首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Left ventricular functional capacity in the endurance-trained rodent   总被引:3,自引:0,他引:3  
Cardiac myosin P-light chain phosphorylation [P-LC(P)] has been proposed to augment myocardial force production. This study was undertaken to examine the potential for cardiac myosin P-LC(P) for both equivalent heart rate and work load in exercising endurance-trained and nontrained rodents. A 10-wk training protocol elicited a significant reduction in submaximal running O2 uptake while enhancing peak O2 uptake (-17 and 10%, respectively, P less than 0.05). Left ventricular functional index during submaximal exercise, obtained with a high-fidelity Millar ultraminiature pressure transducer, indicated that the trained animals were able to maintain peak left ventricular pressure (LVP) in comparison to their sedentary counterparts, even though both heart rate and rate of LVP development were significantly reduced (P less than 0.05). When expressed on the basis of equivalent submaximal heart rate, peak LVP was augmented in the trained animals. Cardiac myosin P-LC(P) was examined under two conditions known to produce disparate responses in trained vs. sedentary animals. For an equivalent work load, we observed parallel increases in P-LC(P) (20%) and systolic pressure (17%) in both groups, even though the trained animals exhibited significantly lower heart rates (P less than 0.05). For an equivalent heart rate, training evoked a significant increase in systolic pressure (26%, P less than 0.05) and caused a slight increase in P-LC(P) relative to the nontrained controls. Cardiac myosin adenosinetriphosphatase was reduced approximately 10% in the trained animals (P less than 0.05), commensurate with a 2.0-fold increase in the V3 (low adenosinetriphosphatase) isomyosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
AMP-activated protein kinase (AMPK) is emerging as a key signaling pathway that modulates cellular metabolic processes. In skeletal muscle, AMPK is activated during exercise. Increased myocardial substrate metabolism during exercise could be explained by AMPK activation. Although AMPK is known to be activated during myocardial ischemia, it remains uncertain whether AMPK is activated in response to the physiological increases in cardiac work associated with exercise. Therefore, we evaluated cardiac AMPK activity in rats at rest and after 10 min of treadmill running at moderate (15% grade, 16 m/min) or high (15% grade, 32 m/min) intensity. Total AMPK activity in the heart increased in proportion to exercise intensity (P < 0.05). AMPK activity associated with the alpha2-catalytic subunit increased 2.8 +/- 0.4-fold (P < 0.02 vs. rest) and 4.5 +/- 0.6-fold (P < 0.001 vs. rest) with moderate- and high-intensity exercise, respectively. AMPK activity associated with the alpha1-subunit increased to a lesser extent. Phosphorylation of the Thr172-regulatory site on AMPK alpha-catalytic subunits increased during exercise (P < 0.001). There was no increase in Akt phosphorylation during exercise. The changes in AMPK activity during exercise were associated with physiological AMPK effects (GLUT4 translocation to the sarcolemma and ACC phosphorylation). Thus cardiac AMPK activity increases progressively with exercise intensity, supporting the hypothesis that AMPK has a physiological role in the heart.  相似文献   

3.
The tolerance of altitude-acclimatized (18,000 ft 4 wk) and unacclimatized rats to exercise at 5 degrees was determined. Fewer unacclimatized than acclimatized rats became fatigued during 9 hr of exercise in the cold. Normal body temperatures were maintained in both groups during 9 hr in the cold at rest, but after exercise unacclimatized rats became mildly hypothermic (body temperature 35 degrees) and acclimatized rats severely hypothermic (body temperature 27.9 degrees). Polycythemia (hematocrit 69) was produced during the altitude acclimatization. Altitude-acclimatized rats developed more severe hypoglycemia and lower liver glycogen and serum lactic acid concentrations after exercise than did controls. No pathological changes were found in resting altitude-acclimatized rats, but after exercise in the cold, a higher percentage of acclimatized than unacclimatized rats developed focal myocardial necrosis within 4 days. Reduced exercise tolerance is attributed to severe hypothermia with associated decreased metabolism, polycythemia, hypoglycemia, and a higher incidence of pathological changes in the cardiac and striated muscles.  相似文献   

