首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
It was shown that IgGs purified from the sera of healthy Wistar rats contain several different bound Me2+ ions and oxidize 3,3'-diaminobenzidine through a H2O2-dependent peroxidase and H2O2-independent oxidoreductase activity. IgGs have lost these activities after removing the internal metal ions by dialysis against EDTA. External Cu2+ or Fe2+ activated significantly both activities of non-dialysed IgGs containing different internal metals (Fe > or = Pb > or = Zn > or = Cu > or = Al > or = Ca > or = Ni > or = Mn > Co > or = Mg) showing pronounced biphasic dependencies corresponding to approximately 0.1-2 and approximately 2-5 mM of Me2+, while the curves for Mn2+ were nearly linear. Cu2+ alone significantly stimulated both the peroxidase and oxidoreductase activities of dialysed IgGs only at high concentration (> or = 2 mM), while Mn2+ weakly activated peroxidase activity at concentration >3 mM but was active in the oxidoreductase oxidation at a low concentration (<1 mM). Fe2+-dependent peroxidase activity of dialysed IgGs was observed at 0.1-5 mM, but Fe2+ was completely inactive in the oxidoreductase reaction. Mg2+, Ca2+, Zn2+, Al2+ and especially Co2+ and Ni2+ were not able to activate dialysed IgGs, but slightly activated non-dialysed IgGs. The use of the combinations of Cu2+ + Mn2+, Cu2+ + Zn2+, Fe2+ + Mn2+, Fe2+ + Zn2+ led to a conversion of the biphasic curves to hyperbolic ones and in parallel to a significant increase in the activity as compared with Cu2+, Fe2+ or Mn2+ ions taken separately; the rates of the oxidation reactions, catalysed by non-dialysed and dialysed IgGs, became comparable. Mg2+, Co2+ and Ni2+ markedly activated the Cu2+-dependent oxidation reactions catalysed by dialysed IgGs, while Ca2+ inhibited these reactions. A possible role of the second metal in the oxidation reactions is discussed.  相似文献   

2.
Trace elements have significant effect on the physiology of bacteria. Variation in the concentration of trace elements may affect the expression of virulence by microorganisms. The effect of trace elements on hydrophobicity and adherence of E.coli to uroepithelial cells was studied. Increasing concentrations of Ca2+, Mg2+, Fe3+ and Zn2+ significantly decreased the surface hydrophobicity. Toxic trace elements like Co2+, Cu2+, Mn2+ and Ni2+ did not alter surface hydrophobicity. With regards to adherence of E.coli to uroepithelial cells, only Mg2+ had significant effect. Toxic trace elements decreased the rate of cell adherence. The pathogenic strains of E.coli showed higher surface hydrophobicity and better cell adherence compared to the nonpathogenic strains. There was good correlation between surface hydrophobicity and cell adherence at higher concentrations (0.1 to 0.2mM) of Fe2+ and Zn2+. The results indicated that trace elements can significantly affect surface hydrophobicity and adherence of E.coli to uroepithelial cells. Such effect may have a significant impact on the initial stages of bacterial infection.  相似文献   

3.
金属离子对地衣芽孢杆菌合成多聚γ-谷氨酸的影响   总被引:7,自引:0,他引:7  
杨革  陈坚  曲音波  伦世仪   《生物工程学报》2001,17(6):706-709
多聚γ 谷氨酸 [γ Poly(glutamicacid) ,γ PGA]是由某些杆菌 (Bacillus)合成的一种细胞外水溶性高分子氨基酸聚合物 ,是由L 谷氨酸、D 谷氨酸两种构型的单体通过γ 酰胺键聚合形成的[1 ] 。γ PGA具有极佳的成膜性、成纤维性 ,阻氧性、可塑性、粘结性、保湿性和可生物降解等许多独特的理化和生物学特性[2 ,3] 。因此 ,γ PGA可以被广泛用于医药制造 ,食品加工 ,蔬菜、水果、海产品防冻、保鲜 ,化妆品工业 ,烟草、皮革制造工业和植物种子保护等许多领域 ,是一种有极大开发价值和前景的多功能新型生物制…  相似文献   

