首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
A method for isolating extracellular glucose oxidase from the fungus Penicillium funiculosum 46.1 using ultrafiltration membranes was developed. Two samples of the enzyme with a specific activity of 914–956 IU were obtained. The enzyme exhibited a high catalytic activity at pH above 6.0. The effective rate constant of glucose oxidase inactivation at pH 2.6 and 16°C was 2.74 × 10–6 s–1. This constant decreased significantly as the pH of the medium increased (4.0–10.0). The temperature optimum for glucose oxidase–catalyzed -D-glucose oxidation was in the range 30–65°C. At temperatures below 30°C, the activation energy for -D-glucose oxidation was 6.42 kcal/mol; at higher temperatures, this parameter was equal to 0.61 kcal/mol. Kinetic parameters of glucose oxidase–catalyzed -D-glucose oxidation depended on the initial concentration of the enzyme in the solution. Glucose oxidase also catalyzed the oxidation of 2-deoxy-D-glucose, maltose, and galactose.  相似文献   

2.
The kinetics and action mechanism of the galactose oxidase from Fusarium graminearum were studied. pH-optimum of the enzyme activity and stability was 7.0, the activity and stability of the galactose oxidase being decreased at any other values of pH. The enzyme is destabilized at acidic pH that is connected with protonization of its ionogenic group with pK 4.7. The temperature optimum of the galactose oxidase is 35 degrees C. When studying the enzyme thermoinactivation, it was found that at temperatures below 30 degrees C the energy of activation of denaturation was about 40 kcal/mole and at temperatures ranging from 30 to 70 degrees C - 13 kcal/mole. On the basis of the data obtained it was concluded that a low-temperature form of the galactose oxidase, possessing a higher energy of activation of denaturation, is more active than a high-temperature form. The value of Km for the enzyme in respect to galactose was 0.19 M, and the value of Vmax = 360 mumole/min per g of the preparation.  相似文献   

3.
The thermal stability of glucose oxidase was studied at temperatures between 50 and 70 degrees C by kinetic and spectroscopic (circular dichroism) methods. The stability of glucose oxidase was shown to depend on the medium pH, protein concentration, and the presence of protectors in the solution. At low protein concentrations (< 15 micrograms/ml) and pH > 5.5, the rate constants kin (s-1) for thermal inactivation of glucose oxidase were high. Circular dichroic spectra suggested an essential role of beta structures in stabilizing the protein globule. At a concentration of 15 micrograms protein/ml, the activation energy Ea of thermal inactivation of glucose oxidase in aqueous solution was estimated at 79.1 kcal/mol. Other thermodynamic activation parameters estimated at 60 degrees C had the following values: delta H = 78.4 kcal/mol, delta G = 25.5 kcal/mol, and delta S = 161.9 entropy units. The thermal inactivation of glucose oxidase was inhibited by KCl, polyethylene glycols, and polyols. Among polyols, the best was sorbitol, which stabilized glucose oxidase without affecting its activity. Ethanol, phenol, and citrate exerted destabilizing effects.  相似文献   

4.
Hoang JV  Gadda G 《Proteins》2007,66(3):611-620
Choline oxidase is a flavin-dependent enzyme that catalyzes the oxidation of choline to glycine-betaine, with oxygen as electron acceptor. Storage at pH 6 and -20 degrees C resulted in a change in the conformation of choline oxidase, which was associated with complete loss of catalytic activity when the enzyme was assayed at pH 6. Incubation of the inactive enzyme at pH values > or = 6.5 and 25 degrees C resulted in a fast and partial reactivation of the enzyme, which occurred with slow onset of steady state during enzymatic turnover. The rate of approaching steady state was independent of the concentrations of choline and enzyme, but increased to a limiting value with increasing pH, defining a pKa value of approximately 7.3 for an unprotonated group required for enzyme activation. Prolonged incubation of the inactive enzyme at pH 6 and temperatures > or = 20 degrees C, at which no hysteretic behavior was observed, resulted in the slow and full recovery of activity over 3 h, associated with a conformational change that reverted the enzyme to the native form. Activation of the enzyme at pH 6 was enthalpy-driven with deltaH(double dagger) and TdeltaS(double dagger) values of approximately 112 kJ mol(-1) and approximately 20 kJ mol(-1) determined at 25 degrees C. These data suggest that freezing the enzyme at low pH induces a localized and reversible conformational change that is associated with the complete and reversible loss of catalytic activity.  相似文献   

