共查询到20条相似文献,搜索用时 15 毫秒
1.
To obtain antibodies suitable to be used in an antigen-capture assay, we have identified, synthesized, and evaluated a series of peptides from different Plasmodium falciparum excretory-secretory proteins: glutamate-rich protein (GLURP); histidine-rich protein 2; histidine-rich protein 3; Falciparum interspersed repeat antigen and, serine-rich antigen homologous. Conformational as well as antigenic predictions were performed using the ANTHEPROT package. Chemical synthesis was carried out by the multiple manual synthesis using the t-boc strategy. The peptides were used as antigens for the preparation of polyclonal antibodies in rabbits. Out of the 14 peptide constructs, eight by ELISA and, six by MABA elicited antibodies that showed correspondence between the predictive study and the immunogenicity obtained in rabbits. All antipeptide (GLURP, HRP2, and FIRA) antisera were found to bind to the corresponding synthetic sequence in an ELISA assay. The binding activity and specificity of antibodies were determined by Western blot with supernatant culture from P. falciparum. Anti-GLURP (IMT-94 and IMT-200) antisera bound to five molecules present in supernatant with molecular weight of 73, 82, 116, 124, and 128 kDa. Anti-HRP2 (IMT-192) antisera recognized a band of 58 kDa. In both cases, the specific molecules were inhibited by preincubation with the homologous peptide. Anti-HRP3, anti-FIRA neither anti-SERPH antisera showed reactivity. Anti-peptides HRP2 antibodies recognized the recombinant protein present in Parasight-F test. The same way, synthetic peptides from HRPII molecule were recognized by monoclonal antibody present in the Parasight-F assay. Our results confirm the potential value of synthetic peptides when inducing monospecific polyclonal antibodies for the development of diagnostic tests based on the capture of antigens. 相似文献
2.
Kedees MH Azzouz N Gerold P Shams-Eldin H Iqbal J Eckert V Schwarz RT 《Experimental parasitology》2002,101(1):64-68
We expressed the main surface antigen of Plasmodium falciparum sporozoites, the circumsporozoite protein (CSP), in High Five (Trichoplusia ni) insect cells using the baculovirus system. Significant amounts of the recombinant protein could be obtained, as judged by SDS-PAGE, Western blot, and immunofluorescence analysis. The cellular localization for recombinant CSP was determined by immunofluorescence. The high fluorescence signal of the permeabilized cells, relative to that of fixed nonpermeabilized cells, revealed a clear intracellular localization of this surface antigen. Analysis of possible posttranslational modifications of CSP showed that this recombinant protein is only N-glycosylated in the baculovirus system. Although DNA-sequence analysis revealed a GPI-cleavage/attachment site, no GPI anchor could be demonstrated. These analyses show that the glycosylation status of this recombinant protein may not reflect its native form in P. falciparum. The impact of these findings on vaccine development will be discussed. 相似文献
3.
Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens 总被引:22,自引:0,他引:22
We describe here two systems for encoding foreign amino acid sequences in the exposed N-terminal segment of the major coat protein of bacteriophage fd. Small peptides can be encoded directly; larger peptides are encoded in hybrid bacteriophage particles, in which the capsid is formed from a mixture of wild-type and modified coat proteins. In both cases, the peptides are present in multiple copies per phage particle. Peptides that represent the circumsporozoite protein, the major surface antigen of the sporozoites of the malaria parasite, Plasmodium falciparum, were inserted in this way and found to be highly immunogenic. These systems should prove to be valuable in displaying specific or random peptides as antigens, and could lead to cheap and effective vaccines. They will also allow rapid screening of peptides as potential agents of other biological effects, with important applications in biomolecular design. 相似文献
4.
《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2001,762(1):77-86
The Plasmodium falciparum circumsporozoite (PfCS) protein (aa 19–405) has been cloned and expressed in E. coli. The protein was purified in a two-step process that was rapid and reproducible. E. coli cells were grown to a high density before induction for 1 h. Cells were disrupted by high pressure microfluidization and the total bacterial protein solubilized in 6 M Gu-HCl. The protein was refolded while bound to Ni–NTA agarose by exchange of 6 M Gu-HCl for 8 M urea and then slow removal of the urea. The eluted protein was further purified on Q Sepharose Fast Flow using conditions developed to remove E. coli proteins and reduce endotoxin (to 10 EU/50 μg). Yield was 20 mg of PfCS protein from 10 g of wet cell paste. The final protein product bound to HepG2 liver cells in culture and inhibited the invasion of those cells by sporozoites in an ISI assay greater than 80% over control cultures when used at 10 μg/ml. 相似文献
5.
