首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gametophytic chromosome number for the giant senecios (Asteraceae, Senecioneae, Dendrosenecio) is n = 50, and for the giant lobelias (Lobeliaceae, Lobelia subgenus Tupa section Rhynchopetalum) it is n = 14. Previous sporophytic counts are generally verified, but earlier reports for the giant senecios of 2n = 20 and ca. 80, the bases for claims of intraspecific polyploidy, are unsubstantiated. The 14 new counts for the giant senecios and the ten new counts for the giant lobelias are the first gametophytic records for these plants and include the first reports for six and four taxa, respectively, for the two groups. Only five of the 11 species of giant senecio and three of the 21 species of giant lobelia from eastern Africa remain uncounted. Although both groups are polyploid, the former presumably decaploid and the latter more certainly tetraploid, their adaptive radiations involved no further change in chromosome number. The cytological uniformity within each group, while providing circumstantial evidence of monophyly and simplifying interpretations of cladistic analyses, provides neither positive nor negative support for a possible role of polyploidy in evolving the giant-rosette growth-form.  相似文献   

2.
Summary The anatomical organization of the two dorsal giant fiber systems of the earthworm Lumbricus terrestris is demonstrated in whole mounts and serial-section reconstructions based on backfillings of the ventral nerve cord with cobalt chloride. Both the medial and lateral fiber systems can be labeled selectively over more than ten body segments. They show a characteristic segmental pattern of collaterals with some modification in tail segments and of dorsal plasma protrusions in the unpaired medial giant fiber presumably representing openings in the myelin sheath. We found no multisegmental cobalt transport in other large neurons of the nerve cord. Cobalt passes through the segmentai septa between consecutive axonal elements of the metameric giant fibers and presumably also through commissural contacts between specific collaterals of the lateral giant fibers. Since these sites of contact are known to represent electrical synapses, cobalt coupling may, in L. terrestris, correlate with functional electrotonic coupling.Abbreviations CL collateral of lateral giant fiber - CM collateral of medial giant fiber - GIN giant interneuron - LGF lateral giant fiber - MGF medial giant fiber - SN segmental nerve  相似文献   

3.
Summary The thoracic homologue of the abdominal segmental giant neurone of crayfish Pacifastacus leniusculus is identified and described. It has a small cell body located in the anterior ventro-lateral quadrant of the ganglion and a large neuropil arborization, with dendrites aligned along the tracts of the giant fibres. The SG axon exits the ganglion within the major root which innervates the leg, usually in the anterior region of this root. Within 1–2 mm of the ganglion the axon terminates in a mass of fine branches, apparently randomly located within the base of the root.The SG receives suprathreshold input from the ipsilateral MG and LG fibres through rectifying electrical synapses. It makes output to FF motor neurones, also through electrical synapses. The SG also makes output to at least one corollary discharge interneurone. The SG receives depolarizing inhibitory synaptic potentials which can prevent its activation by the GFs. Some but not all of these synaptic potentials are common to similar potentials occurring in a large leg promotor motor neurone.Abbreviations AC anterior connective - GF giant fibre - IPSP inhibitory post-synaptic potential - LG lateral giant fibre - MG medial giant fibre - MoG motor giant neurone - PC posterior connective - PMM promotor motor neurone - r1 first root - r3 third root - rAD anterior distal root - rPD posterior distal root - rPM promotor muscle root - SG segmental giant neurone  相似文献   

4.
Summary The rectification properties of electrical synapses made by the segmental giant (SG) neurone of crayfish (Pacifastacus leniusculus) were investigated. The SG acts as an interneurone, transmitting information from the giant command fibres (GFs) to the abdominal fast flexor (FF) motoneurones. The GF-SG (input) synapses are inwardly-rectifying electrical synapses, while the SG-FF (output) synapses are outwardly rectifying electrical synapses. This implies that a single neurone can make gap junction hemichannels with different rectification properties.The coupling coefficient of these synapses is dependent upon transjunctional potential. There is a standing gradient in resting potential between the GFs, SG and FFs, with the GFs the most hyperpolarized, and the FFs the most depolarized. The gradient thus biases each synapse into the low-conductance state under resting conditions.There is functional double rectification between the bilateral pairs of SGs within a single segment, such that depolarizing membrane potential changes of either SG pass to the other SG with less attenuation than do hyperpolarizing potential changes. Computer simulation suggests that this may result from coupling through the intermediary FF neurones.Abbreviations l left - r right - FF fast flexor motoneurone - GF giant fibre - LG lateral giant interneurone - MG medial giant interneurone - MoG motor giant motoneurone - R root, e.g. 1R1 is the first root on the left side - SG Segmental giant neurone  相似文献   