5.
Purified mitochondrial malate dehydrogenase isoenzyme (m-MDH) of Toxocara canis muscle presented maximum activity at 48 degrees C. A clear change in slope of the Arrhenius plot was observed. The energy of activation calculated for the catalytic process showed values of 3.2 kcal/mol and 10.5 kcal/mol. Thermal inactivation of m-MDH showed that it is more thermolabile than the s-isoenzyme. The inactivation of the enzyme by heat could be reduced at least in part by the addition of 0.1 mM NADH. The heat denaturation showed to be a first-order process. The rate constant (k) was calculated as being of the order of 5.28 X 10(-4) s-1 at 40 degrees C. The activation energy for the heat inactivation process was 16.45 kcal/mol between 30 degrees C and 40 degrees C and 13.79 kcal/mol between 40 degrees C and 48 degrees C.  相似文献   

6.
Cellobiase from Aspergillus niger was glycosylated by covalent coupling to cyanogen bromide activated dextran. The conjugated enzyme retained 62% of the original specific activity exhibited by the native cellobiase. The optimum pH as well as the pH stability of the conjugated form remain almost the same as for the native enzyme. Compared to the native enzyme, the conjugated form exhibited a higher optimal reaction temperature and energy of activation, a higher K(m) (Michaelis constant) and lower Vmax (maximal reaction rate), and improved thermal stability. The thermal deactivation of the native and conjugated cellobiase obeyed the first-order kinetics. The calculated half-life values of heat inactivation at 60, 70 and 80 degrees C was 10.7, 6.25, and 4.05 h, respectively, whereas at these temperatures the native enzyme was less stable (half-life of 3.5, 1.69, and 0.83 h, respectively). The deactivation rate constant at 80 degrees C for the conjugated cellobiase is about 7.9 x 10(-2) h-1, which is lower than that of the native enzyme (36.0 x 10(-2) h-1). The activation energy for denaturation of the native enzyme is about 10.58 kcal/mol, which is 7.25 kcal/mol lower than that of the conjugated enzyme. The effect of different surfactants and some metal ions on the activity of the conjugated cellobiase has been investigated.  相似文献   

7.
An intracellular glucose oxidase (GOD) was isolated from the mycelium extract of a locally isolated strain of Aspergillus niger NFCCP. The enzyme was partially purified to a yield of 28.43% and specific activity of 135 U mg(-1) through ammonium sulfate precipitation, anion-exchange chromatography, and gel filtration. The enzyme showed high specificity for D-glucose, with a K(m) value of 25 mmol L(-1). The enzyme exhibited optimum catalytic activity at pH 5.5. Optimum temperature for GOD-catalyzed D-glucose oxidation was 40 degrees C. The enzyme displayed a high thermostability having a half-life (t(1/2)) of 30 min, enthalpy of denaturation (H*) of 99.66 kJ mol(-1), and free energy of denaturation (G*) of 103.63 kJ mol(-1). These characteristics suggest that GOD from A. niger NFCCP can be used as an analytical reagent and in the design of biosensors for clinical, biochemical, and diagnostic assays.  相似文献   

8.
A comparison of the temperature profiles of the myofibrillar ATPase in Porcellio spinicornis and Metoponorthus pruinosus showed that Porcellio enzyme had a maximum activity between pH 6.8-7.2 at 9 degrees C, and that from Metoponorthus between pH 7.0-7.4 at 45 degrees C. The energy of activation for Porcellio enzyme was estimated to be 2.964 kcal/mol and that for Metoponorthus enzyme 9.91 X 10(-1) kcal/mol. The significance of these findings in relation to the natural habitats of these two species is discussed.  相似文献   