4.
An intracellular hexose 6-phosphate:phosphohydrolase (EC 3.1.3.2) has been purified from Streptococcus lactis K1. Polyacrylamide disc gel electrophoresis of the purified enzyme revealed one major activity staining protein and one minor inactive band. The Mr determined by gel permeation chromatography was 36,500, but sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single polypeptide of apparent Mr 60,000. The enzyme exhibited a marked preference for hexose 6-phosphates, and the rate of substrate hydrolysis (at 5 mM concentration) decreased in the order, galactose 6-phosphate greater than 2-deoxy-D-glucose 6-phosphate greater than fructose 6-phosphate greater than mannose 6-phosphate greater than glucose 6-phosphate. Hexose 1-phosphates, p-nitrophenylphosphate, pyrophosphate, and nucleotides were not hydrolyzed at a significant rate. In addition, the glycolytic intermediates comprising the intracellular phosphoenolpyruvate potential in the starved cells (phosphoenolpyruvate and 2- and 3-phosphoglyceric acids) were not substrates for the phosphatase. Throughout the isolation, the hexose 6-phosphate:phosphohydrolase was stabilized by Mn2+ ion, and the purified enzyme was dependent upon Mn2+, Mg2+, Fe2+, or Co2+ for activation. Other divalent metal ions including Pb2+, Cu2+, Zn2+, Cd2+, Ca2+, Ba2+, Sr2+, and Ni2+ were unable to activate the enzyme, and the first four cations were potent inhibitors. Enzymatic hydrolysis of 2-deoxy-D-glucose 6-phosphate was inhibited by fluoride when Mg2+ was included in the assay, but only slight inhibition occurred in the presence of Mn2+, Fe2+, or Co2+. The inhibitory effect of Mg2+ plus fluoride was specifically and completely reversed by Fe2+ ion. The hexose 6-phosphate:phosphohydrolase catalyzes the in vivo hydrolysis of 2-deoxy-D-glucose 6-phosphate in stage II of the phosphoenolpyruvate-dependent futile cycle in S. lactis (J. Thompson and B. M. Chassy, J. Bacteriol. 151:1454-1465, 1982).  相似文献   

5.
杨峰晓  唐赟 《微生物学通报》2008,35(6):0876-0881
探测了17种金属离子对嗜热菌BF80菌生长和降解苯酚的影响.结果表明:与对照相比,0.01%的Cu2 、Zn2 、CO2 、Ba2 、Hg2 、Ni2 、Al 0和Al3 对嗜热菌BF80有强抑制作用;Cr2 对嗜热菌BF80的苯酚降解特性有强抑制作用,而其生长量只受到一定的抑制作用;Sn2 、Fe2 、Fe3 和Pn2 对嗜热菌BF80的生长和苯酚降解有一定抑制作用,该作用随金属粒子浓度的增加而增大;低浓度Mn2 和Mo2 可以使其生长量增大且促进苯酚降解,但超过0.1%的浓度则抑制其生长;Ca2 和Mg2 可以加速嗜热菌BF80的生长和降解苯酚的速率,但对苯酚的最大降解率却几乎没有影响;Mo2 和Mn2 的复合作用使嗜热菌BF80的生长量更大,但是苯酚降解率却比分别单独添加Mo2 和Mn2 时低.  相似文献   

6.
杨峰晓  唐赟 《微生物学报》2008,35(6):0876-0881
探测了17种金属离子对嗜热菌BF80菌生长和降解苯酚的影响。结果表明:与对照相比, 0.01%的Cu2+、Zn2+、Co2+、Ba2+、Hg2+、Ni2+、Ag+ 和Al3+对嗜热菌BF80有强抑制作用; Cr2+对嗜热菌BF80的苯酚降解特性有强抑制作用, 而其生长量只受到一定的抑制作用; Sn2+、Fe2+、Fe3+和Pn2+ 对嗜热菌BF80的生长和苯酚降解有一定抑制作用, 该作用随金属粒子浓度的增加而增大; 低浓度Mn2+ 和Mo2+可以使其生长量增大且促进苯酚降解, 但超过0.1%的浓度则抑制其生长; Ca2+ 和Mg2+可以加速嗜热菌BF80的生长和降解苯酚的速率, 但对苯酚的最大降解率却几乎没有影响; Mo2+ 和Mn2+的复合作用使嗜热菌BF80的生长量更大, 但是苯酚降解率却比分别单独添加Mo2+ 和Mn2+时低。  相似文献   