5.
The cockroachPeriplaneta americana responds to wind puffs by turning away, both on the ground and when flying. While on the ground, the ventral giant interneurons (ventrals) encode the wind direction and specify turn direction, whereas while flying the dorsal giant interneurons (dorsals) appear to do so. We report here on responses of these cells to controlled wind stimuli of different directions. Using improved methods of wind stimulation and of positioning the animal revealed important principles of organization not previously observed.All six cells of largest axonal diameter on each side respond preferentially to ipsilateral winds. One of these cells, previously thought to respond non-directionally (giant interneuron 2), was found to have a restricted directional response (Fig. 3). The organization of directional coding among the ventral giant interneurons is nearly identical to that among the dorsals (Fig. 2). Each group contains, on each side, one cell that responds primarily to wind from the ipsilateral front, another primarily in the ipsilateral rear, and a third responding more broadly to ipsilateral front and rear.These results are discussed in terms of the mechanisms of directional localization by the assembly of giant interneurons.Abbreviations GI giant interneuron - vGI ventral giant interneuron - dGI dorsal giant interneuron - CF 5-carboxyfluorescein - A6 6th abdominal ganglion - TI thoracic interneuron - BED best excitatory direction  相似文献   

6.
Summary We have investigated the connectivity of four classes of mechanosensory afferents to giant interneurons in the earthwormLumbricus. Three of these classes of afferents change their specification for connection to medial giant (MGF) and lateral giant (LGF) fibers along the length of the animal. Near the caudal end, stimulation of touch, pressure and small tactile fibers generates excitatory post-synaptic potentials, epsp's, in the two LGF's but not in the MGF. Near the rostral end these afferents produce much smaller epsp's in the LGFs but produce large epsp's in the MGF. In the middle region of the animal an overlap region exists where both giant fibers receive approximately equal inputs from these afferents. The amplitude of these inputs are reduced compared to the maxima seen at either end. The fourth class of sensory afferents investigated, the stretch neurons, have no synaptic effect on the giant fibers anywhere in the nerve cord.These results explain at least part of the basis, in neuronal connectivity, for the differences in response to tactile stimulation of the head and tail segments previously characterized in terms of behavior and giant fiber impulse activity. In this system developmental mechanisms generating synaptic connectivity patterns have coded certain classes of homologous afferent neurons and interneurons to make different connections in different segments.Abbreviations MGF medial giant fiber - LGF lateral giant fiber - SN1 first segmental root - SN2 second segmental root - SN3 third segmental root - RIN giant interneuron  相似文献   

7.
8.
Summary The differentiation and course of the first order giant nerve fibres in the medial and posterior suboesophageal lobes of the brain of Sepia officinalis is examined in different developmental stages. In earlier embryonic stages one pair of first order giant cells differentiates on each side. Later, as a normal phenomenon, one cell of each pair degenerates.The two remaining giant fibres cross in the palliovisceral lobe. On either side of the intersection one branch of the contralateral and one branch of the ipsilateral axon are connected with the second order giant fibres. This structure, which differs from that found in Loligo, apparently mediates the functional bilaterality of the giant fibre system.

