首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of conserved proline residues in fibronectin type III (fnIII) domains is investigated. Surprisingly, none of the standard set of explanations for residue conservation applies. The proline residues are not apparently conserved for function, or stability, or to nucleate folding, or to promote stabilising interactions across domain boundaries. However, when the most highly conserved proline residues are mutated to alanine there is an increase in the rate of aggregation of a fnIII double-module construct. The results suggest that proline residues may be conserved at domain-domain boundaries in fnIII domains to prevent aggregation in multi-modular proteins.  相似文献   

2.
The two human proteins ckshs1 and ckshs2 are each 79 amino acids in length and consist of a four-stranded beta-sheet capped at one end by two alpha-helices. They are members of the cks family of essential cell cycle regulatory proteins that can adopt two native states, a monomer and a domain-swapped dimer formed by exchange of a C-terminal beta-strand. ckshs1 and ckshs2 both have marginal thermodynamic stability (the free energies of unfolding at 25 degrees C are 3.0 and 2.5 kcal/mol, respectively) and low kinetic stability (the rates of unfolding in water are approximately 1 s(-1)). Refolding of their denatured states to the monomeric forms of the proteins is slowed by transient oligomerization that is likely to occur via domain swapping. The folding behavior of ckshs1 and ckshs2 is markedly different from that of suc1, the cks protein from Schizosaccharomyces pombe, but the domain swapping propensities are similar. The greater thermodynamic and kinetic stability of suc1 and the population of a folding intermediate are most likely a consequence of its larger size (113 residues). The similarity in the domain swapping propensities, despite the contrast in other biophysical properties, may be attributable to the common double-proline motif in the hinge loop that connects the swapped domain to the rest of the protein. The motif was shown previously for suc1 to control the equilibrium between the monomer and the domain-swapped dimer. Finally, according to our model, the kinetic barrier separating the monomer and the domain-swapped dimer arises because the protein must unfold for beta-strand exchange to occur. Consistent with this, interconversion between the two states is much faster in the human proteins than it is for suc1, reflecting the faster unfolding rates of the former.  相似文献   

3.
Glycine residues can introduce flexibility in proteins, give rise to turns and breaks in secondary structure and are key components of some nucleotide binding motifs. In the P2X receptor extracellular ATP binding domain, 11 glycine residues are completely conserved and an additional five are conserved in at least five of the seven family members. We have mutated individual conserved glycine residues and determined their effect on the ATP sensitivity and time-course of P2X1 receptors expressed in Xenopus oocytes. In the majority of cases, replacement by alanine had no or a less than 3-fold effect on ATP sensitivity and time-course of responses. G71A resulted in a 6-fold decrease in ATP potency and ATP (10 mM) failed to evoke functional responses from G96A, G250A and G301A mutant receptors. However, proline or cysteine could substitute for glycine at positions 96 and 301, giving receptors that were essentially normal. At glycine 250 substitution by serine gave functional responses to ATP with no effect on ATP sensitivity but a reduction in peak amplitude; in contrast, functional responses were not recorded when glycine 250 was replaced by the amino acids alanine, cysteine, aspartate, phenylalanine, isoleucine, lysine, proline or asparagine. These results suggest that glycine 250 plays an important role in determining the function of P2X receptors.  相似文献   

4.
The Escherichia coli Pst system is a periplasmic phosphate permease. A mutational analysis of the requirement for function of specific charged residues or proline residues in the two hydrophobic subunits (PstC and PstA) has been carried out. No residues, among 19 charged residues altered, were found to be essential for phosphate uptake, although some alterations resulted in partial effects. Evidence was obtained that the 3 residues, R220 in the PstA protein and R237 and E241 in the PstC protein, previously shown to be required for phosphate transport (Cox, G. B., Webb, D., Godovac-Zimmermann, J., and Rosenberg, H. (1988) J. Bacteriol. 170, 2283-2286; Cox, G. B., Webb, D., and Rosenberg, H. (1989) J. Bacteriol. 171, 1531-1534), interact with each other. A feature of the proposed structures of the PstA and PstC proteins was 2 pairs of proline residues in putative transmembrane helices 3 and 4. While individual substitutions of these proline residues by leucine resulted in loss of phosphate transport activity substitution by alanine only had partial effects. However, if the proline to alanine changes were paired then, depending on the particular subunit, markedly different effects were obtained. The double mutation in the PstA protein resulted in a permanently "closed" system, whereas the double mutation in the PstC protein resulted in a permanently "open" transport system.  相似文献   