7.
The effects of salt concentration gradient (inside to outside) on the lipid peroxidation of porcine intestinal brush-border membrane vesicles have been studied and several interesting features of the peroxidation have been elucidated. The addition of dithiothreitol and Fe2+ is far more effective in induction of the lipid peroxidation than any of the other metal ion species tested (Fe3+, Cu2+, Ni2+, Zn2+ and Cr3+). The peroxidation rate of the membrane vesicles induced by dithiothreitol plus Fe2+ was sensitive for the incubation temperature and was increased with increase of the temperature. Imposition of an inward salt concentration gradient on the membrane vesicles preloaded with 300 mM mannitol by addition of 100 mM chloride of K+, Na+, Li+, Rb+, NH4+ or choline to medium produces a very large reduction of the lipid peroxidation induced by dithiothreitol plus Fe2+. The membrane peroxidation is depressed more with the mannitol (300 mM)-preloaded vesicles than with the K2SO4 (100 mM)-preloaded vesicles when they are incubated in medium containing 20-100 mM of K2SO4. Addition of membrane-permeant anions such as SCN- and I-, but not addition of NO3-, to incubation medium has been found to decrease markedly the lipid peroxidation of the mannitol-preloaded vesicles. From these results it is suggested that the lipid peroxidation of the brush-border membranes by addition of dithiothreitol plus Fe2+ is sensitively changed with change in ionic strength.  相似文献   

8.
Effect of taurine on the properties of guanylate cyclase (GC) of the guinea-pig cardiac sarcoplasmic reticulum was studied. The enzymatic activity increased in the presence of Mn+2 at a concentration of 0.05 mM, reaching the maximal level at a concentration of 7 mM. Mg2+ (0.25-1 mM) did not alter the activity of GC in the absence of Mn2+, but stimulated it in the presence of Mn2+ at a concentration ranging within 0.1 to 1 mM. Taurine activated GC in the presence of Mn2+ (10 mM) and produced no effect on its activity at 0.5-3 mM of Mn2+ without Mg+2. Taurine (0.4-10 mM) potentiated the activity of GC stimulated with Mg+2. The structural analog of taurine, beta-alanine, suppressed the activity of GC 2-2.5-fold both in the absence and presence of Mg+2. Ca2+ (10(-9)--10(-4) mM) stimulated GC. Effect of Mg+2 and taurine on GC activity rose proportionally to an increase in Ca+2 concentration in the incubation medium. The data obtained evidence in favour of potential monitoring of the activity of GC through changes in the intracellular content of Ca+2, Mg+2 and taurine in the presence of Mn+2 at concentrations close to the physiological ones. The effect of taurine on GC is mediated via Mg+2 and Ca+2.  相似文献   

9.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

10.
T R Cassity  B J Kolodziej 《Microbios》1984,41(160):117-125
A study was undertaken to determine if the capsule produced by Bacillus megaterium ATCC 19213 was capable of binding metallic ions. For non-toxic metallic ions, this was accomplished by determining the relative concentrations of Fe2+, Ca2+, Zn2+, Mg2+, and Mn2+ removed from a chemically defined medium by the normally capsulated parent strain and two mutants with much smaller capsules. For toxic metals, the rates of respiration of the parent strain and a small capsule mutant in the presence of Cu2+, Hg2+, and Ag1+ were compared. It was found that the parent strain accumulated more Ca2+, Mg2+, and Mn2+. Accumulation of Fe2+ and Zn2+ was similar for the parent strain and the small capsule mutants. Respiration of the parent strain was less inhibited by Cu2+, Hg2+, and Ag1+, indicating that these metals are also bound to the capsule.  相似文献   

11.
1. The binding of Ca2+ to plasma coagulation Factor XIII from man and from cow caused a small decrease in the intrinsic fluorescence of the protein with a dissociation constant of 0.1 mM. A similar decrease was observed with the thrombin-activated Factors (Factors XIIa). The decrease in protein fluorescence was also caused by both Ni2+ and Mn2+ but not by Mg2+. 2. 45Ca2+ binding was directly demonstrated by equilibrium dialysis. Ca2+ at 0.2 mM bound to Factor XIII (a2b2) and Factor XIIIa (a'2b2) but not to isolated b2-protein. A tight-binding site for Ca2+ is associated with the a-subunits. 3. The Ca2+ essential for the enzyme activity of Factor XIII from man, pig and cow can be replaced by Ni2+, Cu2+, La3+, Mn2+, Fe3+, Y3+, Co2+, Sr2+ or Tb3+, but not by Mg2+.  相似文献   