4.
Recent evidence suggests that exercise training may significantly increase the expression of the cardiac myosin isozyme V1 in the diabetic heart, a change associated with improved cardiac functional capacity. To test this hypothesis, cardiac myofibrillar adenosinetriphosphatase (ATPase) activity and myosin isozyme profiles were determined in trained and sedentary male hyperinsulinemic obese Zucker (OZT, OZS) and obese Wistar (OWT, OWS) rats. Lean sedentary (LZS, LWS) animals served as age-matched controls. Myofibrillar ATPase activity and the relative quantity of the high-ATPase isozyme V1 was significantly lower in both strains of sedentary obese rats than in the respective lean sedentary controls (P less than 0.05). Both 5 (OZT) and 10 wk (OWT) of moderate treadmill training increased these markers of cardiac myosin biochemistry in the obese animals (P less than 0.05). Thus, endurance exercise training remodels the cardiac isomyosin profile of hyperinsulinemic rats and, in doing so, may enhance cardiac contractility and functional capacity. Such changes may reflect an improvement in glucose availability and utilization in these hearts.  相似文献   

5.
This study was undertaken to examine the influence of guanethidine monosulfate-induced sympathectomy on exercise-induced adaptations of cardiac contractile protein and on acute hemodynamic responses to exercise involving female neonatal rats. Four groups of rats were studied: 1) normal sedentary (NS), 2) normal trained (NT), 3) sympathectomized sedentary (SS), and 4) sympathectomized trained (ST). The 9-wk running program, which began at 20 days of age, induced increases in whole-body maximal O2 consumption and skeletal-muscle citrate synthase activity in both NT and ST groups compared with NS (P less than 0.05). Submaximal exercise tests demonstrated circulatory adaptations for NT, SS, and ST groups compared with NC; however, the ST group demonstrated the greatest degree of altered cardiac function (decreased heart rate, left ventricular pressure, and contractility index) during exercise. Also, significant reductions in both myosin- and Ca2+-regulated myofibril adenosinetriphosphatase (ATPase) activity and increases in the relative content of the low ATPase myosin isozyme, V3, occurred in the hearts of the two trained groups (P less than 0.05). These findings suggest that chronic exercise involving normal and sympathectomized neonatal rats improves cardiac function without compromising maximal exercise capacity. Also, the exercise-related adaptation involving myosin isozyme shifts are exaggerated when involvement of the sympathetic nervous system is reduced during training.  相似文献   

6.
Loss of exercise-induced cardioprotection after cessation of exercise.   总被引:3,自引:0,他引:3  
Endurance exercise provides cardioprotection against ischemia-reperfusion (I/R) injury. Exercise-induced cardioprotection is associated with increases in cytoprotective proteins, including heat shock protein 72 (HSP72) and increases in antioxidant enzyme activity. On the basis of the reported half-life of these putative cardioprotective proteins, we hypothesized that exercise-induced cardioprotection against I/R injury would be lost within days after cessation of exercise. To test this, male rats (4 mo) were randomly assigned to one of five experimental groups: 1). sedentary control, 2). exercise followed by 1 day of rest, 3). exercise followed by 3 days of rest, 4). exercise followed by 9 days of rest, and 5). exercise followed by 18 days of rest. Exercise-induced increases (P < 0.05) in left ventricular catalase activity and HSP72 were evident at 1 and 3 days postexercise. However, at 9 days postexercise, myocardial HSP72 and catalase levels declined to sedentary control values. To evaluate cardioprotection during recovery from I/R, hearts were isolated, placed in working heart mode, and subjected to 20.5 min of global ischemia followed by 30 min of reperfusion. Compared with sedentary controls, exercised animals sustained less I/R injury as evidenced by maintenance of a higher (P < 0.05) percentage of preischemia cardiac work during reperfusion at 1, 3, and 9 days postexercise. The exercise-induced cardioprotection vanished by 18 days after exercise cessation. On the basis of the time course of the loss of cardioprotection and the return of HSP72 and catalase to preexercise levels, we conclude that HSP72 and catalase are not essential for exercise-induced protection during myocardial stunning. Therefore, other cytoprotective molecules are responsible for providing protection during I/R.  相似文献   