5.
M Yu  R H Miller  S Emerson    R H Purcell 《Journal of virology》1996,70(10):7085-7091
The capsid particle of hepadnaviruses is assembled from its dimer precursors. However, the mechanism of the protein-protein interaction is still poorly understood. A small region in the capsid protein of woodchuck hepatitis virus (WHV) contains four hydrophobic residues, including leucine 101, leucine 108, valine 115, and phenylalanine 122, that are conserved and spaced every seventh residue in the primary sequence to form a hydrophobic heptad repeat (hhr). A hydrophobic force often plays an important role in the interaction of proteins. Therefore, to investigate the role of this region in capsid assembly, we individually changed the codons specifying these four hydrophobic amino acids to codons specifying alanine or proline. In addition, we examined the in vivo infectivity of a WHV genome bearing a naturally occurring single amino acid change (histidine 104-->proline) in the hhr region. The phenotype of each altered genome was determined in both eukaryotic and prokaryotic systems by a capsid protein assay and electron microscopic examination. We show that replacement of any one of the four hydrophobic residues with alanine did not prevent capsid assembly. However, assembled capsid particles were not detected if combinations of any two of the four residues were substituted with alanines or if the spacing of these four hydrophobic residues was changed. An individual introduction of a proline (which dramatically changes the secondary structure of proteins) into different positions of this small region also abolished capsid assembly in vitro or viral replication in vivo. These results suggested that the hhr region of the core protein of WHV was critical for capsid assembly.  相似文献   

6.
The tomato Cf‐9 gene encodes a membrane‐anchored glycoprotein that imparts race‐specific resistance against the tomato leaf mould fungus Cladosporium fulvum in response to the avirulence protein Avr9. Although the N‐terminal half of the extracellular leucine‐rich repeat (eLRR) domain of the Cf‐9 protein determines its specificity for Avr9, the C‐terminal half, including its small cytosolic domain, is postulated to be involved in signalling. The cytosolic domain of Cf‐9 carries several residues that are potential sites for ubiquitinylation or phosphorylation, or signals for endocytic uptake. A targeted mutagenesis approach was employed to investigate the roles of these residues and cellular processes in Avr9‐dependent necrosis triggered by Cf‐9. Our results indicate that the membrane‐proximal region of the cytosolic domain of Cf‐9 plays an important role in Cf‐9‐mediated necrosis, and two amino acids within this region, a threonine (T835) and a proline (P838), are particularly important for Cf‐9 function. An alanine mutation of T835 had no effect on Cf‐9 function, but an aspartic acid mutation, which mimics phosphorylation, reduced Cf‐9 function. We therefore postulate that phosphorylation/de‐phosphorylation of T835 could act as a molecular switch to determine whether Cf‐9 is in a primed or inactive state. Yeast two‐hybrid analysis was used to show that the cytosolic domain of Cf‐9 interacts with the cytosolic domain of tomato VAP27. This interaction could be disrupted by an alanine mutation of P838, whereas interaction with CITRX remained unaffected. We therefore postulate that a proline‐induced kink in the membrane‐proximal region of the cytosolic domain of Cf‐9 may be important for interaction with VAP27, which may, in turn, be important for Cf‐9 function.  相似文献   

