首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Pig alpha-fetoprotein (AFP) and albumin were isolated from fetal serum by DEAE-Sephadex ion exchange chromatography combined with Cibacron Blue-Sepharose and trypsin-Sepharose adsorptions. 2. AFP, fetal albumin and adult albumin carried 2.6, 2.4, and 1.9 moles of fatty acids per mole of protein, respectively. 3. Most of fatty acids bound to AFP were polyunsaturated: mainly arachidonic (20:4, n-6) and docosahexaenoic (22:6, n-3) acids, which accounted respectively for 21.7 and 18.8% of the total fatty acids. 4. By contrast, the fatty acids found in the albumins (fetal and adult) were preferentially saturated and monounsaturated. 5. Arachidonic acid was a minor component in both albumins, and no docosahexaenoic acid was detected.  相似文献   

2.
Fatty acids bound to alpha-fetoprotein and albumin during rat development   总被引:1,自引:0,他引:1  
The time-course levels and composition of the fatty acids bound to rat alpha-fetoprotein (AFP) and albumin from several sources, were determined throughout development, and related to the intake of lipids from milk and the compositional changes in brain and liver fatty acids. The major fatty acids bound to AFP were acids bound to AFP were polyunsaturated and mainly docosahexaenoic acid (22:6(n-3], either from fetal serum (23.1%) or whole fetuses (21.6%), whereas palmitic (34.1%) and oleic (29.9%) acids were the main acids bound to albumin from the same sources. Amniotic fluid AFP contained less fatty acids (0.8 mol/mol protein) than that of fetal serum (1.4 mol/mol protein), and especially noticeable was a reduced amount of 22:6 (9.6%). Both AFP-concanavalin A microforms showed identical fatty acid composition. Levels of 22:6 bound to AFP decreased quickly after birth until a minimum at 8-10 days, increasing moderately thereafter. This minimum is coincident in time with a maximal accumulation of this fatty acid by brain and a loss of 22:6 by liver. Except for colostrum, levels of 22:6 in milk lipids were low and fairly constant, but always greater than those of its precursor, linolenic acid (18:3 (n-3]. These results support a specialized role of AFP in the plasma transport and tissue delivery of polyunsaturated fatty acids, and mainly docosahexaenoic acid.  相似文献   

3.
The binding of bilirubin and the polyene fatty acids cis-parinaric acid and cis-eleostearic acid to human alpha-fetoprotein was studied using fluorescence quenching and fluorescence enhancement techniques. alpha-Fetoprotein has three fatty acid binding sites of decreasing affinity (association constants 2.1 x 10(7) M-1 9.1 X 10(5) M-1, and 1.4 x 10(5) M-1) and one relatively strong and one relatively weak bilirubin binding site (association constants 1.1 x 10(7) M-1 and 1.8 x 10(5) M-1). These association constants are slightly weaker than the corresponding association constants for binding to human albumin. Competition experiments failed to show preferential binding of polyunsaturated fatty acids. Fluorescence quenching was used to determine 11 ligand-ligand and ligand-tryptophanyl residue distances. Each of these 11 calculated distances (ranging from 19 A to 32 A) was within 5 A of the corresponding distances measured previously for human albumin (Berde, C.B., Hudson, B.S., Simoni, R.D., and Sklar, L.A. 1979, J. Biol. Chem. 254, 391-400). Thus, in addition to previously described sequence homology, immunologic cross-reactivity, and other similarities, human albumin and human alpha-fetoprotein have functional and geometric homologies.  相似文献   

4.
Human alpha-fetoprotein (AFP) is able to bind arachidonic acid with high affinity Ka = 10(7)M-1 and a limited number of binding sites NS = 3. Thirty different fatty acids were tested by competition using labelled arachidonic acid as tracer. This experiment demonstrated a great specificity for the fatty acid-AFP interaction. Only polyunsaturated long chain fatty acids were able to bind to AFP with high affinity. The metabolic products of arachidonic acid i.e. prostaglandins presented no affinity for the AFP molecule.  相似文献   