7.
The cardiac function was studied by radionuclide cardiography in eight healthy subjects at rest and during submaximal upright exercise before and after autonomic blockade with metoprolol and atropine. At rest the median stroke volume was reduced by 21% during autonomic blockade (P less than 0.01), but cardiac output was maintained by a concomitant increase in heart rate. The systolic blood pressure was reduced from 120 to 105 mmHg (P less than 0.01), and left ventricular ejection fraction was reduced from 61 to 56% (P less than 0.05). After autonomic blockade the heart rate reached during exercise was the same. Stroke volume and cardiac output were maintained through cardiac dilation. The increase in left ventricular end-diastolic volume was 31 vs. 10% during control conditions (P less than 0.01). The systolic blood pressure was reduced from 174 to 135 mmHg (P less than 0.01). Left ventricular ejection fraction was reduced from 75 to 67% (P less than 0.05), but the increase from rest to exercise was preserved. Total peripheral resistance was reduced by 17% (P less than 0.05). These findings suggest that the heart possesses intrinsic mechanisms to maintain cardiac output during submaximal upright exercise. End-diastolic dilation results in a preserved stroke volume despite a reduced contractility.  相似文献   

8.
Prolonged strenuous exercise (PSE) induces transient left ventricular (LV) dysfunction. Previous studies suggest that β-adrenergic pathway desensitization could be involved in this phenomenon, but it remains to be confirmed. Moreover, other underlying mechanisms involving oxidative stress have been recently proposed. The present study aimed to evaluate the involvement of both the β-adrenergic pathway and NADPH oxidase (Nox) enzyme-induced oxidative stress in myocardial dysfunction in rats following PSE. Rats were divided into 4 groups: controls (Ctrl), 4-h exercised on treadmill (PSE), and 2 groups in which Nox enzyme was inhibited with apocynin treatment (Ctrl APO and PSE APO, respectively). We evaluated cardiac function in vivo and ex vivo during basal conditions and isoproterenol stress. GSH/GSSG ratio, cardiac troponin I (cTnI) release, and lipid peroxidation (MDA) were evaluated. PSE induced a decrease in LV developed pressure, intrinsic myocardial contractility, and relaxation associated with an increase in plasma cTnI release. Our in vivo and ex vivo results demonstrated no differences in myocardial response to isoproterenol and of effective dose 50 between control and PSE rats. Interestingly, the LV dysfunction was reversed by apocynin treatment. Moreover, apocynin prevented cellular oxidation [GSH/GSSG ratio: PSE APO rats vs. PSE rats in arbitrary units (au): 1.98 ± 0.07 vs. 1.35 ± 0.10; P < 0.001]. However, no differences in MDA were observed between groups. These data suggest that myocardial dysfunction observed after PSE was not due to β-adrenergic receptor desensitization but could be due to a signaling oxidative stress from the Nox enzyme.  相似文献   

9.
The purpose of the study was to evaluate the dynamics of diastolic and systolic function from rest to maximal exercise using conventional echocardiography and tissue Doppler imaging (TDI) in obese prepubertal boys compared to age‐matched lean controls. Eighteen obese (10 with first degree obesity and 8 with second degree obesity according to French curves, BMI: 23.3 ± 1.8 and 29.0 ± 2.0 kg/m2, respectively) and 17 lean controls (BMI = 17.6 ± 0.6 kg/m2, P < 0.001), aged 10–12 years were recruited. After resting echocardiography, all children performed a maximal exercise test. Regional diastolic and systolic myocardial velocities were acquired at rest and each workload. Stroke volume and cardiac output were calculated. At rest, obese boys had greater left ventricular (LV) diameters and LV mass. Boys in the first degree group showed no diastolic or systolic dysfunction, whereas boys with second degree obesity showed subtle diastolic dysfunction. During exercise, both obese groups showed greater stroke volume and cardiac output. First degree obese boys exhibited greater systolic and diastolic tissue Doppler velocities than controls, whereas second degree obese boys had lower diastolic tissue velocities irrespective of exercise intensity and lower fractional shortening at high exercise intensities than controls. In conclusion, no impairment in diastolic or systolic function is noticed in prepubertal boys with first degree of obesity. Enhanced regional myocardial function response to exercise was also demonstrated in this population, suggesting adaptive compensatory cardiac changes in mild obesity. However, when obesity becomes more severe, impaired global and regional cardiac function at rest and during exercise can be observed.  相似文献   

