首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of beta-purothionin, a small basic and antimicrobial protein from the endosperm of wheat seeds, with multilamellar vesicles of dimyristoylphosphatidylglycerol (DMPG) was investigated by (31)P solid-state NMR and infrared spectroscopy. NMR was used to study the organization and dynamics of DMPG in the absence and presence of beta-purothionin. The results indicate that beta-purothionin does not induce the formation of nonlamellar phases in DMPG. Two-dimensional exchange spectroscopy shows that beta-purothionin decreases the lateral diffusion of DMPG in the fluid phase. Infrared spectroscopy was used to investigate the perturbations, induced by beta-purothionin, of the polar and nonpolar regions of the phospholipid bilayers. At low concentration of beta-purothionin, the temperature of the gel-to-fluid phase transition of DMPG increases from 24 degrees C to ~33 degrees C, in agreement with the formation of electrostatic interactions between the cationic protein and the anionic phospholipid. At higher protein concentration, the lipid transition is slightly shifted toward lower temperature and a second transition is observed below 20 degrees C, suggesting an insertion of the protein in the hydrophobic core of the lipid bilayer. The results also suggest that the presence of beta-purothionin significantly modifies the lipid packing at the surface of the bilayer to increase the accessibility of water molecules in the interfacial region. Finally, orientation measurements indicate that the alpha-helices and the beta-sheet of beta-purothionin have tilt angles of ~60 degrees and 30 degrees, respectively, relative to the normal of the ATR crystal.  相似文献   

2.
A Muga  H H Mantsch  W K Surewicz 《Biochemistry》1991,30(10):2629-2635
Apocytochrome c, the heme-free precursor of cytochrome c, has been used extensively as a model to study molecular aspects of posttranslational translocation of proteins across membranes. In this report, we have used Fourier-transform infrared spectroscopy to gain further insight into the mechanism of apocytochrome c interaction with membrane phospholipids. Association of apocytochrome c with model membranes containing the acidic lipid dimyristoylphosphatidylglycerol (DMPG) as a single component results in a drastic perturbation of phospholipid structure, at the level of both the acyl chains and the interfacial carbonyl groups. However, in a binary mixture of DMPG with acyl chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54), the perturbing effect of the protein on the acidic phospholipid is greatly attenuated. In such a membrane with mixed lipids, the physical properties of the DMPG and DMPC components are affected in a similar fashion, indicating that apocytochrome c does not induce any significant segregation or lateral-phase separation of acidic and zwitterionic lipids. Analysis of the apocytochrome c spectrum in the amide I region reveals that binding to phospholipids causes considerable changes in the secondary structure of the protein, the final conformation of which depends on the lipid to protein ratio. In the presence of a large excess of DMPG, apocytochrome c undergoes a transition from an essentially unordered conformation in solution to an alpha-helical structure. However, in complexes of lower lipid to protein ratios (less than or equal to approximately 40:1), infrared spectra are indicative of an extended, intermolecularly hydrogen-bonded beta-sheet structure. The latter is suggestive of an extensive aggregation of the membrane-associated protein.  相似文献   

3.
Vinchurkar MS  Chen KH  Yu SS  Kuo SJ  Chiu HC  Chien SH  Chan SI 《Biochemistry》2004,43(42):13283-13292
The particulate methane monooxygenase (pMMO) of Methylococcus capsulatus (Bath) is an integral membrane protein that catalyzes the conversion of methane to methanol. To gain some insight into the structure-reactivity pattern of this protein, we have applied attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to investigate the secondary structure of the pMMO. The results showed that ca. 60% of the amino acid residues were structured as alpha-helices. About 80% of the peptide residues were estimated to be protected from the amide (1)H/(2)H exchange during a 21 h exposure to (2)H(2)O. In addition, a significant portion of the protein was shown to be sequestered within the bilayer membrane, protected from trypsin proteolysis. The ATR-FTIR difference spectrum between the intact and the proteolyzed pMMO-enriched membranes revealed absorption peaks only in the spectral regions characteristic for unordered and beta-structures. These observations were corroborated by amino acid sequence analysis of the pMMO subunits using the program TransMembrane topology with a Hidden Markov Model: 15 putative transmembrane alpha-helices were predicted. Finally, an attempt was also made to model the three-dimensional folding of the protein subunits from the sequence using the Protein Fold Recognition Server based on the 3D Position Specific Scoring Matrix Method. The C-terminal solvent-exposed sequence (N255-M414) of the pMMO 45 kDa subunit was shown to match the beta-sheet structure of the multidomain cupredoxins. We conclude on the basis of this ATR-FTIR study that pMMO is an alpha-helical bundle with ca. 15 transmembrane alpha-helices embedded in the bilayer membrane, together with a water-exposed domain comprised mostly of beta-sheet structures similar to the cupredoxins.  相似文献   