6.
Sequence variation in putative functional domains of the circumsporozoite protein of Plasmodium falciparum. Implications for vaccine development 总被引:15,自引:0,他引:15
Sequences of the circumsporozoite protein gene from five isolates of the human malaria parasite Plasmodium falciparum are compared, and the extent of sequence variability within putative functional domains is assessed in terms relating to vaccine efficacy. Nucleotide substitutions were observed outside of the immunodominant domain. Of the substitutions observed outside of the repeat domain, none were silent. The substitutions correlated with biologically functional regions, such as a helper T cell epitope (Th2R) and a region (N1) which may be important in liver invasion. Contrary to previous impressions, the small numbers of amino acid changes in these areas of the protein seem potentially very significant. The immunodominant repeat region displays several characteristics that implicate a rapid evolutionary mechanism, most probably involving recombination. The data supporting this are 1) variable numbers of repeats, 2) a shifting pattern of substitutions among the isolates, and 3) codon bias. The region thus has the potential for very rapid change should an effective anti-repeat vaccine come into use. We conclude that strain variability is significant, that the potential for large scale variation in the repeats is great, and that regions that may be critical for an effective vaccine are polymorphic. Their potential impact on malaria vaccine development must be addressed. 相似文献
7.
The cellular immune response to the circumsporozoite (CS) protein of Plasmodium vivax of individuals from malaria-endemic areas of Brazil was studied. We examined the in vitro proliferative response of the peripheral blood mononuclear cells (PBMC) of 22 individuals when stimulated with a CS recombinant protein (rPvCS-2) and two other synthetic peptides based on the sequence of the P. vivax CS protein. Seven of the individuals from malaria-endemic area displayed an antigen-specific in vitro proliferative response to the recombinant protein PvCS-2 and one out of 6, proliferative response to the peptide 308-320. In contrast, none of the individuals displayed a proliferative response when stimulated with the D/A peptide which represent some of the repeated units present in this CS protein. Our study, therefore, provides evidence for the presence, within the major surface antigen of P. vivax sporozoites, of epitopes capable to induce proliferation of human PBMC. 相似文献
8.
Ultrastructural localization of Plasmodium falciparum circumsporozoite protein in newly invaded hepatoma cells 总被引:2,自引:0,他引:2
S B Aley C T Atkinson M Aikawa W L Maloy M R Hollingdale 《The Journal of parasitology》1987,73(6):1241-1245
The fate and disposition of the circumsporozoite (CS) protein of Plasmodium falciparum was investigated during hepatoma cell invasion with several sera raised against defined CS peptides, including both repeat and nonrepeat regions spanning approximately 60% of the P. falciparum CS gene product. Distribution of the protein, as revealed by immunoelectron microscopy, was limited to the surface of the sporozoite both before and after invasion. In particular, no CS protein antigen was detected in association with either the parasitophorous vacuole membrane or the host cell surface. 相似文献
9.
Plasmodium falciparum: immunogenicity of circumsporozoite protein constructs produced in Escherichia coli 总被引:6,自引:0,他引:6
R A Wirtz W R Ballou I Schneider L Chedid M J Gross J F Young M Hollingdale C L Diggs W T Hockmeyer 《Experimental parasitology》1987,63(2):166-172
The immunogenicity of Plasmodium falciparum recombinant circumsporozoite protein constructs R16tet32, R32tet32, and R48tet32 in mice was examined by measuring antibody responses by enzyme linked immunosorbent assay, immunofluorescence, circumsporozoite precipitation, and inhibition of sporozoite invasion. All three constructs were found to be immunogenic when administered alone, but antibody responses were greater for the larger constructs, R32tet32 and R48tet32. Increased dose, boosting, and the use of adjuvants further augmented antibody responses. R32tet32 was found to be the most immunogenic of the three constructs, and high levels of protective antibodies were found to persist for at least 44 weeks when the construct was given with alum. Clinical trials with alum adjuvanted R32tet32 have now begun. 相似文献
10.