10.
Because of technical challenges very little is known about absolute myocardial perfusion in humans in vivo during physical exercise. In the present study we applied positron emission tomography (PET) in order to 1) investigate the effects of dynamic bicycle exercise on myocardial perfusion and 2) clarify the possible effects of endurance training on myocardial perfusion during exercise. Myocardial perfusion was measured in endurance-trained and healthy untrained subjects at rest and during absolutely the same (150 W) and relatively similar [70% maximal power output (W(max))] bicycle exercise intensities. On average, the absolute myocardial perfusion was 3.4-fold higher during 150 W (P < 0.001) and 4.9-fold higher during 70% W(max) (P < 0.001) than at rest. At 150 W myocardial perfusion was 46% lower in endurance-trained than in untrained subjects (1.67 +/- 0.45 vs. 3.00 +/- 0.75 ml x g(-1) x min(-1); P < 0.05), whereas during 70% W(max) perfusion was not significantly different between groups (P = not significant). When myocardial perfusion was normalized with rate-pressure product, the results were similar. Thus, according to the present results, myocardial perfusion increases in parallel with the increase in working intensity and in myocardial work rate. Endurance training seems to affect myocardial blood flow pattern during submaximal exercise and leads to more efficient myocardial pump function.  相似文献   

11.
The hemodynamic response to maximal exercise was determined in sedentary and trained rats with a chronic myocardial infarction (MI) produced by coronary artery ligation and in rats that underwent sham operations (SHAM). Infarct size in the MI groups of rats comprised 28-29% of the total left ventricle and resulted in both metabolic and hemodynamic changes that suggested that these animals had moderate compensated heart failure. The training regimen used in the present study produced significant increases in maximal O2 uptake (VO2max) when expressed in absolute terms (ml/min) or when normalized for body weight (ml.min-1.kg-1) and consisted of treadmill running at work loads that were equivalent to 70-80% of the animal's VO2max for a period of 60 min/day, 5 days/wk over an 8- to 10-wk interval. This training paradigm produced two major cardiocirculatory adaptations in the MI rat that had not been elicited previously when using a training paradigm of a lower intensity. First, the decrement in the maximal heart rate response to exercise (known as "chronotropic incompetence") found in the sedentary MI rat was completely reversed by endurance training. Second, the downregulation of cardiac myosin isozyme composition from the fast ATPase V1 isoform toward the slower ATPase (V2 and V3) isoforms in the MI rat was partially reversed by endurance training. These cardiac adaptations occurred without a significant increase in left ventricular pump function as an increase in maximal cardiac output (Qmax) and maximal stroke volume (SVmax) did not occur in the trained MI rat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Advanced age is associated with altered skeletal muscle hemodynamic control during the transition from rest to exercise. This study investigated the effects of aging on the functional role of nitric oxide (NO) in regulating total, inter-, and intramuscular hindlimb hemodynamic control at rest and during submaximal whole body exercise. We tested the hypothesis that NO synthase inhibition (N(G)-nitro-l-arginine methyl ester, l-NAME; 10 mg/kg) would result in attenuated reductions in vascular conductance (VC) primarily in oxidative muscles in old compared with young rats. Total and regional hindlimb muscle VCs were determined via radiolabeled microspheres at rest and during treadmill running (20 m/min, 5% grade) in nine young (6-8 mo) and seven old (27-29 mo) male Fisher 344 × Brown Norway rats. At rest, l-NAME increased mean arterial pressure (MAP) significantly by ~17% and 21% in young and old rats, respectively. During exercise, l-NAME increased MAP significantly by ~13% and 19% in young and old rats, respectively. Compared with young rats, l-NAME administration in old rats evoked attenuated reductions in 1) total hindlimb VC during exercise (i.e., down by ~23% in old vs. 43% in young rats; P < 0.05), and 2) VC in predominantly oxidative muscles both at rest and during exercise (P < 0.05). Our results indicate that the dependency of highly oxidative muscles on NO-mediated vasodilation is markedly diminished, and therefore mechanisms other than NO-mediated vasodilation control the bulk of the increase in skeletal muscle VC during the transition from rest to exercise in old rats. Reduced NO contribution to vasomotor control with advanced age is associated with blood flow redistribution from highly oxidative to glycolytic muscles during exercise.  相似文献   