9.
Dihydroorotase (DHOase, EC 3.5.2.3) from the extreme thermophile Bacillus caldolyticus has been subcloned, sequenced, expressed, and purified as a monomer. The catalytic properties of this thermophilic DHOase have been compared with another type I enzyme, the DHOase domain from hamster, to investigate how the thermophilic enzyme is adapted to higher temperatures. B. caldolyticus DHOase has higher Vmax and Ks values than hamster DHOase at the same temperature. The thermodynamic parameters for the binding of L-dihydroorotate were determined at 25 degrees C for hamster DHOase (deltaG = -6.9 kcal/mol, deltaH = -11.5 kcal/mol, TdeltaS = -4.6 kcal/mol) and B. caldolyticus DHOase (deltaG = -5.6 kcal/mol, deltaH = -4.2 kcal/mol, TdeltaS = +1.4 kcal/mol). The smaller enthalpy release and positive entropy for thermophilic DHOase are indicative of a weakly interacting Michaelis complex. Hamster DHOase has an enthalpy of activation of 12.3 kcal/mol, similar to the release of enthalpy upon substrate binding, rendering the kcat/Ks value almost temperature independent. B. caldolyticus DHOase shows a decrease in the enthalpy of activation from 12.2 kcal/mol at temperatures from 30 to 50 degrees C to 5.3 kcal/mol for temperatures of 50-70 degrees C. Vibrational energy at higher temperatures may facilitate the transition ES --> ES(double dagger), making kcat/Ks almost temperature independent. The pseudo-first-order rate constant for water attack on L-dihydroorotate, based on experiments at elevated temperature, is 3.2 x 10(-11) s(-1) at 25 degrees C, with deltaH(double dagger) = 24.7 kcal/mol and TdeltaS(double dagger) = -6.9 kcal/mol. Thus, hamster DHOase enhances the rate of substrate hydrolysis by a factor of 1.6 x 10(14), achieving this rate enhancement almost entirely by lowering the enthalpy of activation (delta deltaH(double dagger) = -19.5 kcal/mol). Both the rate enhancement and transition state affinity of hamster DHOase increase steeply with decreasing temperature, consistent with the development of H-bonds and electrostatic interactions in the transition state that were not present in the enzyme-substrate complex in the ground state.  相似文献   

10.
The (Na+ +K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble form depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na+ +K+)-ATPase in its pH optimum being around 7.0, showing optimal activity at Mg2+:ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM. Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 degrees C, with activation energy (Ea) values of 13-15 kcal/mol above this temperature and 30-35 kcal below it. A further discontinuity was also found at 8.0 degrees C and the Ea below this was very high (greater than 100 kcal/mol). Increased Mg2+ concentrations at Mg2+:ATP ratios in excess of 1:1 inhibited the (Na+ +K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots. The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na+ +K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20 degrees C and Ea values of 22 and 68 kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 degrees C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km values for ATP. Since both cholesterol and Mg2+ are known to alter the effects of temperature on the fluidity of phospholipids, the above results are discussed in this context.  相似文献   

11.
A psychrotrophic pseudomonad isolated from iced fish oxidized alanine at temperatures close to 0 degrees C and grew over the range 0 degrees C-35 degrees C. The rate of oxidation of alanine, measured manometrically, by cells grown at 2 degrees C was lower than that of cells grown at 22 degrees C. However, the consumption of oxygen after heat treatment at 35 degrees for 35 min was reduced considerably by 2 degrees C grown cells. Alanine oxidase activity was tested in an extract from cells grown at 2 degrees C and 22 degrees C with alanine as the sole carbon, nitrogen, and energy source. Cells grown at 2 degrees C produced an alanine oxidase with a temperature optimum of 35 degrees C and pH optimum of 8, which lost about 80% activity by heat treatment at 40 degrees C for 30 min. There was no change in activity after dialysis at pH 7, 8, or 9. Extracts from cells grown at 22 degrees C contained an alanine oxidase system with an optimum temperature of 45 degrees C, a pH optimum above 8, and only about 30% reduction of activity after heat treatment. This enzyme activity was concentrated in the 0.5 M elution fraction from a Sephadex column, and dialysis reduced the activity at pH 7 and 8. Mesophilic enzyme synthesis apparently started around a growth temperature of 10 degrees C. The crude alanine oxidase systems of Pseudomonas aeruginosa derived from cells grown at 13 degrees C and 37 degrees C had a common optimum temperature of 45 degrees C. These data suggest that one mechanism of psychrophilic growth by psychrotrophic bacteria may be the induction of enzymes with low optimum temperatures in response to low temperature conditions.  相似文献   

