role of C5a at the interface of innate and adaptive immunity.  相似文献   

20.
The dopamine D(2) receptor (D(2)R) regulates renal reactive oxygen species (ROS) production, and impaired D(2)R function results in ROS-dependent hypertension. Paraoxonase 2 (PON2), which belongs to the paraoxonase gene family, is expressed in various tissues, acting to protect against cellular oxidative stress. We hypothesized that PON2 may be involved in preventing excessive renal ROS production and thus may contribute to maintenance of normal blood pressure. Moreover, D(2)R may decrease ROS production, in part, through regulation of PON2. D(2)R colocalized with PON2 in the brush border of mouse renal proximal tubules. Renal PON2 protein was decreased (-33±6%) in D(2)(-/-) relative to D(2)(+/+) mice. Renal subcapsular infusion of PON2 siRNA decreased PON2 protein expression (-55%), increased renal oxidative stress (2.2-fold), associated with increased renal NADPH oxidase expression (Nox1, 1.9-fold; Nox2, 2.9-fold; and Nox4, 1.6-fold) and activity (1.9-fold), and elevated arterial blood pressure (systolic, 134±5 vs 93±6mmHg; diastolic, 97±4 vs 65±7mmHg; mean 113±4 vs 75±7mmHg). To determine the relevance of the PON2 and D(2)R interaction in humans, we studied human renal proximal tubule cells. Both D(2)R and PON2 were found in nonlipid and lipid rafts and physically interacted with each other. Treatment of these cells with the D(2)R/D(3)R agonist quinpirole (1μM, 24h) decreased ROS production (-35±6%), associated with decreased NADPH oxidase activity (-32±3%) and expression of Nox2 (-41±7%) and Nox4 (-47±8%) protein, and increased expression of PON2 mRNA (2.1-fold) and protein (1.6-fold) at 24h. Silencing PON2 (siRNA, 10nM, 48h) not only partially prevented the quinpirole-induced decrease in ROS production by 36%, but also increased basal ROS production (1.3-fold), which was associated with an increase in NADPH oxidase activity (1.4-fold) and expression of Nox2 (2.1-fold) and Nox4 (1.8-fold) protein. Inhibition of NADPH oxidase with diphenylene iodonium (10μM/30 min) inhibited the increase in ROS production caused by PON2 silencing. Our results suggest that renal PON2 is involved in the inhibition of renal NADPH oxidase activity and ROS production and contributes to the maintenance of normal blood pressure. PON2 is positively regulated by D(2)R and may, in part, mediate the inhibitory effect of renal D(2)R on NADPH oxidase activity and ROS production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号