首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
红细胞PRPP合成酶是红细胞内核苷酸代谢的关键酶,它参与嘌呤核苷酸的从头合成与补救合成途径,催化ATP与5-磷酸核糖(R5P)反应生成PRPP与AMP,而PRPP则是嘌呤嘧啶核苷酸合成途径的一个关键性中间产物.Stocchi等[1]采用离子对反相高效液相色谱法(IPrHPLC)测定红细胞内ATP,ADP.AMP含量,曾获得满意的谱峰分离效果.Sakuma等[2]应用rHPLC法测定了正常人及痛风等患者红细胞的PRPP合成酶活性,我们将Sakuma等的测酶技术与IPrHPLC法相结合,改用单液等度洗脱,达到了操作简便和灵敏、准确的要求.1材料和方法1.1试剂…  相似文献   

2.
Large-scale isolation of human erythrocyte Ca2+-transport ATPase   总被引:2,自引:2,他引:0       下载免费PDF全文
A rapid procedure for preparing large quantities of purified erythrocyte Ca2+-transport ATPase is presented. The method involves: (1) fast preparation of calmodulin-deficient, essentially haemoglobin-free, erythrocyte membranes by molecular filtration using Pellicon filters; (2) solubilization of membrane proteins by deoxycholate; and (3) a batch procedure using calmodulin-Sepharose 4B gel for purification of Ca2+-transport ATPase.  相似文献   

3.
The effect of pH on the extent of binding of cyclic AMP was evaluated by membrane filtration, charcoal exclusion and Sephadex G-25 chromatography. The amount of binding activity found in hemolysates of rat erythrocytes and 105,000 × g supernatants of rat thigh muscle homogenates varies appreciably with pH and method of measurement. Measurements of binding activity in a muscle extract by exclusion from Sephadex G-25 indicated the presence of two pH optima, one at pH 4.5 and the other at pH 7.4 or higher. The filtration method gave higher values than the charcoal method at pH 4.5 while the reverse was true at pH 7.4. With the erythrocyte preparation no binding was evident above pH 5.0 by either procedure except in the presence of 0.8 M KCl. Hypertonic KCl raised the pH of optimum binding to 5–5.5 for both tissues as indicated by both the filtration and charcoal methods. It is apparent from these results that the determination of cyclic AMP binding proteins from various tissues requires that more attention be paid to the role of ionic strength, pH and the mode of collection of the bound complex.  相似文献   

4.
The distribution of cyclic-AMP phosphodiesterase was investigated in subcellular fractions prepared from homogenates of rat liver or isolated hepatocytes. When measured at 1 mM or 1 microM substrate concentration, approx. 35% or 50%, respectively, of enzyme activity was particulate. The soluble activity appeared to be predominantly a 'high Km' form, whereas the particulate activity had both 'high Km' and 'low Km' components. The recovery of cyclic-AMP phosphodiesterase was measured using 1 microM substrate concentraiton, in plasma membrane-containing fractions prepared either by centrifugation or by the use of specific immunoadsorbents. The recovery of phosphodiesterase was lower than that of marker enzymes for plasma membrane, and comparable with the recovery of markers for intracellular membranes. It was concluded that regulation of both 'high Km' and 'low Km' phosphodiesterase could potentially make a significant contribution to the control of cyclic AMP concentration, even at microM levels, in the liver. the 'low Km' enzyme, for which activation by hormones has been previously described, appears to be located predominantly in intracellular membranes in hepatocytes. The immunological procedure for membrane isolation allowed the rapid preparation of plasma membranes in high yield. Liver cells were incubated with rabbit anti-(rat erythrocyte) serum and homogenized. The antibody-coated membrane fragments were then extracted onto an immunoadsorbent consisting of sheep anti-(rabbit IgG) immunoglobulin covalently bound to aminocellulose. Plasma membrane was obtained in approx. 40% yield within 50 min of homogenizing cells.  相似文献   

5.
Human erythrocyte membranes were incubated in the presence of sodium fluoride. After centrifugation at 30,000 g for 30 min the supernatant was able to stimulate the catalytic subunit of adenylate cyclase. The stimulatory factor was purified from the supernatant of fluoride-treated membranes by three subsequent chromatographic steps including DEAE-Sephacel ion-exchange chromatography in the absence of detergent, gel-filtration on Ultrogel AcA 44 in the presence of 1% sodium cholate and phenyl-Sepharose CL/4B hydrophobic chromatography. The final preparation showed approximately 120-fold purification in stimulatory activity over the initial extract and contained two polypeptides (Mr 42 kDa and 36 kDa). The stimulator activity of the preparation was inhibited by 60% by beta gamma-subunits of the GTP-binding protein of bovine brain membranes, G0. The data obtained suggest that the regulatory GTP-binding stimulatory protein of adenylate cyclase, GS, dissociates from human erythrocyte membranes as a result of fluoride-ion treatment.  相似文献   