4.
Ramakrishnan M  Jensen PH  Marsh D 《Biochemistry》2006,45(10):3386-3395
Alpha-synuclein is a presynaptic protein, the A53T and A30P mutants of which are linked independently to early-onset familial Parkinson's disease. The association of wild-type alpha-synuclein with lipid membranes was characterized previously by electron spin resonance (ESR) spectroscopy with spin-labeled lipids [Ramakrishnan, M., Jensen, P. H., and Marsh, D. (2003) Biochemistry 42, 12919-12926]. Here, we study the interaction of the A53T and A30P alpha-synuclein mutants and a truncated form that lacks the acidic C-terminal domain with phosphatidylglycerol bilayer membranes, using anionic phospholipid spin labels. The strength of the interaction with phosphatidylglycerol membranes lies in the order: wild type approximately truncated > A53T > A30P > fibrils approximately 0, and only the truncated form interacts with phosphatidylcholine membranes. The selectivity of the interaction of the mutant alpha-synucleins with different spin-labeled lipid species is reduced considerably, relative to the wild-type protein, whereas that of the truncated protein is increased. Polarized infrared (IR) spectroscopy is used to study the interactions of the wild-type and truncated proteins with aligned lipid membranes and additionally to characterize the fibrillar form. Wild-type alpha-synuclein is natively unfolded in solution and acquires secondary structure upon binding to membranes containing phosphatidylglycerol. Up to 30-40% of the amide I band intensity of the membrane-bound wild-type and truncated proteins is attributable to beta-sheet structure, at the surface densities used for IR spectroscopy. The remainder is alpha-helix and residual unordered structure. Fibrillar alpha-synuclein contains 62% antiparallel beta-sheet and is oriented on the substrate surface but does not interact with deposited lipid membranes. The beta-sheet secondary-structural elements of the wild-type and truncated proteins are partially oriented on the surface of membranes with which they interact.  相似文献   

5.
The snake venom protein echistatin is a potent inhibitor of platelet aggregation. The inhibitory properties of echistatin have been attributed to the Arg-Gly-Asp sequence at residues 24-26. In this paper, sequence-specific nuclear magnetic resonance assignments are presented for the proton resonances of echistatin in water. The single-chain protein contains 49 amino acids and 4 cystine bridges. All of the backbone amide, C alpha H, and side-chain resonances, except for the eta-NH of the arginines, have been assigned. The secondary structure of the protein was characterized from the pattern of nuclear Overhauser enhancements, from the identification of slowly exchanging amide protons, from 3JC alpha H-NH coupling constants, and from circular dichroism studies. The data suggest that the secondary structure consists of a type I beta-turn, a short beta-hairpin, and a short, irregular, antiparallel beta-sheet and that the Arg-Gly-Asp sequence is in a flexible loop connecting two strands of the distorted antiparallel beta-sheet.  相似文献   