5.
We report the equilibrium binding parameters for the interactions of the estrogen analogue diethylstilbestrol (DES) with highly purified rat alpha 1-fetoprotein (AFP) and serum albumin preparations. At 25 degrees C and pH 7.4, an association constant (Ka) of about 1.5 X 10(6)M-1 and 2 sites/mole are measured with the DES-AFP system, whereas for the DES-albumin interaction, we find a Ka of approximately 2 X 10(5)M-1 and about 11 sites/mole of protein. The removal of fatty acids from pure AFP causes a reversible 3 fold increase of the number of DES binding sites; the same delipidation procedure applied to albumin slightly diminishes its DES binding parameters. We also demonstrate the capability of DES to displace competitively estradiol-17 beta (E2) from its high affinity sites on the estrophilic rat AFP. Finally, the binding behaviour of the two serum proteins towards the synthetic estrogen is compared to their interaction with the natural hormones. The physiological and pharmacological relevance of these data is discussed.  相似文献   

6.
The binding of estradiol-17 beta (E2), diethylstilbestrol (DES), and polyene fatty acids, in particular arachidonate (C20:4), to alpha 1-fetoprotein (alpha-FP) and albumin purified from mouse embryo sera was studied using equilibrium dialysis and electrophoretic techniques. E2, arachidonate, and DES all bind to alpha-FP, but with decreasing strength. E2 is a high affinity, low capacity ligand (Ka approximately 0.8 X 10(8) M-1 and approximately 0.3 sites/mol of alpha-FP at 25 degrees C); arachidonate is a weaker ligand disposing of more sites (Ka approximately 0.3 X 10(7) M-1 and 4-5 sites/mol of alpha-FP); the binding of DES is of comparatively low affinity and capacity (Ka approximately 0.2 X 10(7) M-1 and n approximately 0.7/mol of alpha-FP). In spite of different structures and equilibrium parameters, E2, DES, and arachidonate are able to compete with each other for binding to the fetoprotein. The C22:4 and C22:6 fatty acids are also efficient concentration-dependent inhibitors of E2 or DES binding. Albumin binds the fatty acids and DES, but equilibrium parameters are different from those of alpha-FP. In particular, arachidonate is a better ligand for albumin, where it interacts with at least two classes of apparent sites (Ka1 approximately 0.3 X 10(8) M-1 and n1 approximately 1; Ka2 approximately 0.2 X 10(7) M-1 and n2 approximately 30). In contrast to alpha-FP, albumin virtually does not bind E2. Also, no competition could be demonstrated between DES and fatty acid ligands for binding to albumin. None of the studied interactions, with either albumin or alpha-FP, was modified even by high doses of bilirubin. The possible functions of the various binding activities present in fetal sera in the process of growth are discussed.  相似文献   

7.
Binding and proximity relationships of hydrophobic ligands on human serum albumin have been studied using absorption, fluorescence, circular dichroism, and electron paramagnetic resonance spectroscopy. The ligands studied were bilirubin, two conjugated linear polyene fatty acids, cis-parinaric acid and cis-eleostearic acid, and three nitroxide derivatives of stearic acid with doxyl groups at positions 5, 10, and 12, respectively. Binding of polyene fatty acids was monitored by absorption peak shifts, induced circular dichroism, enhancement of fluorescence, and energy transfer between albumin's single tryptophanyl residue and the polyene chromophore. Induced circular dichroism studies indicate excitonic ligand-ligand interaction between bound fatty acids. Fluorescence enhancement of cis-parinaric acid was analyzed using a stepwise multiple equilibrium model, and six binding constants in the range 10(8) to 10(6) M-1 were obtained, in agreement with previous measurements for other fatty acids. The temperature dependence of the equilibrium constants indicates that the binding enthalpy is nearly zero. Fluorescence energy transfer was similarly used to quantitate bilirubin binding to albumin. Energy transfer, nitroxide quenching of fluorescence, and electron paramagnetic resonance spectroscopy were used to elucidate binding geometries which support and extend proposed structural models for albumin. It is suggested that the first two fatty acids bind side-by-side in an antiparallel fashion in domain III of human serum albumin.  相似文献   

8.
The interaction of fatty acids with bovine vitamin D-binding protein (DBP) was studied using a partition equilibrium method. This protein has one high affinity site for binding of fatty acids with an association constant Ka = 7 x 10(5) M-1 for palmitic acid and Ka = 6 x 10(5) M-1 for arachidonic acid. Competition experiments showed that palmitic acid hardly competes with 25-hydroxycholecalciferol for binding to DBP. However, arachidonic acid showed comparatively a stronger competition for binding to this protein. The great difference in competition of palmitic and arachidonic acids with 25-hydroxycholecalciferol may be related to changes in DBP conformation promoted by the binding of different ligands.  相似文献   