6.
Binding of bilirubin to erythrocyte membranes of human, buffalo, sheep and goat was studied after phospholipase C, trypsin and neuraminidase treatment. Phospholipase C and trypsin treatment of membranes greatly enhanced the bilirubin binding in all mammalian species, whereas, neuraminidase treatment resulted into a small increase in the membrane-bound bilirubin. Human erythrocyte membranes bound the highest amount of bilirubin, whereas buffalo, sheep and goat erythrocyte membranes showed different mode of bilirubin binding. The order of bilirubin binding to unmodified as well as neuraminidase-treated erythrocyte membranes was: human>sheep>buffalo>goat; the order was: human>buffalo>sheep>goat; in phospholipase C- and trypsin-treated erythrocyte membranes. These binding results indicate that membrane phospholipids are directly involved in the interaction of bilirubin with the membranes as the differences observed in the membrane-bound bilirubin among mammalian species were directly correlated with the sum of choline phospholipids, especially phosphatidylcholine and sphingomyelin content of the erythrocyte membranes. The negatively charged phosphate moiety of phospholipids of the membranes appears to inhibit a large amount of bilirubin binding to the membrane as its removal by phospholipase C greatly enhanced the binding. Furthermore, membrane proteins and carbohydrate also seem to play a significant regulatory function on the binding as their degradation and/or removal in the form of glycopeptides by trypsin expose a large number of bilirubin binding sites.  相似文献   

7.
1. An activator of the (Ca2+ plus Mg2+)-stimulated ATPase present in the human erythrocytes (membrane) has been isolated in soluble form from hemolysates of these cells. Partial purification has been achieved through use of carboxymethyl-Sephadex chromatography. The resulting activator fraction contained no hemoglobin and only 0.3% of the total adenylate kinase activity of the cell. 2. Whereas the activator was released from erythrocytes subjected to hemolysis in 20 miosM buffer at pH 7.6 or at pH 5.8, only the membranes prepared at pH 7.6 were affected by it. 2. Whereas the activator was released from erythrocytes subjected to hemolysis in 20 miosM buffer at pH 7.6 or at pH 5.8, only the membranes prepared at pH 7.6 were affected by it. 3. When (Ca2+ plus Mg2+)-ATPase activity was measured by 32Pi release from (gamma-32P)ATP, freeze-thawed erythrocytes, as well as membranes prepared at pH 5.8 and at pH 7.6, expressed lower values than noted by assay for total Pi release. When ADP instead of ATP was used as substrate, significant amount of Pi were released by these erythrocyte preparations. Further study revealed (a) production of ATP and AMP from ADP with membranes and hemolysate alone, and (b) exchange of the gamma-and B-position phosphate on (gama-32P)ATP in the presence of membranes plus hemolysates. These observations established the presence of adenylate kinase activity in the (membrane-free) hemolysates and in membranes. It further supports the conclusion that Pi release from ADP by human erythrocytes (freeze-thawed) and by their isolated membranes is due to formation of ATP by adenylate kinase and hydrolysis of this generated ATP by (Ca2+ plus Mg2+)-ATPase. 4. The following points were also established: (a) absence of an ADPase in human erythrocytes; (b) the (Ca2+ plus Mg2+)-ATPase activator enhanced cleavage only of the gama-position of ATP and (c) the (Ca2+ plus Mg2+)-ATPase activator is neither adenylate kinase nor hemoglobin.  相似文献   

8.
Functional reconstitution of influenza virus envelopes.   总被引:6,自引:0,他引:6       下载免费PDF全文
We have examined several procedures for the reconstitution of influenza virus envelopes, based on detergent removal from solubilized viral membranes. With octylglucoside, no functionally active virosomes are formed, irrespective of the rate of detergent removal: in the final preparation the viral spike proteins appear predominantly as rosettes. Protein incorporation in reconstituted vesicles is improved when a method based on reverse-phase evaporation of octylglucoside-solubilized viral membranes in an ether/water system is employed. However, the resulting vesicles do not fuse with biological membranes, but exhibit only a non-physiological fusion reaction with negatively charged liposomes. Functional reconstitution of viral envelopes is achieved after solubilization with octaethyleneglycol mono(n-dodecyl)ether (C12E8), and subsequent detergent removal with Bio-Beads SM-2. The spike protein molecules are quantitatively incorporated in a single population of virosomes of uniform buoyant density and appear on both sides of the membrane. The virosomes display hemagglutination activity and a strictly pH-dependent hemolytic activity. The virosomes fuse with erythrocyte ghosts, as revealed by a fluorescence resonance energy transfer assay. The rate and the pH dependence of fusion are essentially the same as those of the intact virus. The virosomes also fuse with cultured cells, either at the level of the endosomal membrane or directly with the cellular plasma membrane upon a brief exposure to low pH.  相似文献   