6.
R A Copeland  T G Spiro 《Biochemistry》1987,26(8):2134-2139
Raman intensities obtained with UV laser excitation at 223, 218, 204, 200, and 192 nm are reported for the amide I, II, III, and II' bands of random-coil polylysine. The excitation profiles show enhancement via the pi-pi electronic transition, at approximately 190 nm. Enhancement for amide I is weak, however, and most of the intensity can be accounted for by preresonance with a deeper UV transition at approximately 165 nm. The amide II' band dominates the spectrum in D2O, consistent with the suggestion that the main distortion coordinate in the pi-pi excited state is the stretching of the C-N peptide bond. Amide II intensities with 200- and 192-nm excitation are reported for several proteins. The previously reported negative linear correlation with alpha-helix content (due to Raman hypochromism in the alpha-helices) is found not to apply to proteins with high beta-sheet content when the excitation wavelength is 200 nm. Much higher intensities are seen for these proteins and are attributed to a red shift of the pi-pi absorption for the beta-structure. A linear correlation with alpha-helix content is found for excitation of 192 nm, which corresponds to an isosbestic point of the beta-sheet and random-coil absorption bands. Characteristic amide II Raman cross sections are derived for alpha-helical, beta-sheet, and random-coil elements and are used to determine secondary structure for alpha 1- and beta-purothionin, by use of amide II intensities with 200- and 192-nm excitation. The results are in good agreement with a previous determination based on amide I band deconvolution in off-resonance Raman spectra.  相似文献   

7.
As a first step to determine the folding pathway of a protein with an alpha/beta doubly wound topology, the 1H, 13C, and 15N backbone chemical shifts of Azotobacter vinelandii holoflavodoxin II (179 residues) have been determined using multidimensional NMR spectroscopy. Its secondary structure is shown to contain a five-stranded parallel beta-sheet (beta2-beta1-beta3-beta4-beta5) and five alpha-helices. Exchange rates for the individual amide protons of holoflavodoxin were determined using the hydrogen exchange method. The amide protons of 65 residues distributed throughout the structure of holoflavodoxin exchange slowly at pH* 6.2 [kex < 10(-5) s(-1)] and can be used as probes in future folding studies. Measured exchange rates relate to apparent local free energies for transient opening. We propose that the amide protons in the core of holoflavodoxin only exchange by global unfolding of the apo state of the protein. The results obtained are discussed with respect to their implications for flavodoxin folding and for modulation of the flavin redox potential by the apoprotein. We do not find any evidence that A. vinelandii holoflavodoxin II is divided into two subdomains based on its amide proton exchange rates, as opposed to what is found for the structurally but not sequentially homologous alpha/beta doubly wound protein Che Y.  相似文献   

8.
R E Klevit  E B Waygood 《Biochemistry》1986,25(23):7774-7781
Sequence-specific resonance assignments of the 1H NMR spectrum of the 85-residue histidine-containing phosphocarrier protein (HPr) are complete [Klevit, R. E., Drobny, G. P., & Waygood, E. B. (1986) Biochemistry (first paper of three in this issue)]. Additional side-chain assignments have been made with long-range coherence transfer experiments [Klevit, R. E., & Drobny, G. P. (1986) Biochemistry (second paper of three in this issue)]. In this paper, the NMR assignments were used to determine the secondary structure and the tertiary folding of HPr in solution. The secondary structural elements of the protein were determined by visual inspection of the pattern of nearest-neighbor nuclear Overhauser effects (NOEs) and the presence of persistent amide resonances. Escherichia coli HPr consists of four beta-strands, three alpha-helices, four reverse turns, and several regions of extended backbone structure. Long-range NOEs, especially among side-chain protons, were used to determine the tertiary structure of the protein by use of the secondary structural components. The four beta-strands form a single antiparallel beta-pleated sheet. The hydrophobic faces of the alpha-helices interact to form a hydrophobic core and sit above the hydrophobic face of the beta-sheet, forming an open-face beta-sheet sandwich structure. The active site histidine, His-15, is on a short kinked segment of backbone that is accessible to the solvent. The positively charged phosphorylation site (His-15 and Arg-17) interacts with the negatively charged carboxyl terminus of the protein (Glu-85).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Isotope editing of amide infrared bands not only localises secondary structural elements within the protein but also yields conformational information that is not available from the linear dichroism of aligned samples without isotope editing. The additional information that can be derived on the orientational distribution of alpha-helices in membranes by the combined use of different amide bands and several positions of labelling is presented here. Also, the relationship between the azimuthal orientation of the transition moment and the protein structure is treated explicitly. A comprehensive analysis of the infrared dichroism for beta-sheets and beta-barrels is given here, for the first time. The orientation of the individual transition moments in a beta-sheet that is essential for this analysis is derived for the different amide bands.  相似文献   