The release of circumsporozoite (CS) protein by Plasmodium falciparum sporozoites was investigated to identify factors regulating this process within infected Anopheles gambiae mosquitoes. The potential for sporozoites to release CS protein in vitro was not dependent upon their site-specific developmental stage (i.e., mature oocysts, hemolymph, salivary glands), their duration in the vector, or their exposure to mosquito-derived components such as salivary glands or hemolymph. The capacity of sporozoites to release CS protein was depressed by mosquito blood feeding during periods of sporozoite migration to the salivary glands, but the effect was only temporary and those sporozoites already in the glands were not affected. Free CS protein in the salivary glands was present in 93.3% of 45 infective mosquitoes. Sporozoites from these same, individual mosquitoes were also tested in vitro for CS protein release. In both cases, the amount of soluble CS protein increased as a function of sporozoite density but the total amount of CS protein per sporozoite became progressively less with increasing numbers of sporozoites. Further experiments showed that sporozoite contact with increasing amounts of soluble CS protein caused a down-regulation of CS protein release. Thus, a primary factor regulating the production and release of CS protein by sporozoites is their contact with soluble CS protein within the mosquito. 相似文献
11.
The current vaccine against tuberculosis, Mycobacterium bovis strain bacillus Calmette-Guerin (BCG), offers potential advantages as a live, innately immunogenic vaccine vehicle for expression and delivery of protective recombinant antigens. Malaria is one of the severest parasitic diseases in humans especially in the developing world. No efficacious vaccine is currently available. However, circumsporozoite protein (CSP) is a malaria vaccine candidate currently undergoing clinical trials. We analyzed the immune response to recombinant BCG (rBCG) vaccine expressing Plasmodium falciparum CSP (BCG-CSP) under the control of heat shock protein 70 promoter in BALB/c mice. The lymphocytes proliferative response to P. falciparum soluble antigen was significantly higher than those in the groups of BCG and normal saline, and the production of cytokines (IFN-gamma and IL-2) in response to malaria antigen was significantly higher in rBCG and BCG groups than control group of normal saline. A specific IgG antibody response against P. falciparum antigen of CSP was also characterized. The booster injection could enhance the production of cytokine, proliferation responses of spleen lymphocytes and the antibodies titer of BCG-CSP. The results in the study demonstrated that rBCG vaccine producing CSP is an appropriate vaccine for further evaluation in non-human primates. 相似文献
12.
13.
Reece WH Pinder M Gothard PK Milligan P Bojang K Doherty T Plebanski M Akinwunmi P Everaere S Watkins KR Voss G Tornieporth N Alloueche A Greenwood BM Kester KE McAdam KP Cohen J Hill AV 《Nature medicine》2004,10(4):406-410
Many human T-cell responses specific for epitopes in Plasmodium falciparum have been described, but none has yet been shown to be predictive of protection against natural malaria infection. Here we report a peptide-specific T-cell assay that is strongly associated with protection of humans in The Gambia, West Africa, from both malaria infection and disease. The assay detects interferon-gamma-secreting CD4(+) T cells specific for a conserved sequence from the circumsporozoite protein, which binds to many human leukocyte antigen (HLA)-DR types. The correlation was observed using a cultured, rather than an ex vivo, ELISPOT assay that measures central memory-'type T cells rather than activated effector T cells. These findings provide direct evidence for a protective role for CD4(+) T cells in humans, and a precise target for the design of improved vaccines against P. falciparum. 相似文献
14.
Lawrence T. Wang Lais S. Pereira Patience K. Kiyuka Arne Schn Neville K. Kisalu Rachel Vistein Marlon Dillon Brian G. Bonilla Alvaro Molina-Cruz Carolina Barillas-Mury Joshua Tan Azza H. Idris Joseph R. Francica Robert A. Seder 《PLoS pathogens》2021,17(12)
Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites. These C-CSP-specific mAbs had limited binding to sporozoites in vitro that was increased by combination with neutralizing human “repeat” mAbs against the NPDP/NVDP/NANP tetrapeptides in the central repeat region of PfCSP. Nevertheless, passive transfer of repeat- and C-CSP-specific mAb combinations did not provide enhanced protection against in vivo sporozoite challenge compared to repeat mAbs alone. Furthermore, combining potent repeat-specific mAbs (CIS43, L9, and 317) that respectively target the three tetrapeptides (NPDP/NVDP/NANP) did not provide additional protection against in vivo sporozoite challenge. However, administration of either CIS43, L9, or 317 (but not C-CSP-specific mAbs) to mice that had been immunized with R21, a PfCSP-based virus-like particle vaccine that induces polyclonal antibodies against the repeat region and C-CSP, provided enhanced protection against sporozoite challenge when compared to vaccine or mAbs alone. Collectively, this study shows that while combining mAbs against the repeat and C-terminal regions of PfCSP provide no additional protection in vivo, repeat mAbs do provide increased protection when combined with vaccine-induced polyclonal antibodies. These data should inform the implementation of PfCSP human mAbs alone or following vaccination to prevent malaria infection. 相似文献
15.