9.
Mobilization and aggregation of intramembrane particles (IMPs) are physiological events observed in various cells. In erythrocyte membranes, aggregation of IMPs can be induced by the exposure of partially desprectrinized erythrocyte membranes to acidic pH. We investigated the association between IMPs aggregation, protein mobility, and membrane fluidity in erythrocyte membranes of healthy controls and Duchenne muscular dystrophy (DMD) patients by using electron spin resonance and specific spin labels for membrane proteins and lipids. In erythrocyte membranes of control subjects, the partial spectrin removal induced a decreased segmental motion of protein spin label indicating an increase of protein-protein interactions. Stearic acid spin labels 5- and 16-(N-oxyl-4,4'-dimethyloxazolidine) showed that the treatment induces an increase of membrane fluidity. In DMD patients, both treated and untreated erythrocyte membranes showed changes of membrane fluidity when compared to those of the controls. Our results suggest that defects in the interactions between skeletal proteins and/or between membrane and skeleton components may contribute to the alterations of erythrocyte membranes in DMD.  相似文献   

10.
A procedure was developed for the large scale preparation of membranes from pig atria which are enriched 10-13 fold in the muscarinic acetylcholine receptor. The procedure involved differential centrifugation and sucrose-gradient centrifugation in solutions containing 150 mM-NaClO4 and 5 mM-EDTA to minimize membrane aggregation. The final membrane preparation bound about 1.1 pmol of L-quinuclidinyl benzilate/mg of protein. Comparable results were obtained with either fresh or frozen tissue. About the same yield (120 pmol of L-quinuclidinyl benzilate sites/100 g of tissue) and specific activity of membranes were obtained from different regions of the atria. The final preparation was stable at -80 degrees C in buffered sucrose solutions. The membranes appeared mostly as sheets or fragments and partly as closed vesicles in the electron microscope and were heterogeneous in isopycnic Percoll gradients. Marker enzyme studies showed that the receptor was enriched in parallel with the plasma membrane markers guanylate cyclase (particulate form) and (Na+ + K+)-activated ATPase. Some contamination by mitochondrial outer and endoplasmic reticulum membranes was evident from the distribution of monoamine oxidase and glucose-6-phosphatase activity, but the preparation was largely free of sarcoplasmic reticulum, mitochondrial inner, and lysosomal membranes.  相似文献   

11.
The process of the formation of vesicles from pigeon erythrocyte membranes was studied. Mildly alkaline solutions of low ionic strength, which reduce human erythrocyte membranes to small vesicles depleted of spectrin and other proteins, have no such effect on pigeon erythrocyte ghosts. A distinct phase of removal of membrane proteins, including spectrin, began to occur only when pigeon erythrocyte membranes were exposed to 0.2 mM EDTA adjusted to pH values above 10.2. Vesicles which demonstrated Na+-dependent amino acid transport were generated between the pH values 10.8 and 11.4. The results show that peripheral proteins, notably spectrin, maintain the integrity of the pigeon erythrocyte ghost. The interaction of these proteins with the membrane is rather different from that well studied in the human erythrocyte ghost and the possible significance of this for the pigeon erythrocyte is discussed.  相似文献   

12.
M Record  A Loyter    S Gatt 《The Biochemical journal》1980,187(1):115-121
Incubation at 37 degrees C of haemolysed chicken erythrocytes ('chicken erythrocyte ghosts') resulted in hydrolysis of the membrane sphingomyelin, suggesting an activation of a latent sphingomyelinase during the haemolysis procedure. When this incubation was continued for several hours, the entire sphingomyelin of the erythrocyte 'ghosts' was hydrolysed and membranes were obtained that were devoid of sphingomyelin, but had an active sphingomyelinase. Mixing the latter membranes with human erythrocyte 'ghosts' or positively charged liposomes led to hydrolysis of the sphingomyelin in these two membranes. This suggested that, after haemolysis, the activated sphingomyelinase in the membrane of the chicken erythrocyte 'ghosts' could hydrolyse sphingomyelin in its own membrane ('intramembrane utilization') or adjacent membranes ('intermembrane utilization').  相似文献   