13.
Reduced stroke volume during exercise in postural tachycardia syndrome.   总被引:1,自引:0,他引:1  
Postural tachycardia syndrome (POTS) is characterized by excessive tachycardia without hypotension during orthostasis. Most POTS patients also report exercise intolerance. To assess cardiovascular regulation during exercise in POTS, patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter), heart rate (HR; measured by ECG), and cardiac output (open-circuit acetylene breathing) were measured. In both positions, mean arterial pressure, cardiac output, and total peripheral resistance at rest and during exercise were similar in patients and controls (P > 0.05). However, supine stroke volume (SV) tended to be lower in the patients than controls at rest (99 +/- 5 vs. 110 +/- 9 ml) and during 75-W exercise (97 +/- 5 vs. 111 +/- 7 ml) (P = 0.07), and HR was higher in the patients than controls at rest (76 +/- 3 vs. 62 +/- 4 beats/min) and during 75-W exercise (127 +/- 3 vs. 114 +/- 5 beats/min) (both P < 0.01). Upright SV was significantly lower in the patients than controls at rest (57 +/- 3 vs. 81 +/- 6 ml) and during 75-W exercise (70 +/- 4 vs. 94 +/- 6 ml) (both P < 0.01), and HR was much higher in the patients than controls at rest (103 +/- 3 vs. 81 +/- 4 beats/min) and during 75-W exercise (164 +/- 3 vs. 131 +/- 7 beats/min) (both P < 0.001). The change (upright - supine) in SV was inversely correlated with the change in HR for all participants at rest (R(2) = 0.32), at 25 W (R(2) = 0.49), 50 W (R(2) = 0.60), and 75 W (R(2) = 0.32) (P < 0.01). These results suggest that greater elevation in HR in POTS patients during exercise, especially while upright, was secondary to reduced SV and associated with exercise intolerance.  相似文献   

14.
The Na+ -K+ -ATPase enzyme is vital in skeletal muscle function. We investigated the effects of acute high-intensity interval exercise, before and following high-intensity training (HIT), on muscle Na+ -K+ -ATPase maximal activity, content, and isoform mRNA expression and protein abundance. Twelve endurance-trained athletes were tested at baseline, pretrain, and after 3 wk of HIT (posttrain), which comprised seven sessions of 8 x 5-min interval cycling at 80% peak power output. Vastus lateralis muscle was biopsied at rest (baseline) and both at rest and immediately postexercise during the first (pretrain) and seventh (posttrain) training sessions. Muscle was analyzed for Na+ -K+ -ATPase maximal activity (3-O-MFPase), content ([3H]ouabain binding), isoform mRNA expression (RT-PCR), and protein abundance (Western blotting). All baseline-to-pretrain measures were stable. Pretrain, acute exercise decreased 3-O-MFPase activity [12.7% (SD 5.1), P < 0.05], increased alpha1, alpha2, and alpha3 mRNA expression (1.4-, 2.8-, and 3.4-fold, respectively, P < 0.05) with unchanged beta-isoform mRNA or protein abundance of any isoform. In resting muscle, HIT increased (P < 0.05) 3-O-MFPase activity by 5.5% (SD 2.9), and alpha3 and beta3 mRNA expression by 3.0- and 0.5-fold, respectively, with unchanged Na+ -K+ -ATPase content or isoform protein abundance. Posttrain, the acute exercise induced decline in 3-O-MFPase activity and increase in alpha1 and alpha3 mRNA each persisted (P < 0.05); the postexercise 3-O-MFPase activity was also higher after HIT (P < 0.05). Thus HIT augmented Na+ -K+ -ATPase maximal activity despite unchanged total content and isoform protein abundance. Elevated Na+ -K+ -ATPase activity postexercise may contribute to reduced fatigue after training. The Na+ -K+ -ATPase mRNA response to interval exercise of increased alpha- but not beta-mRNA was largely preserved posttrain, suggesting a functional role of alpha mRNA upregulation.  相似文献   