10.
Circular dichroism spectra of proteins are sensitive to protein secondary structure. The CD spectra of alpha-rich proteins are similar to those of model alpha-helices, but beta-rich proteins exhibit CD spectra that are reminiscent of CD spectra of either model beta-sheets or unordered polypeptides. The existence of these two types of CD spectra for beta-rich proteins form the basis for their classification as betaI- and betaII-proteins. Although the conformation of beta-sheets is largely responsible for the CD spectra of betaI-proteins, the source of betaII-protein CD, which resembles that of unordered polypeptides, is not completely understood. The CD spectra of unordered polypeptides are similar to that of the poly(Pro)II helix, and the poly(Pro)II-type (P2) structure forms a significant fraction of the unordered conformation in globular proteins. We have compared the beta-sheet and P2 structure contents in beta-rich proteins to understand the origin of betaII-protein CD. We find that betaII-proteins have a ratio of P2 to beta-sheet content greater than 0.4, whereas for betaI-proteins this ratio is less than 0.4. The beta-sheet content in betaI-proteins is generally higher than that in betaII-proteins. The origin of two classes of CD spectra for beta-rich proteins appears to lie in their relative beta-sheet and P2 structure contents.  相似文献   

11.
A Fourier transform infrared spectrometer has been interfaced with a surface balance and a new external reflection infrared sampling accessory, which permits the acquisition of spectra from protein monolayers in situ at the air/water interface. The accessory, a sample shuttle that permits the collection of spectra in alternating fashion from sample and background troughs, reduces interference from water vapor rotation-vibration bands in the amide I and amide II regions of protein spectra (1520-1690 cm-1) by nearly an order of magnitude. Residual interference from water vapor absorbance ranges from 50 to 200 microabsorbance units. The performance of the device is demonstrated through spectra of synthetic peptides designed to adopt alpha-helical, antiparallel beta-sheet, mixed beta-sheet/beta-turn, and unordered conformations at the air/water interface. The extent of exchange on the surface can be monitored from the relative intensities of the amide II and amide I modes. Hydrogen-deuterium exchange may lower the amide I frequency by as much as 11-12 cm-1 for helical secondary structures. This shifts the vibrational mode into a region normally associated with unordered structures and leads to uncertainties in the application of algorithms commonly used for determination of secondary structure from amide I contours of proteins in D2O solution.  相似文献   

12.
THe characteristic feature of the crystal structure of erabutoxin b, a short neurotoxin from Laticauda semifasciata, and alpha-cobratoxin, a long neurotoxin from Naja naja siamensis, is the presence of a triple-stranded antiparallel pleated beta-sheet structure formed by the central and the third peptide loops. In the present study, we have studied the assignment of slowly exchangeable amide protons of Laticauda semifasciata III from L. semifasciata, using nuclear Overhauser effects (NOE) and spin-decoupling methods. The results show that nearly all of the slowly exchangeable amide protons are to be assigned to the back-bone amide protons, involved in the triple-stranded antiparallel pleated beta-sheet structure, indicating that this sheet is stable in 2H2O solution. In contrast, the amide protons in short neurotoxins are readily exchangeable under the same experimental condition, suggesting that long neurotoxins have a more rigid sheet structure than short ones. This rigidity may come from the hydrophobic and hydrogen bond interaction between the central loop and the tail, which is not present in short neurotoxins. Since the functionally important residues are located on this beta-sheet, the different kinetic properties of the neurotoxins are well correlated with the difference in the rigidity of the beta-sheet.  相似文献   