Supported by grant NONR 2100 through the Anton and Reinhard Dohrn foundation.  相似文献   

9.
Summary Larvae of Dasyneura urticae parasitized by an unidentified species of the Platygasteridae were found to contain giant polyploid nuclei of a polytene type. Comparison of polytene chromosomes of the giant nuclei with those of salivary-gland nuclei of D. urticae has shown that the giant nuclei are derived from the host nuclei, polyploidy and polyteny of these nuclei being, therefore, induced by the parasite.  相似文献   

10.
The evolution of body size, the paired phenomena of giantism and dwarfism, has long been studied by biologists and paleontologists. However, detailed investigations devoted to the study of the evolution of ontogenetic patterns shaping giant species are scarce. The damselfishes of the genus Dascyllus appear as an excellent model for such a study. Their well understood phylogeny reveals that large‐bodied species have evolved in two different clades. Geometric morphometric methods were used to compare the ontogenetic trajectories of the neurocranium and the mandible in both small‐bodied (Dascyllus aruanus and Dascyllus carneus; maximum size: 50–65 mm standard length) and giant (Dascyllus trimaculatus and Dascyllus flavicaudus; maximum size: 90–110 mm standard length) Dascyllus species. At their respective maximum body size, the neurocranium of the giant species is significantly shorter and have a higher supraoccipital crest relative to the small‐bodied species, whereas mandible shape variation is more limited and is not related to the ‘giant’ trait. The hypothesis of ontogenetic scaling whereby the giant species evolved by extending the allometric trajectory of the small‐bodied ones (i.e. hypermorphosis) is rejected. Instead, the allometric trajectories vary among species by lateral transpositions. The rate of shape changes and the type of lateral transposition also differ according to the skeletal unit among Dascyllus species. Differences seen between the two giant species in the present study demonstrate that giant species may appear by varied alterations of the ancestor allometric pattern. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 99–117.  相似文献   

11.
We have monitored the patterns of activation of five muscles during flight initiation of Drosophila melanogaster: the tergotrochanteral muscle (a mesothoracic leg extensor), dorsal longitudinal muscles #3, #4 and #6 (wing depressors), and dorsal ventral muscle #Ic (a wing elevator). Stimulation of a pair of large descending interneurons, the giant fibers, activates these muscles in a stereotypic pattern and is thought to evoke escape flight initiation. To investigate the role of the giant fibers in coordinating flight initiation, we have compared the patterns of muscle activation evoked by giant fiber stimulation with those during flight initiations executed voluntarily and evoked by visual and olfactory stimuli. Visually elicited flight initiations exhibit patterns of muscle activation indistinguishable from those evoked by giant fiber stimulation. Olfactory-induced flight initiations exhibit patterns of muscle activation similar to those during voluntary flight initiations. Yet only some benzaldehyde-induced and voluntary flight initiations exhibit patterns of muscle activation similar to those evoked by giant fiber stimulation. These results indicate that visually elicited flight initiations are coordinated by the giant fiber circuit. By contrast, the giant fiber circuit alone cannot account for the patterns of muscle activation observed during the majority of olfactory-induced and voluntary flight initiations.Abbreviations DLM/DLMn dorsal longitudinal muscle/motor neuron - DVM/DVMn dorsal ventral muscle/motor neuron - GF(s) giant fiber interneuron (s) - PSI peripherally synapsing interneuron - TTM/TTMn tergotrochanteral muscle/motor neuron  相似文献   

12.
Summary The effect of giant kelp, Macrocystis pyrifera, on the population dynamics of two temperate reef fishes, striped surfperch (Embiotoca lateralis) and black surfperch (E. jacksoni), was examined. Based on an understanding of how particular reef resources influence abundances of the surfperch and of the effect of giant kelp on those resources, we anticipated that Macrocystis would adversely affect populations of striped surfperch but would enhance those of black surfperch. The natural establishment of giant kelp at sites at Santa Cruz Island, California, resulted in the predicted dynamical responses of surfperch. Abundances of striped surfperch declined rapidly when and where dense forests of giant kelp appeared, but showed little change where Macrocystis was continuously absent over the 8 y period of study. Abundances of adult black surperch, which increased following the appearance of giant kelp, were lagged by >1 y because the dynamical response involved enhanced local recruitment. No change in abundance of black surfperch populations was evident at areas without giant kelp.The mechanism by which giant kelp altered the dynamics of the surfperch involved modification of the assemblage of understory algae used by surfperch as foraging microhabitat. Foliose algae (including Gelidium robustum) were much reduced and turf was greatly enhanced following the appearance of Macrocystis; these two benthic substrata are the favored foraging microhabitat for striped surfperch and black surfperch respectively. Populations of both surfperch species tracked temporal changes in the local availability of their favored foraging microhabitat. Thus, while neither species used Macrocystis directly, temporal and spatial variation in giant kelp indirectly influenced the dynamics of these fishes by altering their foraging base. These results indicate that the dynamics of striped surfperch and black surfperch were governed to a large degree by density-dependent consumer-resource interactions. The present work underscores the predictive value that arises from a knowledge of the mechanisms by which processes operate.  相似文献   