15.
We investigated changes in arterial PCO2 (PaCO2) and pulmonary ventilation (VE) in normal, carotid chemoreceptor-denervated, and hilar nerve-denervated ponies during intravenous lactic acid infusion at rest and treadmill exercise at 1.8 mph-5% grade (mild) and 1.8 mph-15% grade (moderate). Lactic acid, (0.5 M) infusion of 0.10, 0.13, and 0.20 ml.min-1.kg-1 at rest and mild and moderate exercise increased arterial [H+] linearly throughout the 10 min of acid infusion. At 10 min of infusion, arterial [H+] had increased approximately 20 nmol/l (0.2 pH units) for each condition and group. Under most conditions, the temporal pattern of PaCO2 during acid infusion was biphasic. At rest and during mild exercise in all groups, and in carotid chemoreceptor-denervated ponies during moderate exercise, PaCO2 increased approximately 2 Torr (P less than 0.05) during the first 2 min of acid infusion. However, in normal ponies during moderate exercise, PaCO2 was not changed from control in the first 2 min of infusion. Between 2 and 10 min of infusion at rest and mild and moderate exercise in all groups, there was a 5-Torr significant decrease in PaCO2, which did not differ (P greater than 0.10) between groups. VE increased between 15-30 s and 2 min of infusion, but VE changed minimally between 2 and 10 min of infusion at rest and exercise in all groups of ponies. We conclude that lactacidosis does increase VE at rest and submaximal exercise in the pony.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
These experiments examined the independent effects of short-term exercise and heat stress on myocardial responses during in vivo ischemia-reperfusion (I/R). Female Sprague-Dawley rats (4 mo old) were randomly assigned to one of four experimental groups: 1) control, 2) 3 consecutive days of treadmill exercise [60 min/day at 60-70% maximal O2 uptake (VO2 max)], 3) 5 consecutive days of treadmill exercise (60 min/day at 60-70% VO2 max), and 4) whole body heat stress (15 min at 42 degrees C). Twenty-four hours after heat stress or exercise, animals were anesthetized and mechanically ventilated, and the chest was opened by thoracotomy. Coronary occlusion was maintained for 30-min followed by a 30-min period of reperfusion. Compared with control, both heat-stressed animals and exercised animals (3 and 5 days) maintained higher (P < 0.05) left ventricular developed pressure (LVDP), maximum rate of left ventricular pressure development (+dP/dt), and maximum rate of left ventricular pressure decline (-dP/dt) at all measurement periods during both ischemia and reperfusion. No differences existed between heat-stressed and exercise groups in LVDP, +dP/dt, and -dP/dt at any time during ischemia or reperfusion. Both heat stress and exercise resulted in an increase (P < 0.05) in the relative levels of left ventricular heat shock protein 72 (HSP72). Furthermore, exercise (3 and 5 days) increased (P < 0.05) myocardial glutathione levels and manganese superoxide dismutase activity. These data indicate that 3-5 consecutive days of exercise improves myocardial contractile performance during in vivo I/R and that this exercise-induced myocardial protection is associated with an increase in both myocardial HSP72 and cardiac antioxidant defenses.  相似文献   

17.
Dynamic cerebral autoregulation (CA) is challenged by exercise and may become less effective when exercise is exhaustive. Exercise may increase arterial glucose concentration, and we evaluated whether the cerebrovascular response to exercise is affected by hyperglycemia. The effects of a hyperinsulinemic euglycemic clamp (EU) and hyperglycemic clamp (HY) on the cerebrovascular (CVRI) and systemic vascular resistance index (SVRI) responses were evaluated in seven healthy subjects at rest and during rhythmic handgrip exercise. Transfer function analysis of the dynamic relationship between beat-to-beat changes in mean arterial pressure and middle cerebral artery (MCA) mean blood flow velocity (V(mean)) was used to assess dynamic CA. At rest, SVRI decreased with HY and EU (P < 0.01). CVRI was maintained with EU but became reduced with HY [11% (SD 3); P < 0.01], and MCA V(mean) increased (P < 0.05), whereas brain catecholamine uptake and arterial Pco(2) did not change significantly. HY did not affect the normalized low-frequency gain between mean arterial pressure and MCA V(mean) or the phase shift, indicating maintained dynamic CA. With HY, the increase in CVRI associated with exercise was enhanced (19 +/- 7% vs. 9 +/- 7%; P < 0.05), concomitant with a larger increase in heart rate and cardiac output and a larger reduction in SVRI (22 +/- 4% vs. 14 +/- 2%; P < 0.05). Thus hyperglycemia lowered cerebral vascular tone independently of CA capacity at rest, whereas dynamic CA remained able to modulate cerebral blood flow around the exercise-induced increase in MCA V(mean). These findings suggest that elevated blood glucose does not explain that dynamic CA is affected during intense exercise.  相似文献   