12.
Glutamate dehydrogenase from Candida utilis undergoes a reversible conformational transition between an active and an inactive state at low pH AND low temperature. This conformational transition can also be followed by fluorescence measurements. The temperature-dependent equilibrium between the active and the inactive state is characterized by a transition temperature of 10.7 degrees C and a delta H value of 148 kcal/mol (620 kJ/mol). The temperature dependence of the enzymic activity above 15 degrees C yields an activation energy of 15 kcal/mol (63 kJ/mol), a larger value than that for the beef liver enzyme (9 kcal/mol; 38 kJ/mol). In contrast to the yeast enzyme the Arrhenius plot is linear and, therefore, the beef liver enzyme is not transformed into an inactive conformation at low temperatures. Sedimentation analysis shows that the inactivation of the Candida utilis enzyme is not caused by change in the quaternary structure. The pH dependence of the conformational transition at low pH measured by fluorescence change is characterized by a pK value of 7.01 for the enzyme in the absence and of 6.89 for the enzyme in the presence of 2-oxoglutarate with a Hill coefficient of 3.4 in both cases. Similar results are found when the pH dependence of the enzymic activity is analyzed. With the beef liver enzyme the same pK value is obtained but with a Hill coefficient of 1 indicating cooperativity only in the case of the Candida utilis enzyme. The best fit of the pH dependence of the rate constants of the fluorescence changes was obtained with pK values of 7.45 and 6.45 for the active and the inactive state respectively. In this model the lowest time constant which is obtained at the pH of the equilibrium was found to be 0.05 s-1. Preincubation experiments with the substrate 2-oxoglutarate but not with the coenzyme shift the equilibrium to the active conformation. The coenzyme obviously reduces the rate constant of the conformational transition. The sedimentation coefficient (SO20, w) and the molecular weight were found to be 11.0 S and 276 000, respectively. The enzyme molecule is built up by six polypeptide chains each having a molecular weight of 47 000.  相似文献   

13.
Glucose oxidase from Aspergillus niger was immobilized on nonporous glass beads by covalent bonding and its kinetics were studied in a packed-column recycle reactor. The optimum pH of the immobilized enzyme was the same as that of soluble enzyme; however, immobilized glucose oxidase showed a sharper pH-activity profile than that of the soluble enzyme. The kinetic behavior of immobilized glucose oxidase at optimum pH and 25 degrees C was similar to that of the soluble enzyme, but the immobilized material showed increased temperature sensitivity. Immobilized glucose oxidase showed no loss in activity on storage at 4 degrees C for nearly ten weeks. On continuous use for 60 hr, the immobilized enzyme showed about a 40% loss in activity but no change in the kinetic constant.  相似文献   

14.
An amperometric enzyme electrode for the determination of glucose under anaerobic solution conditions was developed by immobilizing glucose oxidase and then by adsorbing ferrocene in polyvinylferrocenium matrix coated on a Pt electrode surface. The amperometric response due to the electrooxidation of ferrocene that the reduced flavin adenine dinucleotide centers of glucose oxidase was measured at a constant potential. The response characteristics of the enzyme electrode were investigated. The effects of the thickness of the polymeric film, the amount of the enzyme immobilized, the amount of the mediator, the glucose concentration, the applied potential, operating pH and temperature on the response of the enzyme electrode were studied. The response time and the optimum pH were found to be 30-40 s and pH 7.4 at 25 degrees C, respectively. The linear response was observed up to 5.0 mM glucose concentration that the produced detectable current was 0.0075 mM glucose concentration. The activation energy (E(a)) of immobilized enzyme reaction was calculated to be 41.3 kJ mol(-1) from the Arrhenius plot. The apparent Michaelis-Menten constant (K(Mapp)) was found to be 6.05 mM glucose according to the Lineweaver-Burk graph of the Michaelis-Menten equation under the optimum conditions. The interference signal due to the most common electrochemical interfering species was also evaluated.  相似文献   