13.
The recovery of giant otter populations after the hunting prohibition and restriction of the pelt trade resulted in more frequent conflicts with fishermen. In this study, fisherman–giant otter conflicts were analyzed in the Uacari Sustainable Development Reserve, where giant otters are accused of interfering with fisheries by eating the fish (predation), frightening the fish away (local interference), and damaging fishing equipment (direct interference). Interference by predation was analyzed by evaluating overlap in fish species consumption between humans (measured by subsistence and commercial catches) and giant otters. The giant otter diet was assessed from fecal samples, and the human diet through questionnaires. Local and direct interferences were analyzed through fish samples using gillnets and comparing capture efficiency with and without giant otters’ presence. The overlap between human and giant otter diets was low (0.37), varied seasonally, and was smaller in the low water (0.24) than in the high water period (0.60), when both species tend to be more generalists. Overlap between fish species consumed by giant otters and those exploited by commercial fisheries was small (0.34). Giant otter presence during the experimental fishing was low (9.5%), restricted to the high water period, and did not significantly reduce the captures (= 13, = 0.61). The low overlap in diet may be a result of differences in preferences and fishing strategies. The conflict between giant otters and fishermen is greater in the high water period, when the income of the fisheries decreases; however, the conflict seems to be mainly motivated by the resident's prejudice against giant otters.  相似文献   

14.
Nocturnal predation of king penguins by giant petrels on the Crozet Islands   总被引:4,自引:4,他引:0  
Dietary segregation of sympatric seabirds in the Southern Ocean is partly linked to differences in their foraging techniques. We have investigated the activity of giant petrels (Macronectes spp.) in a king penguin (Aptenodytes patagonicus) colony day and night during the austral winter of 2001 on the Crozet Islands. Using an automatic identification system and an infrared video camera, we followed 15 petrels tagged with micro transponders. Our data show that giant petrels predate king penguin chicks during the night. The activity of giant petrels is even slightly higher during nighttime than during the day. In addition, our data show a higher nocturnal activity by northern giant petrels (M. halli) than by southern giant petrels (M. giganteus). These unexpected results raise questions concerning visual adaptations to nocturnal foraging in giant petrels and their potential impact on the sleep, vigilance and crèching behavior of penguin chicks.  相似文献   

15.
Zebrafish (Danio rerio) have become an important model organism for developmental biology and human health studies. We recently demonstrated differential growth patterns between the zebrafish and a close relative the giant danio (Danio aequipinnatus), where the giant danio appears to exhibit indeterminate growth similar to most fish species important for commercial production, while zebrafish exhibit determinate growth more similar to mammalian growth. This study focused on evaluating muscle growth regulation differences in adult zebrafish and giant danio utilizing growth hormone treatment as a mode of growth manipulation. Growth hormone treatment resulted in increased overall growth in giant danio, but failed to increase growth in the zebrafish. Growth hormone treatment increased muscle IGF-I and GHrI gene expression in both species, but to a larger degree in the giant danio. In contrast, zebrafish exhibited a larger increase in IrA and IGF-IrB gene expression in muscle in response to GH treatment. In addition muscle myostatin levels were differentially regulated between the two species, with a down-regulation observed in rapidly growing, GH-treated giant danio and an up-regulation in zebrafish not actively growing in response to GH. This is the first report of differential expression of growth-regulating genes in closely related fish species exhibiting opposing growth paradigms. These results further support the role that the zebrafish and giant danio can play important model organisms for determinate and indeterminate growth.  相似文献   