G Posthuma J F Meis J P Verhave S Gigengack M R Hollingdale T Ponnudurai H J Geuze 《European journal of cell biology》1989,49(1):66-72
The distribution of circumsporozoite (CS) proteins of Plasmodium falciparum sporozoites was observed during the passage of mature sporozoites in the hemocoel of Anopheles stephensi and during their entrance and sojourn in the salivary gland cells (SGC). The CS protein was visualized using a monoclonal antibody (3SP2) and immunogold labeling on ultrathin cryosections. In the hemocoel the sporozoites cease synthesizing CS protein, and some of it is shedded resulting in a patchy labeling pattern on the outer pellicular membrane. No internal labeling was observed. The sporozoites enter the SGC by puncturing the basal or lateral membrane. Inside the SGC, CS protein synthesis is turned on again; the Golgi system, nuclear envelope and all 3 pellicular membranes contain CS immunoreactivity. In the last phase of maturation, micronemes display abundant CS immunoreactivity. Rhoptries also show some immunogold labeling, but not as much as the micronemes. 相似文献
16.
All of the coat proteins of the sporozoite and merozoite stages of Plasmodium, determined to date, contain tandem repeats and most of these contain at least one proline residue. These tandemly repeated segments of the circumsporozite (CS) proteins of P. falciparum and P. knowlesi have been shown to constitute an immunodominant epitope. Antibodies to these peptide segments have been shown to be protective and cause the shedding of the CS protein, known as the CSP reaction. In this study, four synthetic peptides were prepared by solid-phase peptide synthesis. The first peptide corresponds to the tetrapeptide tandem repeat in the CS protein of P. falciparum, repeated eight times, (NANP)8. The second peptide is an analogue of the first in which glycine is substituted for proline, (NANG)8. The third peptide corresponds to the tandem repeat of P. knowlesi, PK(1–24), which is repeated twice (QAQGDGANAGQP)2. The fourth peptide is a tetrapeptide repeat, corresponding to the C-terminal tetrapeptide of PK(1–24) and is repeated eight times, (AGQP)8. It is shown by CD measurements that the presence of proline in these repeats induces an increase in β-sheet (β-turn) content in the (NANP)8 peptide relative to the repeat of (NANG)8 and PK(1–24) peptide in aqueous media. The (AGQP)8 peptide has the highest β-sheet (β-turn) content in the synthetic peptides. It is concluded that this increase in defined structure correlates well with and hence may contribute to the increased antigenicity in these repeats. 相似文献
17.
Grüner AC Mauduit M Tewari R Romero JF Depinay N Kayibanda M Lallemand E Chavatte JM Crisanti A Sinnis P Mazier D Corradin G Snounou G Rénia L 《PloS one》2007,2(12):e1371
Background
Research aimed at developing vaccines against infectious diseases generally seeks to induce robust immune responses to immunodominant antigens. This approach has led to a number of efficient bacterial and viral vaccines, but it has yet to do so for parasitic pathogens. For malaria, a disease of global importance due to infection by Plasmodium protozoa, immunization with radiation-attenuated sporozoites uniquely leads to long lasting sterile immunity against infection. The circumsporozoite protein (CSP), an important component of the sporozoite''s surface, remains the leading candidate antigen for vaccines targeting the parasite''s pre-erythrocytic stages. Difficulties in developing CSP-based vaccines that reproduce the levels of protection afforded by radiation-attenuated sporozoites have led us to question the role of CSP in the acquisition of sterile immunity. We have used a parasite transgenic for the CSP because it allowed us to test whether a major immunodominant Plasmodium antigen is indeed needed for the induction of sterile protective immunity against infection.Methodology/Main Findings
We employed a P. berghei parasite line that expresses a heterologous CSP from P. falciparum in order to assess the role of the CSP in the protection conferred by vaccination with radiation-attenuated P. berghei parasites. Our data demonstrated that sterile immunity could be obtained despite the absence of immune responses specific to the CSP expressed by the parasite used for challenge.Conclusions
We conclude that other pre-erythrocytic parasite antigens, possibly hitherto uncharacterised, can be targeted to induce sterile immunity against malaria. From a broader perspective, our results raise the question as to whether immunodominant parasite antigens should be the favoured targets for vaccine development. 相似文献18.