9.
Binding, spectral and immunological studies were performed to demonstrate the conformational changes in rodent and human alpha-fetoprotein (AFP) induced by a free fatty acid environment. Scatchard analysis of estradiol (E2) binding to purified rat AFP indicated that unsaturated fatty acids changed the number of binding E2 sites and the apparent E2 equilibrium dissociation constant which varied non-linearly with docosahexaenoic acid concentration. UV spectral analysis of rodent and human AFPs showed that the absorbance minimum of AFP incubated with unsaturated fatty acid (L-AFP) was red-shifted, broadened and less pronounced than that of purified native AFP (N-AFP). Immunochemical studies with specific polyclonal antibodies to purified rodent and human AFPs (N-AFP antibodies) showed that these proteins lost immunoreactivity after incubation with unsaturated fatty acid. N-AFP antibodies recognized fewer epitopes on L-AFP than on N-AFP, whatever the species. Specific anti-rat L-AFP antibodies were used to demonstrate specific epitopes on rat L-AFP. Rat L-AFP antibodies did not recognize rat N-AFP. Saturated fatty acids were without effect on the binding, spectral and immunological properties of rodent and human AFPs. RIA or ELISA values for human AFP from fetal serum, hepatoma serum, and cord serum, were reduced 80, 50 and 5%, respectively, by unsaturated fatty acids. This decrease correlated with the relative percentage of polyunsaturated fatty acid in each biological fluid. Such results indicate that an unsaturated fatty acid environment induces conformational changes in AFP which may modulate the endocrine and immune functions of this protein.  相似文献   

10.
Binding of Phenol Red to human serum albumin at pH 7.0 was studied by ultrafiltration (n1 = 1, K1 = 3.9 X 1-(4) M-1, n2 = 5, K2 = 9.6 X 10(2) M-1). The presence of 1 mol of octanoate or decanoate per mol of albumin caused a decrease in dye binding (dye/protein molar ratio 1:1), which, in contrast with additional fatty acid, was very pronounced: 1-8 mol of palmitate or stearate resulted in a small, and apparently linear, displacement of Phenol Red. The displacement effect of 1-5 mol of oleate, linoleate or linolenate per mol of albumin was comparable with that of the equimolar concentrations of palmitate or stearate. A higher molar ratios the unsaturated acids caused a drastic decrease in dye binding. The different Phenol Red-displacement effects of low molar ratios of medium-chain and long-chain fatty acids indicate that these acids have different high-affinity binding sites. In accordance with this proposal, low concentrations of stearate had only a small effect on the Phenol Red-displacement effect of octanoate. Phenol Red-binding curves in the presence of 1 mol of octanoate, 8 mol of stearate and 6 or 7 mol of linolenate per mol of albumin respectively indicated that the dye and the fatty acids do not complete for a common primary binding site. In contrast, a secondary Phenol Red-binding site could be identical with the primary octanoate-binding site. Furthermore, the primary Phenol Red-binding site could be the same as a secondary linolenate-binding site. Assignment of the different primary binding sites for Phenol Red and for medium-chain and long-chain fatty acids to a model of the secondary structure of albumin is attempted.  相似文献   

11.
Binding of branched-chain 2-oxo acids to bovine serum albumin.   总被引:4,自引:4,他引:0       下载免费PDF全文
1. Binding of branched-chain 2-oxo acids to defatted bovine serum albumin was shown by gel chromatography and equilibrium dialysis. 2. Equilibrium-dialysis data suggest a two-side model for binding in Krebs-Henseleit saline at 37 degrees C with n1 = 1 and n2 = 5. Site association constants were: 4-methyl-2-oxovalerate, k1 = 8.7 x 10(3) M-1, k2 = 0.09 x 10(3) M-1; 3-methyl-2-oxovalerate, k1 = 9.8 x 10(3) M-1, k2 = 0.08 x 10(3) M-1; 3-methyl-2-oxobutyrate, k1 = 1.27 x 10(3) M-1, k2 = less than 0.05 x 10(3) M-1. 3. Binding of 4-methyl-2-oxovalerate to defatted albumin in a phosphate-buffered saline, pH 7.4, gave the following thermodynamic parameters: primary site delta H0(1) = -28.6kJ . mol-1 and delta S0(1) = -15.2J . mol-1 . K-1 (delta G0(1) = -24.0kJ . mol-1 at 37 degrees C) and secondary sites delta H0(2) = -25.4kJ . mol-1 and delta S0(2) = -46.1J . mol-1 . K-1 (delta G0(1) = -11.2kJ . mol-1 at 37 degrees C). Thus binding at both sites is temperature-dependent and increases with decreasing temperature. 4. Inhibition studies suggest that 4-methyl-2-oxovalerate may associate with defatted albumin at a binding site for medium-chain fatty acids. 5. Binding of the 2-oxo acids in bovine, rat and human plasma follows a similar pattern to binding to defatted albumin. The proportion bound in bovine and human plasma is much higher than in rat plasma. 6. Binding to plasma protein, and not active transport, explains the high concentration of branched-chain 2-oxo acids leaving rat skeletal muscle relative to the concentration within the tissue, but does not explain the 2-oxo acid concentration gradient between plasma and liver.  相似文献   