13.
Residue-specific exchange rates of 223 amide protons in free and prodomain-complexed subtilisin were determined in order to understand how the prodomain binding affects the energetics of subtilisin folding. In free subtilisin, amide protons can be categorized according to exchange rate: 74 fast exchangers (rates > or = 1 h(-1)); 52 medium exchangers (rates between 1 h(-1) and 1 day(-1)); 31 slow exchangers (rates between 1 day(-1) and 0.001 day(-1)). The remaining 66 amide proteins did not exchange detectibly over 9 months (k(obs) < year(-1)) and were denoted as core protons. Core residues occur throughout the main structural elements of subtilisin. Prodomain binding results in high protection factors (100-1000) in the central beta-sheet, particularly in the vicinity of beta-strands S5, S6, and S7 and the connecting loops between them. These connecting loops provide the ligands to the cation at metal site B. Overall, prodomain binding seems to facilitate the organization of the entire central beta-sheet and alpha-helix C in the left-handed crossover connection between beta-strands two and three. It also appears to facilitate the isomerization of multiple prolines late in folding, allowing the formation of metal site B. The gain of stability region around site B comes at the cost of stability in regions more distal to prodomain binding: the C-terminal alpha-helix H and the N-terminal alpha-helices A and B. The acceleration of exchange in these regions by prodomain binding reveals an antagonism between the folding intermediate and the full native structure. This antagonism helps to explain why the prodomain is needed to stabilize the folding intermediate as well as why the unfolding of free subtilisin seldom occurs via this intermediate.  相似文献   

14.
The solvent protection of the amide backbone in bovine insulin fibrils was studied by FT-IR spectroscopy. In the mature fibrils, approximately 85 +/- 2% of amide protons are protected. Of those "trapped" protons, a further 25 +/- 2 or 35 +/- 2% is H-D exchanged after incubation for 1 h at 1 GPa and 25 degrees C or 0.1 MPa and 100 degrees C, respectively. In contrast to the native or unfolded protein, fibrils do not H-D exchange upon incubation at 65 degrees C. A complete deuteration of H(2)O-grown fibrils occurs when the beta-sheet structure is reassembled in a 75 wt % DMSO/D(2)O solution. Our findings suggest a densely packed environment around the amide protons involved in the intermolecular beta-sheet motive. In disagreement with the concept of "amyloid fibers as water-filled nanotubes" [Perutz, M. F., et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 5591-5595], elution of D(2)O-grown fibrils with H(2)O is complete, which is reflected by the vanishing of D(2)O bending vibrations at 1214 cm(-)(1). This implies the absence of "trapped water" within insulin fibrils. The rigid conformations of the native and fibrillar insulin contrast with transient intermediate states docking at the fibrils' ends. Room-temperature seeding is accompanied by an accelerated H-D exchange in insulin molecules in the act of docking and integrating with the seeds, proving that the profound structural disruption is the sine qua non of forming an aggregation-competent conformation.  相似文献   

15.
Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structure of 5'-nucleotidase from bull seminal plasma (BSP). Spectra of protein in both D2O and H2O were analyzed by deconvolution and second derivative methods in order to observe the overlapping components of the amide I band. The protein, which is made up of two apparently identical subunits and which contains two zinc atoms, was studied in its native form, in the presence of dithiotreitol (DTT) and after removal of the two zinc atoms by means of nitrilotriacetic acid (NTA). Deconvolved and second derivative spectra of amide I band showed that the native protein contains mostly beta-sheet structure with a minor content of alpha-helix. The quantitative analysis of the amide I components was performed by a curve-fitting procedure which revealed 54% beta-sheet, 18% alpha-helix, 22% beta-turns and 6% unordered structure. The second derivative and deconvolved spectra of amide I band showed that no remarkable changes in the secondary structure of 5'-nucleotidase were induced by either DTT or NTA. These results were confirmed by the curve-fitting analysis where little or no changes occurred in the relative content of amide I components when the protein was treated with DTT or with NTA. Major changes, however, were observed in the thermal denaturation behavior of the protein. The native protein showed denaturation at temperatures between 70 and 75 degrees C, while the maximum of denaturation was observed between 65 and 70 degrees C and between 55 and 60 degrees C in the presence of NTA and DTT, respectively. The results obtained indicate that the two separate subunits of the protein have essentially the same secondary structure as that of the native enzyme.  相似文献   

16.
Eukaryotic nuclear RNA binding proteins share a common sequence motif thought to be implicated in RNA binding. One of the two domains present in A1 hnRNP protein, has been modelled by homology in order to make a prediction of the main features of the RNA binding site. Acylphosphatase (EC 3.6.1.7) was selected as template for the modeling experiment. The predicted RNA binding site is a beta-sheet containing the two RNP consensus sequences as well as lysines and arginines conserved among the family.  相似文献   