15.
The acclimation temperature of carp does not affect the amount of cytochrome c oxidase per mg mitochondrial protein as revealed from the reduced-minus-oxidized difference spectra of red muscle mitochondria from cold- and warm-acclimated carp. There are no differences between cold- and warm-acclimated fish in the substrate binding properties of the enzyme as judged from the Km values for cytochrome c at 30 degrees C (3.34 +/- 0.ee microM, acclimation temperature 10 degrees C and 3.55 +/- 0.31 microM, acclimation temperature 30 degrees C). The molar activities of the enzyme, however, differ for both acclimation temperatures: when intercalated in the 10 degrees C-acclimated mitochondrial membrane, the enzyme can catalyze the oxidation of 117.6 +/- 17.2 mol ferrocytochrome c/s per mol heme a as compared with 85.6 +/- 17.2 in the 30 degrees C-acclimated membrane (experimental temperature 30 degrees C). Correspondingly, higher specific activities of the succinate oxidase system are observed in mitochondria from cold-acclimated carp as compared with those obtained from warm-acclimated carp. The results indicate that cold acclimation of the eurythermic carp is accompanied by a partial compensation of the acute effect of decreasing temperature on the activity of cytochrome c oxidase in red muscle mitochondria. Based on the temperature-induced lipid adaptation reported for carp red muscle mitochondria (Wodtke, E. (1980) Biochim. Biophys. Acta 640, 698--709), it is concluded that during thermal acclimation the molar activity of cytochrome c oxidase is controlled by viscotropic regulation. The results fit to the conception that cardiolipin constitutes a lipid shell (annulus) surrounding the oxidase within the native membrane, but that it is the bilayer fluidity and not the annular fluidity which determines the activity of cytochrome c oxidase.  相似文献   

16.
The exchange of bound FAD for free FAD was studied with D-amino acid oxidase (D-amino acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3) and beta-D-glucose oxidase (beta-D-glucose:oxygen 1-oxidoreductase, EC 1.1.3.4). For a simple measurement of the reaction rate, equimolar amounts of the enzyme and [14C]FAD were mixed. The exchange occurred very rapidly in the holoenzyme of D-amino acid oxidase at 25 degrees C, pH 8.3 (half life of the exchange: 0.8 min), but slowly in the presence of the substrate or a competitive inhibitor, benzoate. It also occurred slowly in the purple complex of D-amino acid oxidase. In the case of beta-D-glucose oxidase, however, the exchange occurred very slowly at 25 degrees C, pH 5.6, regardless of the presence of the substrate or p-chloromercuribenzoate. On the basis of these findings, the turnover of the coenzymes of flavin enzymes in mammals is discussed.  相似文献   

17.
Some biochemical properties of whole-cell penicillin amidohydrolase from Micrococcus luteus have been studied. This whole-cell enzyme showed its maximal activity at 36 degrees C at pH 7.5. It was found that the activation energy of this enzyme was 8.03 kcal (ca. 33.6 kJ) per mol, and this amidohydrolase showed first-order decay at 36 degrees C. The penicillin amidohydrolase was deactivated rapidly at temperatures above 50 degrees C during storage or preincubation for 24 h. The Michaelis constant, Km, for penicillin G was determined as 2.26 mM, and the substrate inhibition constant, Kis, was 155 mM. The whole-cell penicillin amidohydrolase from M. luteus was capable of hydrolyzing penicillin G, penicillin V, ampicillin, and cephalexin, but not cephalosporin C and cloxacillin. This whole-cell enzyme also had synthetic activity for semisynthetic penicillins or cephalosporins from D-(--)-alpha-phenylglycine methyl ester and 6-alpha-aminopenicillanic acid or 7-amino-3-deacetoxycephalosporanic acid.  相似文献   

