共查询到20条相似文献,搜索用时 15 毫秒
1.
Aba Aldrovandi Enrico Marsili Loredana Stante Patrizia Paganin Silvia Tabacchioni Andrea Giordano 《Bioresource technology》2009,100(13):3252-3260
Microbial fuel cells (MFCs) fed with wastewater are currently considered a feasible strategy for production of renewable electricity. 相似文献
2.
Variation in the dehydrogenase (DH) activity and its simultaneous influence on hydrogen (H2) production, substrate degradation rate (SDR) and volatile fatty acid (VFA) generation was investigated with respect to varying poised potential in single chambered membrane-less microbial electrolysis cell (MEC) using anaerobic consortia as biocatalyst. Poised potential showed significant influence on H2 production and DH activity. Maximum H2 production was observed at 1.0 V whereas the control system showed least H2 production among the experimental variations studied. DH activity was observed maximum at 0.6 V followed by 0.8, 0.9 and 1.0 V, suggests the influence of poised potential on the microbial metabolism. Almost complete degradation of substrate was observed in all the experimental conditions studied irrespective of the applied potential. Experimental data was also analysed employing multiple regression analysis and 3D-surface plots to find out the best theoretical poised potential for maximum H2 production and DH activity. 相似文献
3.
4.
Guangyi Zhang Hanmin Zhang Cuiya Zhang Guoquan Zhang Fenglin Yang Guangen Yuan Fan Gao 《Process Biochemistry》2013,48(5-6):893-900
In this study, a single chamber microbial fuel cell (MFC) with a rotating biocathode is developed to simultaneously remove chemical oxygen demand (COD) and nitrogen accompanying current production. Under continuous regime with a feeding COD/N ratio of 5:1, removal efficiencies of total organic carbon (TOC) and total nitrogen (TN) were 85.7 ± 7.4% and 91.5 ± 7.2%, respectively, and a maximum power output of 585 mW m?3 was yielded. In the batch tests, TN removal efficiencies for closed/open circuit were 82.1 ± 0.5% and 59.4 ± 3.3%, respectively. Cyclic voltammetry measurements demonstrated that the biocathode could efficiently catalyze nitrate reduction reaction. Autotrophic denitrification facilitated nitrogen removal using the electrode as electron donor. 16S rRNA-denaturing gradient gel electrophoresis (DGGE) was employed for community fingerprinting. At the biocathode the bacteria involved in nitrogen cycle predominated, of which the denitrifying bacteria were closely similar to Acidovorax sp. and/or Delftia sp. They were affiliated with the family Comamondaceae. The combination of rotating biological contactors with MFCs derives a promising opportunity for wastewater treatment with a low cost and high quality effluent. 相似文献
5.
Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC) 总被引:1,自引:0,他引:1
Strik DP Terlouw H Hamelers HV Buisman CJ 《Applied microbiology and biotechnology》2008,81(4):659-668
Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel
cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner.
This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected
algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The
developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance
of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by
reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment
of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also
focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar
to the energy present in the outcoming valuable products. 相似文献
6.
Biodiesel production through transesterification of lipids generates large quantity of biodiesel waste (BW) containing mainly glycerin. BW can be treated in various ways including distillation to produce glycerin, use as substrate for fermentative propanediol production and discharge as wastes. This study examined microbial fuel cells (MFCs) to treat BW with simultaneous electricity generation. The maximum power density using BW was 487 ± 28 mW/m2 cathode (1.5 A/m2 cathode) with 50 mM phosphate buffer solution (PBS) as the electrolyte, which was comparable with 533 ± 14 mW/m2 cathode obtained from MFCs fed with glycerin medium (COD 1400 mg/L). The power density increased from 778 ± 67 mW/m2 cathode using carbon cloth to 1310 ± 15 mW/m2 cathode using carbon brush as anode in 200 mM PBS electrolyte. The power density was further increased to 2110 ± 68 mW/m2 cathode using the heat-treated carbon brush anode. Coulombic efficiencies (CEs) increased from 8.8 ± 0.6% with carbon cloth anode to 10.4 ± 0.9% and 18.7 ± 0.9% with carbon brush anode and heat-treated carbon brush anode, respectively. 相似文献
7.
8.