12.
The binding to resting and activated T lymphocytes of two radiolabelled fatty acids (oleic and arachidonic) was studied in the presence or in the absence of alpha-fetoprotein (AFP) as carrier protein. Fatty acid binding by resting and activated T lymphocytes was determined at 4 degrees C as a function of the concentration of fatty acid and AFP. Under the conditions employed, the following observations were made: (1) in the presence of AFP, fatty acids (oleic and arachidonic acid) are bound to cells by a two-component pathway; one is a saturable process, evidenced when the fatty acid to AFP (FA/AFP) molar ratio was fixed at 1 and the concentration of the fatty acid and the protein varied from 0.1 to 3.2 microM, and the second is a nonsaturable function of FA/AFP molar ratio and was linearly related to the unbound fatty acid concentration in the medium over the entire range studied; (2) in the absence of AFP, the nonsaturable process appears to be the only component of fatty acid binding; 3) at all tested concentrations of free (unbound) fatty acid in the medium, net fatty acid binding by either resting or activated T cells was considerably greater in the presence than in the absence of AFP; (4) in the presence of AFP, fatty acid binding was much higher in activated T cells than in resting T cells, whereas in the absence of AFP, nonsignificant differences were observed between activated and resting T cells; and (5) the time course of fatty acid and AFP binding at 4 degrees C revealed that, at equilibrium, the number of fatty acid molecules bound to the cell was much greater than that of AFP suggesting an accelerated dissociation of the fatty acid upon interaction of the AFP-fatty acid complex with putative cell receptors. It is concluded to the existence of an AFP/AFP-receptor pathway that facilitates the binding of fatty acids to T lymphocytes, particularly upon their blast transformation. This pathway may fulfill the increased requirement for fatty acids characteristic of proliferating cells and may serve to regulate the endocytosis of fatty acids with modulatory effects on lymphocyte function and to protect cells from their cytotoxic potential when internalized in excess.  相似文献   

13.
alpha-Fetoprotein and albumin, two members of a multigene family, reversibly bind fatty acids with high affinity. The origin of alpha-fetoprotein (AFP) and albumin present in fetal tissues other than the liver and yolk sac is a subject of controversy. In this work, we have searched for the presence of the albumin and AFP mRNA molecules in different fetal organs of the baboon (Papio cinocephalus), using a highly sensitive gel-blot hybridization assay with human albumin and AFP cDNA probes. Large amounts of albumin and AFP mRNA molecules were found in the fetal liver; significant quantities were also present in the gastrointestinal tract and in the kidney. No detectable levels were found in the other tissues examined (brain, skin, spleen, pancreas, muscle, heart, thymus, placenta, and amnion). After injection of radiolabeled AFP into pregnant baboons, all fetal tissues took up the protein. White adipose tissue, kidney, intestine, lung, liver, and cerebral cortex showed a great uptake of exogenous AFP. [14C]Docosahexaenoic acid (22:6, n-3), injected at the same time, was actively transferred from the maternal compartment across the placenta and incorporated into cellular lipids by all fetal tissues and particularly by liver (around 70% of total incorporation). The levels of [14C]docosahexaenoic acid per gram of tissue increased in the order: maternal blood less than placenta less than fetal liver, indicating a selective accumulation of this fatty acid by the fetus. These results indicate that intracellular AFP in non-hepatic tissues of the developing baboon is, for the most part, of plasma origin.  相似文献   

14.
Human alpha fetoprotein (AFP) binds bilirubin with an affinity somewhat lower than albumin. Free bilirubin was found to have an extinction maximum at 440 nm with an extinction coefficient of 4.97 x 10(4) M-1cm-1. AFP binding with the bile pigment elicits a blue shift while albumin interaction produced red spectral shift.  相似文献   