18.
Some biochemical properties of whole-cell penicillin amidohydrolase from Micrococcus luteus have been studied. This whole-cell enzyme showed its maximal activity at 36 degrees C at pH 7.5. It was found that the activation energy of this enzyme was 8.03 kcal (ca. 33.6 kJ) per mol, and this amidohydrolase showed first-order decay at 36 degrees C. The penicillin amidohydrolase was deactivated rapidly at temperatures above 50 degrees C during storage or preincubation for 24 h. The Michaelis constant, Km, for penicillin G was determined as 2.26 mM, and the substrate inhibition constant, Kis, was 155 mM. The whole-cell penicillin amidohydrolase from M. luteus was capable of hydrolyzing penicillin G, penicillin V, ampicillin, and cephalexin, but not cephalosporin C and cloxacillin. This whole-cell enzyme also had synthetic activity for semisynthetic penicillins or cephalosporins from D-(--)-alpha-phenylglycine methyl ester and 6-alpha-aminopenicillanic acid or 7-amino-3-deacetoxycephalosporanic acid.  相似文献   

19.
The thermodynamics of zinc hematoporphyrin (ZnHP) dimerization and ZnHP-membrane binding were studied. The dimerization equilibrium was determined over the temperature range 19-40 degrees C, using fluorometric techniques. The dimerization constant obtained at 37 degrees C (neutral pH in phosphate-buffered saline) is 4.6 (+/- 0.6) X 10(4) M-1. The dimerization was found to decrease with temperature over the range 19-36 degrees C, the data allowing the extraction of the following thermodynamic parameters for the temperature range 19-31 degrees C: delta G0 = -9.3 kcal/mol, delta H0 = -7.4 kcal/mol, delta S0 = -6.4 eu. For temperatures above 36 degrees C the dimerization was found to be temperature independent, giving the following parameters: delta G0 = -6.6 kcal/mol, delta H0 = 0 kcal/mol, delta S0 = 21.2 eu. On the basis of the data the case is made for the existence of two types of ZnHP dimers, differing in the location of the fifth Zn2+ ligand and in the nature of the contribution of the solvent to the dimerization. For the membrane binding, large unilamellar liposomes served to model biological membranes. The binding of ZnHP to the liposomes was found to be similar, quantitatively, to the corresponding metal-free molecule, namely, fitting a case of one type of site and giving a binding constant of 1600 +/- 160 M (neutral pH and 37 degrees C) which is independent of the length of the porphyrin-liposome.  相似文献   

20.
The pH-dependent kinetics of lysyl oxidase catalysis was examined for evidence of an ionizable enzyme residue which might function as a general base catalyzing proton abstraction previously shown to be a component of the mechanism of substrate processing by this enzyme. Plots of log Vmax/Km for the oxidation of n-hexylamine versus pH yielded pKa values of 7.0 +/- 0.1 and 10.4 +/- 0.1. The higher pKa varied with different substrates, reflecting ionization of the substrate amino group. A van't Hoff plot of the temperature dependence of the lower pKa yielded a value of 6.1 kcal mol-1 for the enthalpy of ionization. This value as well as the pKa of 7.0 are consistent with those of histidine residues previously implicated as general base catalysts in enzymes. Incubation of lysyl oxidase with low concentrations of diethyl pyrocarbonate, a histidine-selective reagent, at 22 degrees C and pH 7.0 irreversibly inhibited enzyme activity by a pseudo first-order kinetic process. The inactivation of lysyl oxidase correlated with spectral and pH-dependent kinetic evidence for the chemical modification of 1 histidine residue/mol of enzyme, the pKa of which was 6.9 +/- 0.1, within experimental error of that seen in the plot of log Vmax/Km versus pH. Enzyme activity was restored by incubation of the modified enzyme with hydroxylamine, consistent with the ability of this nucleophile to displace the carbethoxy group from N-carbethoxyhistidine. The presence of the n-hexylamine substrate largely protected against enzyme inactivation by diethyl pyrocarbonate. These results thus indicate a functional role for histidine in lysyl oxidase catalysis consistent with that of a general base in proton abstraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号