Manuel A. Rodrigo Pablo Cañizares Hugo GarcíaJose J. Linares Justo Lobato 《Bioresource technology》2009,100(20):4704-4710
In this work, it has been studied the production of electricity and the oxidation of the pollutants contained in a synthetic wastewater fed with glucose and peptone of soybean as carbon sources, using a mediator-less microbial fuel cell (MFC). Special attention has been paid to the acclimation stage, in which it was found that with high hydraulic and solid retention times it is possible to obtain a very efficient process with a 90% COD removal and practically total conversion of COD into electricity (considering the typical stoichiometric yield of heterotrophic biomass). The influence of concentration sludge was studied working with three different amounts of suspended solids, from 120 to 14000 mg. The maximum power density increased exponentially with the concentration sludge from 2.1 mW m−2 to 11 mW m−2 at the highest concentration sludge. More over, the percentage of the influent COD used to produce electricity was higher than 100% when the highest sludge concentration was used. This was explained taking into account the endogenous metabolism of micro-organisms presented in the system. 相似文献
9.
Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell 总被引:1,自引:0,他引:1
Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m3 H2/m3/d (based on the MEC volume), and a yield of 33.2 mmol H2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H2/g cellulose, with a total hydrogen production rate of 0.24 m3 H2/m3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input. 相似文献
10.
Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(8) cfu ml-1) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aerogiunosa showed considerable growth, E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition. 相似文献
11.
Pentachlorophenol (PCP) was more rapidly degraded in acetate and glucose-fed microbial fuel cells (MFCs) than in open circuit controls, with removal rates of 0.12 ± 0.01 mg/Lh (14.8 ± 1.0 mg/g-VSS-h) in acetate-fed, and 0.08 ± 0.01 mg/L h (6.9 ± 0.8 mg/g-VSS-h) in glucose-fed MFCs, at an initial PCP concentration of 15 mg/L. A PCP of 15 mg/L had no effect on power generation from acetate but power production was decreased with glucose. Coulombic balances indicate the predominant product was electricity (16.1 ± 0.3%) in PCP-acetate MFCs, and lactate (19.8 ± 3.3%) in PCP-glucose MFCs. Current generation accelerated the removal of PCP and co-substrates, as well as the degradation products in both PCP-acetate and PCP-glucose reactors. While 2,3,4,5-tetrachlorophenol was present in both reactors, tetrachlorohydroquinone was only found in PCP-acetate MFCs. These results demonstrate PCP degradation and power production were affected by current generation and the type of electron donor provided. 相似文献
12.
Kuntke P Geleji M Bruning H Zeeman G Hamelers HV Buisman CJ 《Bioresource technology》2011,102(6):4376-4382
Ammonium recovery using a two chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by DC-voltammetry were higher than 6 A/m2 for both operated MFCs. Also continuous operation at lower external resistance (250 Ω) showed an increased current density (0.9 A/m2). Effective ammonium recovery can be achieved by migrational ion flux through the cation exchange membrane to the cathode chamber, driven by the electron production from degradation of organic substrate. The charge transport was proportional to the concentration of ions. Nonetheless, a concentration gradient will influence the charge transport. Furthermore, a charge exchange process can influence the charge transport and therefore the recovery of specific ions. 相似文献
13.
A medium-scale (0.77 l) air-cathode, brush-anode microbial fuel cell (MFC) operated in fed-batch mode using xylose (20 mM) generated a maximum power density of 13 +/- 1 W/m(3) (673 +/- 43 mW/m(2)). Xylose was rapidly removed (83.5%) within 8 h of a 60-h cycle, with 42.1% of electrons in intermediates (8.5 +/- 0.2 mM acetate, 5.9 +/- 0.01 mM ethanol, 4.3 +/- 0.1 mM formate, and 1.3 +/- 0.03 mM propionate), 9.1% captured as electricity, 16.1% in the remaining xylose, and 32.7% lost to cell storage, biomass, and other processes. The final Coulombic efficiency was 50%. At a higher initial xylose concentration (54 mM), xylose was again rapidly removed (86.9% within 24 h of a 116-h cycle), intermediates increased in concentration (18.4 +/- 0.4 mM acetate, 7.8 +/- 0.4 mM ethanol and 2.1 +/- 0.2 mM propionate), but power was lower (5.2 +/- 0.4 W/m(3)). Power was increased by operating the reactor in continuous flow mode at a hydraulic retention time of 20 h (20 +/- 1 W/m(3)), with 66 +/- 1% chemical oxygen demand removal. These results demonstrate that electricity generation is sustained over a cycle primarily by stored substrate and intermediates formed by fermentation and that the intermediates produced vary with xylose loading. 相似文献
14.
Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature 总被引:3,自引:0,他引:3
The release of root exudates into the rhizosphere is known to enhance soil biological activity and alter microbial community structure. To assess whether root exudates also stimulated litter decomposition, in a rhizosphere model system we continuously injected solutions of glucose, malate or glutamate through porous Rhizon® soil solution samplers into the soil at rhizosphere concentrations. The effect of these substances on the decomposition of 14C-labelled Lolium perenne shoot residues present in the soil was evaluated by monitoring 14CO2 evolution at either 15°C or 25°C. The incorporation of the 14C into the microbial biomass and appearance in the dissolved organic matter (DOM) pool was estimated after 32 d incubation. The presence of malate and glutamate increased the mineralization of L. perenne residues by approximately 20% relative to the soil without their addition at 15°C, however, no significant effects on residue decomposition were observed at 25°C. The incorporation of the 14C-label into the microbial biomass and DOM pool was not affected by the addition of either glucose, malate or glutamate. Although nearly the same amount of L. perenne residues were mineralized at either temperature after 32 d, less 14C was recovered in the microbial biomass and DOM pools at 25°C compared to 15°C. Alongside other results, this suggests that the rate of microbial turnover is greater at 25°C compared to 15°C. We conclude that the addition of labile root exudate components to the rhizosphere induced a small but significant increase on litter decomposition but that the magnitude of this effect was regulated by temperature. 相似文献
15.
The aim of this experiment was to study the effect of living roots on soil carbon metabolism at different decomposition stages
during a long-term incubation. Plant material labelled with 14C and 15N was incubated in two contrasting soils under controlled laboratory conditions, over two years. Half the samples were cropped
with wheat (Triticum aestivum) 11 times in succession. At earing time the wheat was harvested, the roots were extracted from the soil and a new crop was
started. Thus the soils were continuously occupied by active root systems. The other half of the samples was maintained bare,
without plants under the same conditions. Over the 2 years, pairs of cropped and bare soils were analysed at eight sampling
occasions (total-, plant debris-, and microbial biomass-C and -14C). A five compartment (labile and recalcitrant plant residues, labile microbial metabolites, microbial biomass and stabilised
humified compounds) decomposition model was fitted to the labelled and soil native organic matter data of the bare and cropped
soils. Two different phases in the decomposition processes showed a different plant effect. (1) During the initial fast decomposition
stage, labile 14C-material stimulated microbial activities and N immobilisation, increasing the 14C-microbial biomass. In the presence of living roots, competition between micro-organisms and plants for inorganic N weakly
lowered the measured and predicted total-14C mineralisation and resulted in a lower plant productivity compared to subsequent growths. (2) In contrast, beyond 3–6 months,
when the labile material was exhausted, during the slow decomposition stage, the presence of living roots stimulated the mineralisation
of the recalcitrant plant residue-14C in the sandy soil and of the humified-14C in the clay soil. In the sandy soil, the presence of roots also substantially stimulated decomposition of old soil native
humus compounds. During this slow decomposition stage, the measured and predicted plant induced decrease in total-14C and -C was essentially explained by the predicted decrease in humus-14C and -C. The 14C-microbial biomass (MB) partly decayed or became inactive in the bare soils, whereas in the rooted soils, the labelled MB
turnover was accelerated: the MB-14C was replaced by unlabelled-C from C derived from living roots. At the end of experiment, the MB-C in the cropped soils was
2.5–3 times higher than in the bare soils. To sustain this biomass and activity, the model predicted a daily root derived
C input (rhizodeposition), amounting to 5.4 and 3.2% of the plant biomass-C or estimated at 46 and 41% of the daily net assimilated
C (shoot + root + rhizodeposition C) in the clay and sandy soil, respectively.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
16.
Anaerobic bioenergy production processes including fermentative biohydrogen (BioH2), anaerobic digestion (AD) and bioelectrochemical system have been investigated for converting municipal waste or various biomass feedstock to useful energy carriers. However, the performance of a microbial fuel cell (MFC) fed on the effluent from a two-stage biogas production process has not yet been investigated extensively in continuous reactor operation on complex substrates. In this study we have investigated the extent to which a microbial fuel cell (MFC) can reduce COD and recover further energy from the effluent of a two-stage biohydrogen and biomethane system. The performance of a four-module tubular MFC was determined at six different organic loadings (0.036–6.149 g sCOD L−1 d−1) in terms of power generation, COD removal efficiency, coulombic efficiency (CE) and energy conversion efficiency (ECE). A power density of 3.1 W m−3 was observed at the OLR = 0.572 g sCOD L−1 d−1, which resulted in the highest CE (60%) and ECE (0.8%), but the COD removal efficiency decreased at higher organic loading rates (35.1–4.4%). The energy recovery was 92.95 J L−1 and the energy conversion efficiency, based on total influent COD was found to be 0.48–0.81% at 0.572 g sCOD L−1 d−1. However, the energy recovery by the MFC is only reported for a four-module reactor and improved performance can be expected with an extended module count, as chemical energy remained available for further electrogenesis. 相似文献
17.