15.
Characteristics of the binding of 3-carbethoxipsoralen (3CPS) to human serum albumin (HSA) and serum proteins have been studied. An electrophoretic study showed that the predominant binding protein fraction was albumin, with small binding to globulins. Binding to HSA, studied by equilibrium dialysis, is 75% and characterized by a small saturable number of binding sites (N = 0.27) with a moderate affinity constant (K = 8 X 10(4) M-1). Free fatty acids were shown to decrease 3CPS binding to HSA by a non competitive process.  相似文献   

16.
Summary The protective influence of bovine serum albumin against growth inhibition caused by fatty acids was studied in human hepatoma (HepG2) and immortalized human kidney epithelial (IHKE) cells. In general, growth inhibition by unsaturated fatty acids (0.15 mmol/liter) increased with increasing number of double bonds. For HepG2 cells crude albumin (1g/100 ml) did not greatly modify growth inhibition by arachidonic, eicosapentaenoic, and docosahexaenoic acid. With oleic, linoleic, and linolenic acids, crude and defatted albumin stimulated cell growth. In contrast, for IHKE cells both albumins counteracted growth inhibition by unsaturated fatty acids to approximately the same extent. When HepG2 cells were cultured in the presence of saturated fatty acids (0.3 mmol/liter), C2, C6, and C8 had no or little inhibitory effect. C10 and C12 inhibited cell growth appreciably, whereas C14, and especially C16, had poor inhibitory effects. Crude albumin counteracted growth inhibition by all these fatty acids. In contrast, defatted albumin had little or no effect (except against C10 and C12), and even increased the growth inhibition by C14 and C16. With unsaturated fatty acids there seemed to be an inverse relationship between cell growth and the concentration of thiobarbituric acid reactive substances (TBARS) in media. Vitamin E abolished growth inhibition (and the increase in TBARS concentration) by unsaturated fatty acids. The complex interaction between fatty acids and albumins calls for great caution when interpreting data on growth effects.  相似文献   

17.
Intact human sperm incorporated radiolabelled fatty acids into membrane phospholipids when incubated in medium containing bovine serum albumin as a fatty acid carrier. The polyunsturated fatty acids were preferentially incorporated into the plasmalogen fraction of phospholipid. Uptake was linear with time over 2 hr; at this time sufficient label was available to determine the loss of fatty acids under conditions of spontaneous lipid peroxidation. Loss of the various phospholipid types, the loss of the various fatty acids from these phospholipids, and the overall loss of fatty acids were all first order. The loss of saturated fatty acids was slow with first order rate constant k1 = 0.003 hr?1; for the polyunsaturated fatty acids, arachidonic and docosahexaenoic acids, k1 = 0.145 and 0.162 hr?1, respectively. The rate of loss of fatty acids from the various phospholipid types was dependent on the type, with loss from phosphatidylethanolamine being the most rapid. Among the phospholipid types, phosphatidylethanolamine was lost at the greatest rate. Analysis of fatty acid loss through oxidation products was determined for radiolabelled arachidonic acid. Under conditions of spontaneous lipid peroxidation at 37°C under air in the absence of albumin, free arachidonic acid was found in the medium, along with minor amounts of hydroxylated derivative. All the hydroperoxy fatty acid remained in the cells. In the presence of albumin, all the hydroperoxy fatty acid was found in the supernatant bound to albumin; none could be detected in the cells. Albumin is known as a very potent inhibitor of lipid peroxidation in sperm; its action may be explained, based on these results, as binding the damaging hydroperoxy fatty acids. These results also indicate that a phospholipase A2 may act in peroxidative defense by excising a hydroperoxy acyl group from phospholipid and providing the hydroperoxy fatty acid product as substrate to glutathione peroxidase. This formulation targets hydroperoxy fatty acid as a key intermediate in peroxidative degradation. © 1995 wiley-Liss, Inc.  相似文献   