17.
The secondary structure of two-electron-reduced Megasphaera elsdenii flavodoxin has been determined by visual, qualitative inspection of the sequential connectivities involving C alpha H, C beta H and NH protons observed in NOESY (two-dimensional nuclear Overhauser enhancement spectroscopy) spectra. Results from an amide proton exchange experiment were used to confirm the secondary structure assignment and to demonstrate the compactness and stability of the protein. After the secondary structure elements were established, the global fold of the protein and the flavin binding site have been determined using nonsequential interresidual NOE connectivities as primary source of information. The secondary structure and the global fold of M. elsdenii and Clostridium MP flavodoxin appeared to be very similar, differences are observed however. M. elsdenii flavodoxin consists of a central parallel beta-sheet including five strands surrounded on both sides by a pair of alpha-helices.  相似文献   

18.
Chicken liver bile acid-binding protein (L-BABP) binds to anionic lipid membranes by electrostatic interactions and acquires a partly folded state [Nolan, V., Perduca, M., Monaco, H., Maggio, B. and Montich, G. G. (2003) Biochim. Biophys. Acta 1611, 98-106]. We studied the infrared amide I′ band of L-BABP bound to dipalmitoylphosphatidylglycerol (DPPG), dimyristoylphosphatidylglycerol (DMPG) and palmitoyloleoylphosphatidylglycerol (POPG) in the range of 7 to 60 °C. Besides, the thermotrophic behaviour of DPPG and DMPG was studied in the absence and in the presence of bound-protein by differential scanning calorimetry (DSC) and infrared spectra of the stretching vibration of methylene and carbonyl groups. When L-BABP was bound to lipid membranes in the liquid-crystalline state (POPG between 7 and 30 °C) acquired a more unfolded conformation that in membranes in the gel state (DPPG between 7 and 30 °C). Nevertheless, this conformational change of the protein in DMPG did not occur at the temperature of the lipid gel to liquid-crystalline phase transition detected by infrared spectroscopy. Instead, the degree of unfolding in the protein was coincident with a phase transition in DMPG that occurs with heat absorption and without change in the lipid order.  相似文献   

19.
Chicken liver bile acid-binding protein (L-BABP) binds to anionic lipid membranes by electrostatic interactions and acquires a partly folded state [Nolan, V., Perduca, M., Monaco, H., Maggio, B. and Montich, G. G. (2003) Biochim. Biophys. Acta 1611, 98-106]. We studied the infrared amide I' band of L-BABP bound to dipalmitoylphosphatidylglycerol (DPPG), dimyristoylphosphatidylglycerol (DMPG) and palmitoyloleoylphosphatidylglycerol (POPG) in the range of 7 to 60 degrees C. Besides, the thermotrophic behaviour of DPPG and DMPG was studied in the absence and in the presence of bound-protein by differential scanning calorimetry (DSC) and infrared spectra of the stretching vibration of methylene and carbonyl groups. When L-BABP was bound to lipid membranes in the liquid-crystalline state (POPG between 7 and 30 degrees C) acquired a more unfolded conformation that in membranes in the gel state (DPPG between 7 and 30 degrees C). Nevertheless, this conformational change of the protein in DMPG did not occur at the temperature of the lipid gel to liquid-crystalline phase transition detected by infrared spectroscopy. Instead, the degree of unfolding in the protein was coincident with a phase transition in DMPG that occurs with heat absorption and without change in the lipid order.  相似文献   

20.
Eukaryotic phosphatidylinositol transfer protein is a ubiquitous multifunctional protein that transports phospholipids between membrane surfaces and participates in cellular phospholipid metabolism during signal transduction and vesicular trafficking. The three-dimensional structure of the alpha-isoform of rat phosphatidylinositol transfer protein complexed with one molecule of phosphatidylcholine, one of its physiological ligands, has been determined to 2.2 A resolution by x-ray diffraction techniques. A single beta-sheet and several long alpha-helices define an enclosed internal cavity in which a single molecule of the phospholipid is accommodated with its polar head group in the center of the protein and fatty acyl chains projected toward the surface. Other structural features suggest mechanisms by which cytosolic phosphatidylinositol transfer protein interacts with membranes for lipid exchange and associates with a variety of lipid and protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号