16.
Summary This study provides neuroanatomical and electrophysiological evidence that an arrangement of three dorsal giant fibers, functioning as two distinct and dichotomous conduction pathways, has been evolutionarily conserved within the three major orders of aquatic and terrestrial oligochaetes. The medial giant fiber (MGF), activated by afferents of anterior segments, initiates anterior shortening; whereas, the two lateral giant fibers (LGFs), activated in synchrony by afferents of posterior segments, initiate a different response (usually tail withdrawal). Notwithstanding these common features, the design and function of LGF systems differ considerably in aquatic and terrestrial groups. In posterior segments of aquatic species, LGFs are disproportionately larger and conduct faster than MGFs. This contrasts with posterior segments of earthworms in which LGFs are smaller and conduct slower than MGFs.In addition, in aquatic tubificids, a single LGF spike is sufficient to evoke rapid and complete tail withdrawal, whereas a pair of closely-spaced LGF spikes are needed to elicit posterior shortening in earthworms. The graded nature of earthworm escape seems appropriate for worms that burrow in relatively hard substrates and may frequently encounter inanimate stimuli that evoke meaningless giant fiber spiking. On the other hand, the all-or-none nature of the tubificid escape appears advantageous for relatively sedentary worms that are vulnerable to intense predation but reside in aqueous sediments where triggering of giant fiber spikes by non-threatening stimuli is infrequent.Our studies suggest that anatomical and physiological modifications of giant fiber pathways in aquatic and terrestrial worms have occurred during the evolution of oligochaete nervous systems. We hypothesize that differential predation pressures, together with fundamental differences in lifestyle and habitat, have led to this divergence in the structure and function of evolutionarily conserved sets of homologous giant interneurons.Abbreviations HRP horse raddish peroxidase - LGF lateral giant fiber - MGF medial giant fiber - VNC ventral nerve cord  相似文献   

17.
We have tested the effect of a known insect neuromodulator, octopamine, on flight initiation in the cockroach. Using minimally dissected animals, we found that octopamine lowered the threshold for windevoked initiation of flight when applied to either of two major synaptic sites in the flight circuitry: 1) the last abdominal ganglion, where wind-sensitive neurons from the cerci excite dorsal giant interneurons, or 2) the metathoracic ganglion, where the dorsal giant interneurons activate interneurons and motoneurons which are involved in producing the rhythmic flight motor pattern in the flight muscles (Fig. 2).Correlated with this change in flight initiation threshold, we found that octopamine applied to the last abdominal ganglion increased the number of action potentials produced by individual dorsal giant interneurons when recruiting the cereal wind-sensitive neurons with wind puffs (Figs. 3, 4, 5) or with extracellular stimulation of their axons (Fig. 6). Octopamine increases the excitability of the giant interneurons (Figs. 7, 8). Also, when we stimulated individual dorsal giant interneurons intracellularly, the number of action potentials needed to initiate flight was reduced when octopamine was applied to the metathoracic ganglion (Fig. 9).Abbreviations EMG electromyogram - dGIs dorsal giant interneurons - GI giant interneuron - A6 sixth abdominal ganglion - T3 third thoracic ganglion - EPSP excitatory postsynaptic potential  相似文献   

18.
Summary The front legs of the whip spider H. elaphus are strongly modified to serve sensory functions. They contain several afferent nerve fibers which are so large that their action potentials can be recorded externally through the cuticle. In recordings from the tarsus 7 different types of afferent spikes were identified; 6 additional types of afferent spikes were discriminated in recordings from the tibia and femur. Most of the recorded potentials could be attributed to identifiable neurons serving different functions. These neurons include giant interneurons and giant fibers from diverse mechanoreceptors such as slit sense organs, trichobothria, and a joint receptor. In the present report these neurons are characterized using electrophysiological and histological methods. Their functions are discussed in the context of the animal's behavior.Abbreviations GN giant neuron - S segment  相似文献   

19.
20.
Most northern giant petrels Macronectes halli arrived before southern giant petrels Macronectes giganteus at a seal carcass at sub-Antarctic Marion Island and left earlier. In interspecific interactions, southern giant petrels initiated and dominated encounters. Level of aggression may be related to the degree of satiation. Dominance by southern giant petrels at seal carcasses may help explain why northern giant petrels commence breeding earlier than southern giant petrels in sympatric situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号