18.
Placental transport of long chain polyunsaturated fatty acids is important for fetal growth and development. In order to examine the effects of leptin and insulin on fatty acid uptake by the placenta, placental choriocarcinoma (BeWo) cells were used. BeWo cells were incubated for 5h at 37 degrees C in the absence or presence of different concentrations of insulin (0.6, 60, and 100 ng) or leptin (10 ng) with 200 microM of various radiolabeled fatty acids (docosahexaenoic acid, arachidonic acid, eicosapentaenoic acid, and oleic acid, mixed with 1:1 bovine serum albumin (fat free). After incubation, the uptake and distribution of these fatty acids into different cellular lipid fractions were determined. The uptakes of oleic, eicosapentaenoic, arachidonic, and docosahexaenoic acids were 15.36+/-4.1, 19.95+/-3.6, 28.56+/-8.1, and 62.25+/-9.5 nmol/mg of protein, respectively, in BeWo cells. Incubation of these cells with insulin (0.6 or 60 ng/ml) or leptin (10 ng/ml) did not significantly alter uptake of any of these fatty acids (P>0.5). Insulin or leptin also did not affect beta oxidation of fatty acids in these cells. In contrast, leptin (10 ng/ml) and insulin (0.60 ng/ml)) stimulated the uptake of oleic acid (7.4+/-2.3 nmol/mg protein) in human adipose cells, SGBS cells by 1.28- and 2.48-fold (P<0.05), respectively. The distribution of fatty acids in different cellular lipid fractions was also not affected by these hormones. Our data indicate that unlike adipose tissue, fatty acid uptake and metabolism in placental trophoblasts is not regulated by insulin or leptin.  相似文献   

19.
Docosahexaenoic acid is found to be bound to three equivalent sites on albumin with the same affinities as palmitic acid at 0–38°C, which demonstrates that ethene-1,2-diyl- and methylene-groups contribute equally to the affinity. The equilibrium dissociation constants (K dm s) for red cell membrane binding sites of linoleic- and docosahexaenoic acid at pH 7.3 are determined at temperatures between 0 and 37°C. The temperature-independent capacities for binding are 12 ± 1 and 25.4 ± 3.0 nmoles g−1 ghosts respectively. Double isotope binding experiments reveal that the unsaturated fatty acids: arachidonic-, linoleic-, docosahexaenoic-, and oleic acid have partially shared capacities in ratios approximately 1:2:4:5, in contrast to the noncompetitive binding of palmitic acid. The observations suggest a two-tier binding limitation. One is the number of protein sites binding fatty acid anions electrostatically and the other is the number of suitable annular lipids adaptively selected among membrane lipids by the hydrocarbon chain. These competition conditions are confirmed by measurements of the tracer exchange efflux at near 0°C from albumin-free and albumin-filled ghosts of linoleic- and docosahexaenoic acid, either alone or in the presence of arachidonic- and palmitic acid. Under equilibrium conditions, the calculated ratios of inside to outside membrane binding is below 0.5 for four unsaturated fatty acids. The unidirectional rate constants of translocation between the inside and the outside correlate with the number of double bonds in these fatty acids, which are also correlated with the dissociation rate constants of the complexes with albumin. The membrane permeation occurs presumably by binding of the anionic unsaturated fatty acids to an integral protein followed by channeling of the neutral form between opposite binding sites of the protein through annular lipids encircling the protein. Received: 30 June 1997/Revised: 23 February 1998  相似文献   

20.
In an attempt to learn how nonsteroidal factors modulate brain progestin and glucocorticoid receptors, the effects of saturated and unsaturated fatty acids, and phosphatidylinositol on the binding of [3H]R5020 or [3H]dexamethasone, determined by sucrose density gradient and gel filtration on LH20, were examined in the cerebral cortical cytosol from 10-day-old female rats which contain a considerable amount of progestin and glucocorticoid receptors. Unsaturated fatty acids such as oleic (C18:1), arachidonic (C20:4) and docosahexaenoic acid (C22:4) depressed the [3H]R5020 or [3H]dexamethasone binding in increasing order, but saturated fatty acids had no effect. Arachidonic and docosahexaenoic acids, which were strong inhibitors, lowered the binding dose dependently. The fatty acid inhibition on brain progestin and glucocorticoid receptors was thus a function of acid dose and degree of acid unsaturation. Interestingly, prostaglandin D2 did not show any effect. Among phospholipids tested the inhibitory effect of phosphatidylinositol on the [3H]R5020 binding was evident, but no significant effect was found with phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine or sphingomyelin. The phosphatidylinositol inhibition was dose dependent. Analysis on kinetics and Scatchard plot have revealed the noncompetitive type of inhibition by arachidonic acid and phosphatidylinositol. From these results it is suggested that the unsaturated nonestrified fatty acid, arachidonic acid, and phosphoinositides modulate the brain progestin and, possibly, glucocorticoid receptors through their binding at sites different from steroid binding sites on the respective receptor molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号