7.
The QacA multidrug transporter is encoded on Staphylococcus aureus multidrug resistance plasmids and confers broad-range antimicrobial resistance to more than 30 monovalent and bivalent lipophilic, cationic compounds from at least 12 different chemical classes. QacA contains 10 proline residues predicted to be within transmembrane regions, several of which are conserved in related export proteins. Proline residues are classically known as helix-breakers and are highly represented within the transmembrane helices of membrane transport proteins, where they can mediate the formation of structures essential for protein stability and transport function. The importance of these 10 intramembranous proline residues for QacA-mediated transport function was determined by examining the functional effect of substituting these residues with glycine, alanine or serine. Several proline-substituted QacA mutants failed to confer high-level resistance to selected QacA substrates. However, no single proline mutation, including those at conserved positions, significantly disrupted QacA protein expression or QacA-mediated resistance to all representative substrates, suggesting that these residues are not essential for the formation of structures requisite to the QacA substrate transport mechanism.  相似文献   

8.
The human UDP-glucuronosyltransferase UGT1A6 is the primary phenol-metabolizing UDP-glucuronosyltransferase isoform. It catalyzes the nucleophilic attack of phenolic xenobiotics on UDP-glucuronic acid, leading to the formation of water-soluble glucuronides. The catalytic mechanism proposed for this reaction is an acid-base mechanism that involves an aspartic/glutamic acid and/or histidine residue. Here, we investigated the role of 14 highly conserved aspartic/glutamic acid residues over the entire sequence of human UGT1A6 by site-directed mutagenesis. We showed that except for aspartic residues Asp-150 and Asp-488, the substitution of carboxylic residues by alanine led to active mutants but with decreased enzyme activity and lower affinity for acceptor and/or donor substrate. Further analysis including mutation of the corresponding residue in other UGT1A isoforms suggests that Asp-150 plays a major catalytic role. In this report we also identified a single active site residue important for glucuronidation of phenols and carboxylic acid substrates by UGT1A enzyme family. Replacing Pro-40 of UGT1A4 by histidine expanded the glucuronidation activity of the enzyme to phenolic and carboxylic compounds, therefore, leading to UGT1A3-type isoform in terms of substrate specificity. Conversely, when His-40 residue of UGT1A3 was replaced with proline, the substrate specificity shifted toward that of UGT1A4 with loss of glucuronidation of phenolic substrates. Furthermore, mutation of His-39 residue of UGT1A1 (His-40 in UGT1A4) to proline led to loss of glucuronidation of phenols but not of estrogens. This study provides a step forward to better understand the glucuronidation mechanism and substrate recognition, which is invaluable for a better prediction of drug metabolism and toxicity in human.  相似文献   

9.
Evolution of N-terminal sequences of the vertebrate HOXA13 protein   总被引:8,自引:0,他引:8  
While the the role of the homeodomain in HOX function has been evaluated extensively, little attention has been given to the non-homeodomain portions of the HOX proteins. To investigate the evolution of the HOXA13 protein and to identify conserved residues in the N-terminal region of the protein with potential functional significance, N-terminal Hoxa13 coding sequences were PCR-amplified from fish, amphibian, reptile, chicken, and marsupial and eutherian mammal genomic DNA. Compared with fish HOXA13, the mammalian protein has increased in size by 35% primarily owing to the accumulation of alanine repeats and flanking segments rich in proline, glycine, or serine within the first 215 amino acids. Certain residues and amino acid motifs were strongly conserved, and several HOXA13 N-terminal domains were also shared in the paralogous HOXB13 and HOXD13 genes; however, other conserved regions appear to be unique to HOXA13. Two domains highly conserved in HOXA13 orthologs are shared with Drosophila AbdB and other vertebrate AbdB-like proteins. Marsupial and eutherian mammalian HOXA13 proteins have three large homopolymeric alanine repeats of 14, 12, and 17–18 residues that are absent in reptiles, birds, and fish. Thus, the repeats arose after the divergence of reptiles from the lineage that would give rise to the mammals. In contrast, other short homopolymeric alanine repeats in mammalian HOXA13 have remained virtually the same length, suggesting that forces driving or limiting repeat expansion are context dependent. Consecutive stretches of identical third-base usage in alanine codons within the large repeats were found, supporting replication slippage as a mechanism for their generation. However, numerous species-specific base substitutions affecting third-base alanine repeat codon positions were observed, particularly in the largest repeat. Therefore, if the large alanine repeats were present prior to eutherian mammal development as is suggested by the opossum data, then a dynamic process of recurring replication slippage and point mutation within alanine repeat codons must be considered to reconcile these observations. This model might also explain why the alanine repeats are flanked by proline, serine, and glycine-rich sequences, and it reveals a biological mechanism that promotes increases in protein size and, potentially, acquisition of new functions. Received: 8 June 1999 / Accepted: 23 September 1999  相似文献   