Synthetic Plasmodium falciparum circumsporozoite peptides elicit heterogenous L3T4+ T cell proliferative responses in H-2b mice 总被引:9,自引:0,他引:9
A R Togna G Del Giudice A S Verdini F Bonelli A Pessi H D Engers G Corradin 《Journal of immunology (Baltimore, Md. : 1950)》1986,137(9):2956-2960
The ability of synthetic P. falciparum (NANP)n circumsporozoite peptides to elicit murine T cell proliferative responses was studied. When C57BL/6, C3H, and DBA/2 mice were injected with (NANP)40, only C57BL/6 (H-2b)-immune lymph node cells proliferated on restimulation in vitro with the same peptide. By using anti-I-A monoclonal antibodies or spleen cells from congenic H-2b mice as a source of antigen-presenting cells, the T cell proliferative response was shown to be restricted to the I-Ab region of the C57BL/6 haplotype. These results are in agreement with previous experiments which demonstrated that the anti-(NANP)40 antibody response was uniquely restricted to C57BL/6 (H-2b) mice. Several C57BL/6 long-term (NANP)n-specific T cell lines and clones were derived. All of the clones exhibited the L3T4 helper T cell phenotype. A considerable heterogeneity of T cell responses was observed when the lines and clones were stimulated with different concentrations of the various peptides studied. The results, together with the observed genetic restriction for both antibody and T cell responses, suggest that perhaps not all individuals who receive a similar repetitive tetrapeptide sporozoite malaria vaccine will develop T cell and or antibody responses. 相似文献
19.
Herrera S Bonelo A Perlaza BL Valencia AZ Cifuentes C Hurtado S Quintero G López JA Corradin G Arévalo-Herrera M 《International journal for parasitology》2004,34(13-14):1535-1546
Three long synthetic peptides corresponding to amino (N), repeat (R) and carboxyl (C) regions of the Plasmodium vivax circumsporozoite (CS) protein were synthesised and used to assess their potential as vaccine candidates. Antigenicity studies were carried out using human blood samples from residents of a malaria-endemic area of Colombia, and immunogenicity was tested in Aotus monkeys. The N and C peptides spanned the total native amino and carboxyl flanking regions, whereas the R peptide corresponded to a construct based on the first central nona-peptide repeated in tandem three times and colinearly linked to a universal T-cell epitope (ptt-30) derived from tetanus toxin. All three peptides had been shown previously to contain several B-, T-helper (Th) and Cytotoxic T Lymphocytes (CTL) epitopes. Sixty-one percent of the human sera reacted with the R region, whereas 35 and 39% of the samples had antibodies against the N and C peptides, respectively. Human Peripheral Blood Mononuclear Cells (PBMC) showed higher levels of IFN-gamma than IL-4 when stimulated with peptides containing Th epitopes. Aotus monkeys immunised with the peptides formulated in either Montanide ISA720 or Freund's adjuvants produced strong antibody responses that recognised the peptide immunogens and the native circumsporozoite protein on sporozoites. Additionally, high IFN-gamma production was induced when Aotus lymphocytes were stimulated in vitro with each of the three peptides. We observed boosting of antibody responses and IFN-gamma production by exposure to live sporozoites. These results confirm the high antigenicity and immunogenicity of such synthetic polypeptides and underline their vaccine potential. 相似文献
20.
Molecular mechanism of host specificity in Plasmodium falciparum infection: role of circumsporozoite protein 总被引:5,自引:0,他引:5
Rathore D Hrstka SC Sacci JB De la Vega P Linhardt RJ Kumar S McCutchan TF 《The Journal of biological chemistry》2003,278(42):40905-40910
Plasmodium falciparum sporozoites invade liver cells in humans and set the stage for malaria infection. Circumsporozoite protein (CSP), a predominant surface antigen on sporozoite surface, has been associated with the binding and invasion of liver cells by the sporozoites. Although CSP across the Plasmodium genus has homology and conserved structural organization, infection of a non-natural host by a species is rare. We investigated the role of CSP in providing the host specificity in P. falciparum infection. CSP from P. falciparum, P. gallinaceum, P. knowlesi, and P. yoelii species representing human, avian, simian, and rodent malaria species were recombinantly expressed, and the proteins were purified to homogeneity. The recombinant proteins were evaluated for their capacity to bind to human liver cell line HepG2 and to prevent P. falciparum sporozoites from invading these cells. The proteins showed significant differences in the binding and sporozoite invasion inhibition activity. Differences among proteins directly correlate with changes in the binding affinity to the sporozoite receptor on liver cells. P. knowlesi CSP (PkCSP) and P. yoelii CSP (PyCSP) had 4,790- and 17,800-fold lower affinity for heparin in comparison to P. falciparum CSP (PfCSP). We suggest that a difference in the binding affinity for the liver cell receptor is a mechanism involved in maintaining the host specificity by the malaria parasite. 相似文献