12.
The microbial chelating compound proferrorosamine A, produced by Pseudomonas roseus fluorescens, formed a complex with Fe2+ of which the apparent stability constant was found to be 10(23). The following order of increasing stability constants of metal complexes with proferrorosamine was established as: Ba2+, Ca2+, Mg2+, Mn2+ less than Hg2+ less than Zn2+ less than Pb2+ less than Co2+ less than Cu2+ congruent to Fe2+ less than Ni2+. Only Ni(2+)-proferrorosamine had a stability constant which was established as: Ba2+, Ca2+, Mg2+, Mn2+ less than Hg2+ less than Zn2+ less than Pb2+ less than Co2+ less than Cu2+ congruent to Fe2+ less than Ni2+. Only Ni(2+)-proferrorosamine had a stability constant which was ca 32 times higher than Fe(2+)-proferrorosamine. Because of the production of proferrorosamine the growth of Ps. roseus fluorescens was not inhibited in iron limiting media by the addition of 0.15 mmol/l of the weaker chemical Fe2+ chelator 2,2'-dipyridyl. This contrasted with the proferrorosamine-negative mutant K2 and Ps. stutzeri, which only produces Fe(3+)-chelating siderophores. Furthermore, it was found that proferrorosamine was able to dissolve Fe2+ from stainless steel. These results show that proferrorosamine is a strong and selective Fe2+ chelator which could be used as an alternative for the toxic 2,2'-dipyridyl to control lactic acid fermentations.  相似文献   

13.
C A Grosshans  T R Cech 《Biochemistry》1989,28(17):6888-6894
A shortened form of the self-splicing intervening sequence RNA of Tetrahymena thermophila acts as an enzyme, catalyzing sequence-specific cleavage of RNA substrates. We have now examined the metal ion requirements of this reaction. Mg2+ and Mn2+ are the only metal ions that by themselves give RNA enzyme activity. Atomic absorption spectroscopy indicates that Zn, Cu, Co, and Fe are not present in amounts equimolar to the RNA enzyme and when added to reaction mixtures do not facilitate cleavage. Thus, these ions can be eliminated as cofactors for the reaction. While Ca2+ has no activity by itself, it alleviates a portion of the Mg2+ requirement; 1 mM Ca2+ reduces the Mg2+ optimum from 2 to 1 mM. These results, combined with studies of the reactivity of mixtures of metal ions, lead us to postulate that two classes of metal ion binding sites are required for catalysis. Class 1 sites have more activity with Mn2+ than with Mg2+, with the other divalent ions and Na+ and K+ having no activity. It is not known if ions located at class 1 sites have specific structural roles or are directly involved in active-site chemistry. Class 2 sites, which are presumably structural, have an order of preference Mg2+ greater than or equal to Ca2+ greater than Mn2+ and Ca2+ greater than Sr2+ greater than Ba2+, with Zn2+, Cu2+, Co2+, Na+, and K+ giving no detectable activity over the concentration range tested.  相似文献   

14.
Native soluble and particulate guanylate cyclase from several rat tissues preferred Mn2+ to Mg2+ as the sole cation cofactor. Wtih 4mM cation, activities with Mg2+ were less than 25% of the activities with Mn2+. The 1 mM NaN3 markedly increased the activity of soluble and particulate preparations from rat liver. Wtih NaN3 activation guanylate cyclase activities wite similar with Mn2+ and Mg2+. Co2+ was partially effective as a cofactor in the presence of NaN3, while Ca2+ was a poor cation with or without NaN3. Activities with Ba, Cu2+, or Zn2+ were not detectable without or with 1 mM NaN3. With soluble liver enzyme both manganese and magnesium activities were dependent upon excess Mn2+ or Mg2+ at a fixed MnGTP or MgGTP concentration of 0.4 mm; apparent Km values for excess Mn2+ and Mg2+ were 0.3 and 0.24 mM, respectively. After NaN3 activation, the activity was less dependent upon free Mn2+ and retained its dependence for free Mg2+, at 0.4 mM MgGTP the apparent Km for excess Mg2+ was 0.3 mM. The activity of soluble liver guanylate cyclase assayed with Mn2+ or Mg2+ was increased with Ca2+. After NaN3 activiation, Ca2+ had no effect or was somewhat inhibitory with either Mn2+. After NaN activation, Ca2+ had no effect or was somewhat inhibitory with either Mn2+ or Mg2+. The stimulatory effect of NaN2 on Mn2+-and Mg2+-dependent guanylate cyclase activity from liver or cerebral cortex supernatant fractions required the presence of the sodium azide-activator factor. With partially purified soluble liver guanylate cyclase and azide-activator factor, the concentration (1 mjM) of NaN3 that gave half-maximal activation with Mn2+ or Mg2+ was imilar. Thus, under some conditions guanylate cyclase can effectively use Mg2+ as a sole cation cofactor.  相似文献   