10.
Rad30 is a member of the newly discovered UmuC/DinB/Rad30 family of DNA polymerases. The N-terminal regions of these proteins are highly homologous, and they contain five conserved motifs, I to V, while their C-terminal regions are quite divergent. We examined the contributions of the C-terminal and N-terminal regions of Rad30 to its activity and biological function. Although deletion of the last 54 amino acids has no effect on DNA polymerase or thymine-thymine (T-T) dimer bypass activity, this C-terminal deletion-containing protein is unable to perform its biological function in vivo. The presence of a bipartite nuclear targeting sequence within this region suggests that at least one function of this portion of Rad30 is nuclear targeting. To identify the active-site residues of Rad30 important for catalysis, we generated mutations of nine acidic residues that are invariant or highly conserved among Rad30 proteins from different eukaryotic species. Mutations of the Asp30 and Glu39 residues present in motif I and of the Asp155 residue present in motif III to alanine completely inactivated the DNA polymerase and T-T dimer bypass activities, and these mutations did not complement the UV sensitivity of the rad30Delta mutation. Mutation of Glu156 in motif III to alanine confers a large reduction in the efficiency of nucleotide incorporation, whereas the remaining five Rad30 mutant proteins retain wild-type levels of DNA polymerase and T-T dimer bypass activities. From these observations, we suggest a role for the Asp30, Glu39, and Asp155 residues in the binding of two metal ions required for the reaction of the incoming deoxynucleoside 5'-triphosphate with the 3'-hydroxyl in the primer terminus, while Glu156 may participate in nucleotide binding.  相似文献   

11.
5-HT3 receptors possess a number of highly conserved proline residues. We changed each of these to alanine, expressed the mutants as homomeric 5-HT3A receptors in HEK293 cells, and analyzed them with radioligand binding, electrophysiology, and immunocytochemistry. Mutation of Pro56, Pro104, Pro123, and Pro170 resulted in ablation of radioligand binding, whereas mutation of Pro257 and Pro301 did not. Only the latter were expressed at the plasma membrane but were non-functional. Thus the former, which are in the N-terminal domain, may be involved in forming correct receptor structure, while those in the transmembrane region (Pro257 and Pro301) are necessary for the function of the protein. To explore the conformational preference (propensity) of these residues we examined the proportion of cis-prolines and the influence of adjacent residues in known protein structures. 4.7% of prolines in the protein data base were in the cis conformation, and the distribution of amino acids adjacent to cis-prolines was not randomly distributed. Comparison of the proportion of each amino acid residue adjacent to a cis-proline revealed that aromatic and bend-facilitating residues were favored while those with beta-branched chains were not. Thus five residues (Gly, Pro, Tyr, Trp, Phe) and three residues (Pro, Tyr, Phe) were found more frequently than expected before and after cis-prolines respectively, whereas five residues (Val, Ile, Leu, Asp, Thr) and two residues (Asp, Glu) were found less frequently. Of the 20 proline residues in the 5-HT3A receptor subunit only Pro170 has adjacent residues that are favorable. Mutating these to non-favorable residues resulted in ablation of ligand binding, whereas replacement with alternative favorable residues did not. We therefore propose that Pro170, which is part of the characteristic cys-loop found in this family of proteins, may be in the cis conformation.  相似文献   