Composition and distribution of internal resistance in three types of microbial fuel cells 总被引:3,自引:0,他引:3
High internal resistance is a key problem limiting the power output of the microbial fuel cell (MFC). Therefore, more knowledge
about the internal resistance is essential to enhance the performance of the MFC. However, different methods are used to determine
the internal resistance, which makes the comparison difficult. In this study, three different types of MFCs were constructed
to study the composition and distribution of internal resistance. The internal resistance (R
i) is partitioned into anodic resistance (R
a), cathodic resistance (R
c), and ohmic resistance () according to their origin and the design of the MFCs. These three resistances were then evaluated by the “current interrupt”
method and the “steady discharging” method based on the proposed equivalent circuits for MFCs. In MFC-A, MFC-B, and MFC-C,
the R
i values were 3.17, 0.35, and 0.076 Ω m2, the values were 2.65, 0.085, and 0.008 Ω m2, the R
a values were 0.055, 0.115, and 0.034 Ω m2, and the R
c values were 0.466, 0.15, and 0.033 Ω m2, respectively. For MFC-B and MFC-C, the remarkable decrease in R
i compared with the two-chamber MFC was mainly ascribed to the decline in and R
c. In MFC-C, the membrane electrodes’ assembly lowered the ohmic resistance and facilitated the mass transport through the
anode and cathode electrodes, resulting in the lowest R
i among the three types. 相似文献
18.
Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization 总被引:1,自引:0,他引:1
Reducing the inner resistances is crucial for the enhancement of hydrogen generation in microbial electrolysis cells (MECs). This study demonstrates that the optimization of the anode arrangement is an effective strategy to reduce the system resistances. By changing the normal MEC configuration into a stacking mode, namely separately placing the contacted anodes from one side to both sides of cathode in parallel, the solution, biofilm and polarization resistances of MECs were greatly reduced, which was also confirmed with electrochemical impedance spectroscopy analysis. After the anode arrangement optimization, the current and hydrogen production rate (HPR) of MEC could be enhanced by 72% and 118%, reaching 621.3 ± 20.6 A/m3 and 5.56 m3/m3 d respectively, under 0.8 V applied voltage. A maximum current density of 1355 A/m3 with a HPR of 10.88 m3/m3 d can be achieved with 1.5 V applied voltage. 相似文献
19.
Puig S Serra M Vilar-Sanz A Cabré M Bañeras L Colprim J Balaguer MD 《Bioresource technology》2011,102(6):4462-4467
Nitrification to nitrite (nitritation process) followed by reduction to dinitrogen gas decreases the energy demand and the carbon requirements of the overall process of nitrogen removal. This work studies autotrophic nitrite removal in the cathode of microbial fuel cells (MFCs). Special attention was paid to determining whether nitrite is used as the electron acceptor by exoelectrogenic bacteria (biologic reaction) or by graphite electrodes (abiotic reaction). The results demonstrated that, after a nitrate pulse at the cathode, nitrite was initially accumulated; subsequently, nitrite was removed. Nitrite and nitrate can be used interchangeably as an electron acceptor by exoelectrogenic bacteria for nitrogen reduction from wastewater while producing bioelectricity. However, if oxygen is present in the cathode chamber, nitrite is oxidised via biological or electrochemical processes. The identification of a dominant bacterial member similar to Oligotropha carboxidovorans confirms that autotrophic denitrification is the main metabolism mechanism in the cathode of an MFC. 相似文献
20.
《Enzyme and microbial technology》2013,53(5):339-344
In this study, a bacterial strain, Lysinibacillus sphaericus which is relatively new in the vast list of biocatalysts known to produce electricity has been tested for its potential in power production. It is cited from the literature that the organism is deficient in some sugar or polysaccharide processing enzymes and thus is tested for its ability to utilize substrates mainly rich in protein components like beef extract and with successive production of electricity. The particular species has been found to generate a maximum power density of 85 mW/m2 and current density of ≈270 mA/m2 using graphite felt as electrode. The maximum Open Circuit Voltage and current has been noted as 0.7 Vand 0.8 mA during these operational cycles. Cyclic voltammetry studies indicate the presence of some electroactive compounds which can facilitate electron transfer from bacteria to electrode. The number of electrogens able to generate electricity in mediator free conditions are few, and the study introduces more divergence to that population. Substrate specificity and electricity generation efficacy of the strain in treating wastewater, specially rich in protein content has been reported in the study. As the species has been found to be efficient in utilizing proteinaceous material, the technique can be useful to treat specific type of wastewaters like wastewater from slaughterhouses or from meat packaging industry. Treating them in a more economical way which generates electricity as a outcome must be preferred over the conventional aerobic treatments. Emphasizing on substrate specificity, the study introduces this novel Lysinibacillus strain as a potent biocatalyst and its sustainable role in MFC application for bioenergy generation. 相似文献