13.
The lipid composition of purified erythrocyte membrane glycophorin was measured. Diphosphoinositide, triphosphoinositide, and phosphatidylserine are the major phospholipids in glycophorin preparation. Nearly all of the radioactive diphosphoinositide and triphosphoinositide extracted from erythrocyte membranes by lithium d?odosalicylate are recoverd in purified glycophorin. There appeared to be no significant enrichment of other acidic membrane phospholipids in the protein. The results do not permit a firm conclusion as to whether the polyphosphoinositides are associated specifically with the membrane protein or whether fortuitous binding has occurred during purification.  相似文献   

14.
A method for fabricating biomimetic surfaces from intact cell membranes is described. A monolayer of alkanethiol on gold is covered by a second layer derived from the components of erythrocyte membranes either by self-assembly or by Langmuir-Blodgett methods. The resulting asymmetric hybrid layer was characterized by ellipsometry, surface plasmon resonance (SPR), contact angle, capacitance, voltammetry, and electron and atomic force microscopy. The erythrocyte membrane layer was measured to be approximately 30-40 A in thickness. Using SPR, the presence of erythrocyte components on the surface was demonstrated by their selective removal by enzymatic action. The uniform deposition of membranous material on the substrate was shown by electron and atomic force microscopy. Demonstration of acetylcholinesterase (AChase) activity, a membrane-anchored enzyme, on the surface for at least 8 days, suggests that the outer leaflet of the erythrocyte membrane is present in its native form. Cyclic voltammetry demonstrates that enhanced electron transport from a solution redox species accompanies formation of the erythrocyte layer at the surface. This enhanced electron transport is blocked by 4,4'-diisothiocyanate stilbene-2,2'-disulfonic acid, a well known blocker of anion transport, suggesting that an erythrocyte anion transporter protein is incorporated into the surface layer in an active conformation.  相似文献   

15.
L C Yip  V Chang  M E Balis 《Biochemistry》1982,21(26):6972-6978
Sealed and unsealed plasma membrane vesicles were prepared from human erythrocytes and lymphocytes. Phosphoribosylpyrophosphate synthetase (PRibPP synthetase), hypoxanthine phosphoribosyltransferase (HPRTase), and adenine phosphoribosyltransferase (APRTase) activities are detectable on both inside-out and right-side-out sealed vesicles. Ghost preparations were about 0.2%, 1%, and 1.2% of the total erythrocyte and 0.5%, 5.3%, and 9.7% of the lymphocyte APRTase, HPRTase, and PRibPP synthetase activities. The rapid decrease in these enzyme activities, upon further purification of the membranes, seemed to suggest that they might be loosely bound extrinsic proteins. Evidence confirming the localization of these enzymes on the cell surface was obtained by measuring production of [14C]AMP by intact cells in medium containing [14C]adenine, ribose 5-phosphate, and Mg2+ATP. The formation of AMP was linear with time and number of cells present. Magnesium and phosphate exerted different effects on the production of extracellular AMP than on intracellular, which involves transport as well as phosphoribosylation. Cytosoluble and membrane-bound APRTase and PRibPP synthetase exhibited different catalytic properties and sensitivities to effectors. Membranes of erythrocytes of HPRTase-deficient patients contain little or no HPRTase activity when assayed in the absence of Triton. Reisolation of these membranes from admixture with normal hemolysates did not result in any bound activity; thus, the membrane-bound activity is not an artifact of the isolation procedure. Lysis with Triton released activity equal to about half that of control membranes. This is further evidence that the enzyme is firmly bound to the membrane.  相似文献   

16.
Protein and lipid components of the pigeon erythrocyte membrane.   总被引:1,自引:0,他引:1       下载免费PDF全文
The plasma membrane of the nucleated pigeon erythrocyte was isolated by a method that is simple, reproducible and minimally disruptive, the final preparation consisting of whole cell 'ghosts', recovered at over 40% yield. Alternative methods, which yield membrane fragments, were also tested and some of their possible disadvantages demonstrated. Analysis of the protein components of the isolated membranes by gel elctrophoresis in the presence of sodium dodecyl sulphate revealed that their composition is very similar to that of the proteins of human erythrocyte membranes. However, two major proteins are unique to the nucleated cell membrane; these have apparent mol.wts. of 97000 and 57000. Also, the bands designated 4.2 (74500 mol.wt.) and 6 (35000 mol wt.) by Steck [(1974) J. Cell Biol. 62, 1-19] for the human cell membrane are absent from pigon cell membrane. Glycosylated membrane proteins could not be detected in gels stained with the periodate-Schiff-base procedure. Analysis of membrane phospholipids revealed the same components known to be present in mammalian erythrocytes, though in different proportions. These findings are discussed in the light of known physiological and biochemical differences between avian and mature mammalian erythrocytes.  相似文献   