12.
Methylglyoxal (MGO) is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO on the chaperone function. Arginine 12 (R12) is a conserved amino acid residue in Hsp27 as well as αA- and αB-crystallin. When treated with MGO at or near physiological concentrations (2-10 μM), R12 was modified to hydroimidazolone in all three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12 (R12A to mimic MGO modification) on the structure and chaperone function of these proteins. Among the three proteins, the R12A mutation improved the chaperone function of only αA-crystallin. This enhancement in the chaperone function was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of αA-crystallin. This mutation induced the exposure of additional client protein binding sites on αA-crystallin. Altogether, our data suggest that MGO-modification of the conserved R12 in αA-crystallin to hydroimidazolone may play an important role in reducing protein aggregation in the lens during aging and cataract formation.  相似文献   

13.
14.
15.
Summary The variant thyroxine-binding globulin in a family from Montreal (TBG-M) has a reduced affinity for thyroxine, shows a slight cathodal shift on isoelectric focusing, and has an increased susceptibility to inactivation by heat and acid. We present the molecular basis for TBG-M, deduced by sequencing the entire 1245-bp coding regions and intron/exon junctions of the TBG gene of an affected hemizygous male. A single nucleotide substitution in the codon for amino acid 113 of the mature protein (GCC to CCC) was found, resulting in the replacement of alanine by proline. The mutation was confirmed by allele-specific amplification of genomic DNA from the propositus and three other affected family members. Since point mutations throughout the molecule have been shown to alter the properties of variant TBGS, and because amino acid substitutions with proline are known to impair stability and function of proteins, the replacement of alanine 113 by proline provides a logical explanation for the observed properties of TBG-M.Presented in part at the 72nd Annual Meeting of the Endocrine Society in Atlanta, Georgia, 1990  相似文献   

16.
The human protein ckshs1 (cks1) is a 79 residue alpha/beta protein with low thermodynamic and kinetic stability. Its folding mechanism was probed by mutation at sites throughout the structure. Many of the mutations caused changes in the slope of the unfolding arm of the chevron plot. The effects can be rationalised in terms of either transition-state movement or native-state "breathing", and in either case, the magnitude of the effect enables the sequence of events in the folding reaction to be determined. Those sites that fold early exhibit a small perturbation, whilst those sites that fold late exhibit a large perturbation. The results show that cks1 folds sequential pairs of beta-strands first; beta1/beta2 and beta3/beta4. Subsequently, these pairs pack against each other and onto the alpha-helical region to form the core. The folding process of cks1 contrasts with that of the homologue, suc1. The 113 residue suc1 has the same beta-sheet core structure but, additionally, two large insertions that confer much greater thermodynamic and kinetic stability. The more extensive network of tertiary interactions in suc1 provides sufficient enthalpic gain to overcome the entropic cost of forming the core and thus tips the balance in favour of non-local interactions: the non-local, central beta-strand pair, beta2/beta4, forms first and the periphery strands pack on later. Moreover, the greater cooperativity of the core of suc1 protects its folding from perturbation and consequently the slope of the unfolding arm of the chevron plot is much less sensitive to mutation.  相似文献   

17.
Adaptor proteins load transmembrane protein cargo into transport vesicles and serve as nexuses for the formation of large multiprotein complexes on the nascent vesicles. The gamma-adaptin ear (GAE) domains of the AP-1 adaptor protein complex and the GGA adaptor proteins recruit accessory proteins to these multiprotein complexes by binding to a hydrophobic motif. We determined the structure of the GAE domain of human GGA3 in complex with a peptide based on the DFGPLV sequence of the accessory protein Rabaptin-5 and refined it at a resolution of 2.2 A. The leucine and valine residues of the peptide are partly buried in two contiguous shallow, hydrophobic depressions. The anchoring phenylalanine is buried in a deep pocket formed by the aliphatic portions of two conserved arginine residues, along with an alanine and a proline, illustrating the unusual function of a cluster of basic residues in binding a hydrophobic motif.  相似文献   