15.
Phenol is metabolized in a denitrifying bacterium in the absence of molecular oxygen via para-carboxylation to 4-hydroxybenzoate (biological Kolbe-Schmitt synthesis). The enzyme system catalyzing the presumptive carboxylation of phenol, tentatively named 'phenol carboxylase', catalyzes an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate (specific activity 0.1 mumol 14CO2 incorporated into 4-hydroxybenzoate x min-1 x mg-1 cell protein) which is considered a partial reaction of the overall enzyme catalysis; 14C from [14C]phenol was not exchanged into 4-hydroxybenzoate ring positions to a significant extent. The 14CO2 isotope exchange reaction was studied in vitro. The reaction was dependent on the substrates CO2 and 4-hydroxybenzoate and required K+ and Mn2+. The actual substrate was CO2 rather than HCO3-. The apparent Km values were 1 mM dissolved CO2, 0.2 mM 4-hydroxybenzoate, 2 mM K+, and 0.1 mM Mn2+. The cationic cocatalysts could be substituted by ions of similar ionic radius: K+ could be replaced to some extent by Rb+, but not by Li+, Na+, Cs+, or NH4+; Mn2+ could be replaced to some extent by Fe2+ greater than Mg2+, Co2+, but not by Ni2+, Zn2+, Ca2+, or Cu2+. The exchange reaction was not strictly specific for 4-hydroxybenzoate, however it required a p-hydroxyl group; derivatives of 4-hydroxybenzoate with OH, CH3 or Cl substituents in m-position did react, whereas those with substitutions in the o-position were inactive or were inhibitory. The enzyme was induced when cells were grown on phenol, but not on 4-hydroxybenzoate. Comparison of SDS/PAGE protein patterns of cells grown on phenol or 4-hydroxybenzoate revealed several additional protein bands in phenol-grown cells. The possible role of similar enzymes in the anaerobic metabolism of phenolic compounds is discussed.  相似文献   

16.
金属离子对粪产碱杆菌C16的脱氮和亚硝酸盐积累的影响   总被引:2,自引:0,他引:2  
王瑶  刘玉香  安华  张浩 《微生物学通报》2014,41(11):2254-2263
【目的】研究不同金属离子对异养氨氧化细菌C16的生长和脱氮性能影响,探讨适于C16生长和脱氮的金属离子及其浓度。【方法】实验选用Mg2+、Mn2+、Fe2+、Cu2+、Zn2+5种金属离子,对C16的生长﹑脱氮性能﹑亚硝酸盐氮积累以及相关酶活性进行研究。【结果】Mg2+明显促进C16的生长和NH4+-N氧化速率;较高浓度Mn2+使得C16无法生长;原培养基中缺少Fe2+会抑制C16的生长和NH4+-N氧化速率;在原培养基中加入0.1 mmol/L的Cu2+对C16的生长和脱氮具有一定的促进作用,Cu2+使得培养基中基本无NO2--N和NH2OH的积累;不同浓度的Zn2+对C16的生长和氨氮去除有抑制作用。酶活实验结果显示,0.1 mmol/L Mg2+促进了羟胺氧化还原酶(HAO)的活性;0.1 mmol/L Cu2+促进了硝酸盐还原酶(Nar)和亚硝酸盐还原酶(Nir)的活性。【结论】Mg2+是C16生长和脱氮过程中的一种重要金属离子;加入Cu2+可避免过量亚硝酸盐积累。  相似文献   