17.
Electron paramagnetic resonance was used to characterize the first use of a thiol-specific spin label in membranes. Procedures for use of the spin-label, 1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl (methanethiosulfonate MTS) covalently attached to membrane proteins in human erythrocyte membranes are reported. The major findings are: (1) MTS was found to be thiol-specific in membranes as it is for soluble proteins; (2) MTS labels ghost proteins in as few as 30 min at room temperature, providing a distinct advantage when sensitive or fragile membranes are to be used; (3) the distribution of the spin label suggests that the major cytoskeletal protein, spectrin, and the major transmembrane protein (Band 3) incorporate the highest percentage of spin label. This procedure expands the tools with which the researcher can investigate the physical state of membrane proteins and its alteration upon interaction of membrane perturbants or in pathological conditions.  相似文献   

18.
The aim of our investigation was to study the red blood cell (RBC) membrane effects of NaNO(2)-induced oxidative stress. Hyperpolarization of erythrocyte membranes and an increase in membrane rigidity have been shown as a result of RBC oxidation by sodium nitrite. These membrane changes preceded reduced glutathione depletion and were observed simultaneously with methemoglobin (metHb) formation. Changes of the glutathione pool (total and reduced glutathione, and mixed protein-glutathione disulfides) during nitrite-induced erythrocyte oxidation have been demonstrated. The rates of intracellular oxyhemoglobin and GSH oxidation highly increased as pH decreased in the range of 7.5-6.5. The activation energy of intracellular metHb formation obtained from the temperature dependence of the rate of HbO(2) oxidation in RBC was equal to 16.7+/-1.6 kJ/mol in comparison with 12.8+/-1.5 kJ/mol calculated for metHb formation in hemolysates. It was found that anion exchange protein (band 3 protein) of the erythrocyte membrane does not participate significantly in the transport of nitrite ions into the erythrocytes as band 3 inhibitors (DIDS, SITS) did not decrease the intracellular HbO(2) oxidation by extracellular nitrite.  相似文献   

19.
A short procedure for the isolation of band-3 protein, the protein responsible for anion exchange in erythrocytes, in a reasonable degree of purity was developed. Using this protein preparation and a novel procedure for membrane-protein reconstitution, vesicles displaying the basic features of the anion-exchange system of the erythrocyte were obtained. The reconstitution procedure is based on slow direct removal of Triton X-100 from aqueous lipid/detergent solutions. According to the composition of the reconstitution medium, either small single-walled or large multi-walled vesicles are obtained. The procedure conserves protein properties well, as is revealed by the similarity of the rates of SO4(2-) exchange in erythrocytes and reconstituted vesicles when corrected for the relevant volumes. A number of functional features of the exchange system were studied and compared with those of the native membrane.  相似文献   

20.
The aim of the study was to examine and compare the effects of methemoglobin (metHb) and ferrylhemoglobin (ferrylHb) on the erythrocyte membrane. Kinetic studies of the decay of ferrylhemoglobin (*HbFe(IV)=O denotes ferryl derivative of hemoglobin present 5 min after initiation of the reaction of metHb with H(2)O(2); ferrylHb) showed that autoredecay of this derivative is slower than its decay in the presence of whole erythrocytes and erythrocyte membranes. It provides evidence for interactions between ferrylHb and the erythrocyte membrane. Both hemoglobin derivatives induced small changes in the structure and function of the erythrocyte membrane which were more pronounced for ferrylHb. The amount of ferrylHb bound to erythrocyte membranes increased with incubation time and, after 2 h, was twice that of membrane-bound metHb. The incubation of erythrocytes with metHb or ferrylHb did not influence osmotic fragility and did not initiate peroxidation of membrane lipids in whole erythrocytes as well as in isolated erythrocyte membranes. Membrane acetylcholinesterase activity increased by about 10% after treatment of whole erythrocytes with both metHb and ferrylHb. ESR spectra of membrane-bound maleimide spin label demonstrated minor changes in the conformation of label-binding proteins in ferrylHb-treated erythrocyte membranes. The fluidity of the membrane surface layer decreased slightly after incubation of erythrocytes and isolated erythrocyte membranes with ferrylHb and metHb. In whole erythrocytes, these changes were not stable and disappeared during longer incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号