18.
A cyclin-dependent kinase (cdk)-activating kinase (CAK) has been shown previously to catalyze T-loop phosphorylation of cdks in most eukaryotic cells. This enzyme exists in either of two forms: the major one contains cdk7, cyclin H and an assembly factor called MAT-1, whilst the minor one lacks MAT-1. Cdk7 is unusual among cdks because it contains not one but two residues (S170 and T176 in Xenopus cdk7) in its T-loop that are phosphorylated in vivo. We have investigated the role of S170 and T176 phosphorylation in the assembly and activity of cyclin H-cdk7 dimers. In the absence of MAT-1, phosphorylation of the T-loop appears to be required for cdk7 to bind cyclin H. Phosphorylation of both residues does not require cyclin H binding in vitro. Phosphorylation of S170 is sufficient for cdk7 to bind cyclin H with low affinity, but high affinity binding requires T176 phosphorylation. By mutational analysis, we demonstrate that in addition to its role in promotion of cyclin H binding, S170 phosphorylation plays a direct role in the control of CAK activity. Finally, we show that dual phosphorylation of S170 and T176, or substitution of both phosphorylatable residues by aspartic residues, is sufficient to generate CAK activity to one-third of its maximal value in vitro, even in the absence of cyclin H and MAT-1, and may thus provide further clues as to how cyclins activate cdk subunits.  相似文献   

19.
A human isoform of the vesicle-associated membrane protein-associated proteins (VAPs), VAPB, causes amyotrophic lateral sclerosis eight due to the missense mutation of Pro-56, whereas human VAPA and the yeast VAP Scs2p proteins are not significantly affected by similar mutations. We have found that VAPA and Scs2p have three prolines present in a conserved region however VAPB has only two prolines in this region. Consequently, this mutation in VAPB (VAPB(P56S)) leaves a single proline in this region whereas other VAPs can retain two proline residues even if the proline equivalent to the Pro-56 is substituted. When Scs2p and VAPA were mutated to be equivalent to VAPB(P56S) in terms of the distribution of proline residues in this region, Scs2p became inactive and aggregated, and VAPA localize to membranous aggregates indistinguishable from those induced by VAPB(P56S). This suggests that the appropriate distribution of three conserved prolines, not the existence of a particular proline, confers VAPA and Scs2p resistance to the Pro-56 mutation and, therefore, is critical for VAP activities.  相似文献   

20.
beta-Arrestins have been shown to inhibit competitively G protein-dependent signaling and to mediate endocytosis for many of the hundreds of nonvisual rhodopsin family G protein-coupled receptors (GPCR). An open question of fundamental importance concerning the regulation of signal transduction of several hundred rhodopsin-like GPCRs is how these receptors of limited sequence homology, when considered in toto, can all recruit and activate the two highly conserved beta-arrestin proteins as part of their signaling/desensitization process. Although the serine and threonine residues that form GPCR kinase phosphorylation sites are common beta-arrestin-associated receptor determinants regulating receptor desensitization and internalization, the agonist-activated conformation of a GPCR probably reveals the most fundamental determinant mediating the GPCR and arrestin interaction. Here we identified a beta-arrestin binding determinant common to the rhodopsin family GPCRs formed from the proximal 10 residues of the second intracellular loop. We demonstrated by both gain and loss of function studies for the serotonin 2C, beta2-adrenergic, alpha2a)adrenergic, and neuropeptide Y type 2 receptors that the highly conserved amino acids, proline and alanine, naturally occurring in rhodopsin family receptors six residues distal to the highly conserved second loop DRY motif regulate beta-arrestin binding and beta-arrestin-mediated internalization. In particular, as demonstrated for the beta2 AR, this occurs independently of changes in GPCR kinase phosphorylation. These results suggest that a GPCR conformation directed by the second intracellular loop, likely using the loop itself as a binding patch, may function as a switch for transitioning beta-arrestin from its inactive form to its active receptor-binding state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号