17.
Chelating agents disrupted the superficial layers on Spirillum putridiconchylium and adsorption of cationized ferritin indicated that both upper and lower surfaces of superficial layer fragments, as well as the outer membrane surface, possessed areas which were negatively charged. Growth of the bacterium in 1% casamino acids (vitamin free) resulted in cells which were devoid of the superficial layers, and negative staining of these cells revealed in amorphous precipitate together with a vesicular outer membrane component extruding from their surfaces into the medium. Addition of either 1 mM Ca2+ or 1 mM Sr2+ to the growth medium produced the typical regularly structured cell surface, whereas addition of equal concentrations of Li+, Na+, K+, Mg2+, Ba2+, Mn2+, Fe3+, or three polyamines produced the structureless surface.  相似文献   

18.
Mn2+ and to some degree Fe2+, but not Mg+, Ca2+, ba2+, Sr2+, Co2+, Ni2+, La3+, or Fe3+ were able to serve as effective metal cofactors for sea urchin sperm guanylate cyclase. The apparent Michaelis constant for Mn2+ in the presence of 0.25 mM MnGTP was 0.23 mM. In the presence of a fixed free mn2+ concentration, variation in mngTP resulted in sigmoid velocity-substrate plots and in reciprocal plots that were concave upward. These positive cooperative patterns were observed at both pH 7.0 and 7.8 and in the presence or absence of Triton X-100. When Mn2+ and GTP were equimolar, Ca2+, Ba2+, Sr2+, and Mg2+ increased apparent guanylate cyclase activity. This increase in enzyme activity at least could be accounted for partially by an increase in free Mn2+ concentration caused by the complex formation of GTP with the added metals. However, even at relatively low GTP concentrations and with Mn2+ concentrations in excess of GTP, Ca2+, Sr2+, and Ba2+ significantly increased guanosine 3':5'-monophosphate production. As the total GTP concentration was increased, the degree of stimulation in the presence of Ca2+ decreased, despite maintenance of a fixed total concentration of Ca2+ and a fixed free concentration of Mn2+, suggesting that the concentration of CaGTP and MnGTP were determining factors in the observed response. The concave upward reciprocal plots of velocity against MnGTP concentration were changed to linear plots in the presence of CaGTP or SrGTP. These results suggest that sea urchin sperm guanylate cyclase contains multiple nucleotide binding sites and that stimulation of guanosine 3':5'-monophosphate synthesis by Ca2+, Sr2+, and perhaps other metals may reflect interaction of a metal-GTP complex with enzyme as either an effector or a substrate.  相似文献   

19.
本文对多花野牡丹(Melastoma affine)果实胎座的色素进行了理化性质的探讨,对光、温度、氧化还原介质、7种金属离子、葡萄糖、蔗糖、苯甲酸钠对色素稳定性的影响进行了研究。结果表明,该色素为水溶性花青苷类色素,它在60 ℃以下稳定性较好,对光的耐受性较差。色素在酸性条件下稳定性好,耐还原性也较好,但耐氧化性较差。7种金属离子中,Fe3+、Cu2+、Mn2+、Zn2+对色素有明显降解作用,而Na+、Mg2+、Al3+对色素稳定性较好并有不同程度的护色作用。葡萄糖、蔗糖、苯甲酸钠对色素无不良影响。  相似文献   

20.
The deoxyribonuclease induced in KB cells by herpes simplex virus (HSV) type 1 and type 2 has been purified. Both enzymes are able to completely degrade single- and double-stranded DNA yielding 5'-monophosphonucleotides as the sole products. A divalent cation, either Mg2+ or Mn2+, is an absolute requirement for catalysis and a reducing agent is necessary for enzyme stability. The maximum rate of reaction is achieved with 5 mM MgCl2 for both HSV-1 and HSV-2 DNase. The optimum concentration for Mn2+ is 0.1 to 0.2 mM and no exonuclease activity is observed when the concentration of Mn2+ is greater than 1 mM. The rate of reaction at the optimal Mg2+ concentration is 3- to 5-fold greater than that at the optimal Mn2+ concentration. In the presence of Mg2+, the enzymes are inhibited upon the addition of Mn2+, Ca2+, and Zn2+. The enzymatic reaction is also inhibited by spermine and spermidine, but not by putrescine. Crude and purified HSV-1 and HSV-2 DNase can degrade both HSV-1 and HSV-2 DNA, but native HSV-1 DNA is hydrolyzed at only 22% of the rate and HSV-2 DNA at only 32% of the rate of Escherichia coli DNA. Although HSV-1 and HSV-2 DNase were similar, minor differences were observed in most other properties such as pH optimum, inhibition by high ionic strength, activation energy, and sedimentation coefficient. However, the enzymes differ immunologically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号