18.
We evaluated the influence of aerobic exercise on cardiac remodelling during the transition from compensated left ventricular (LV) hypertrophy to clinical heart failure in aortic stenosis (AS) rats. Eighteen weeks after AS induction, rats were assigned into sedentary (AS) and exercised (AS‐Ex) groups. Results were compared to Sham rats. Exercise was performed on treadmill for 8 weeks. Exercise improved functional capacity. Echocardiogram showed no differences between AS‐Ex and AS groups. After exercise, fractional shortening and ejection fraction were lower in AS‐Ex than Sham. Myocyte diameter and interstitial collagen fraction were higher in AS and AS‐Ex than Sham; however, myocyte diameter was higher in AS‐Ex than AS. Myocardial oxidative stress, evaluated by lipid hydroperoxide concentration, was higher in AS than Sham and was normalized by exercise. Gene expression of the NADPH oxidase subunits NOX2 and NOX4, which participate in ROS generation, did not differ between groups. Activity of the antioxidant enzyme superoxide dismutase was lower in AS and AS‐Ex than Sham and glutathione peroxidase was lower in AS‐Ex than Sham. Total and reduced myocardial glutathione, which is involved in cellular defence against oxidative stress, was lower in AS than Sham and total glutathione was higher in AS‐Ex than AS. The MAPK JNK was higher in AS‐Ex than Sham and AS groups. Phosphorylated P38 was lower in AS‐Ex than AS. Despite improving functional capacity, aerobic exercise does not change LV function in AS rats. Exercise restores myocardial glutathione, reduces oxidative stress, impairs JNK signalling and further induces myocyte hypertrophy.  相似文献   

19.
Heart myosin isoforms and arterial blood pressure changes were studied in 30 SHR rats following a long-term treatment with captopril. 30 Wistar rats were included in the same trial as control. Twelve week old SHR rats with an already established hypertension and ventricular hypertrophy were orally administered with between 25 and 100 mg/Kg/die of captopril. After a ten-week treatment, animals were sacrificed and heart myosin isoforms (V1, V2, V3) analysed by polyacrylamide gel electrophoresis. Our results showed that captopril can: a) reduce blood pressure; b) reduce the cardiac hypertrophy; c) reverse the isomyosin enzymes (V1 V3) previously altered by the hypertrophy condition (V3 V1) to normal value. Furthermore we have detected an increase of V myosin isoform in SHR rats (35%) and to a lower extent in treated Wistar rats (17%). Since SHR and Wistar rats usually do not express V isoform, our results suggest that captopril may be responsible for this phenomenon by acting directly on myocardial cells.  相似文献   

20.
Myocardial ischemia and reperfusion cause myocyte and vascular dysfunction, frequently termed "stunning." We hypothesized that inhibiting the Na(+)/H(+) exchanger subtype 1 isoform (NHE(1)) during ischemia and reperfusion limits myocardial and coronary microvascular stunning. Anesthetized rats completed 2 x 10-min coronary artery occlusions separated by 5-min of reperfusion, followed by 15 or 60 min of reperfusion. Vehicle (saline) or the NHE(1) inhibitor cariporide (HOE-642) was administered 15 min before ischemia and was continued throughout each protocol. After reperfusion, hearts were excised, and the reactivity of resistance arteries (internal diameter, approximately 120 microm) was assessed. The first derivative of left ventricular (LV) pressure, LV developed pressure, and LV systolic wall thickening were depressed (P < 0.05) similarly in vehicle- and cariporide-treated rats during ischemia and after 15 or 60 min of reperfusion compared with sham-operated animals that were not exposed to ischemia (i.e., controls). In vessels obtained after 15 min of reperfusion, the maximal response to acetylcholine-induced relaxation (10(-8)-10(-4) M) was blunted (P < 0.05) in vessels from vehicle- (approximately 35%) and cariporide-treated rats (approximately 55%) compared with controls (approximately 85%). However, the percent relaxation to acetylcholine was greater (P < 0.05) in cariporide-treated rats compared with vehicle-treated rats. Maximal contractile responses to endothelin-1 (10(-11)-10(-7) M) were increased (P < 0.05) similarly in vehicle- and cariporide-treated rats compared with controls. Relaxation to sodium nitroprusside (10(-4) M) was not different among groups. Results were similar in vessels obtained from animals after 60 min of reperfusion. These findings suggest that NHE(1) inhibition before coronary occlusion lessens ischemia-induced microvascular dysfunction for 15-60 min after reperfusion but does not alter myocardial contractile function in the area at risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号