首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Covalent immobilization of penicillin acylase from Streptomyces lavendulae   总被引:4,自引:0,他引:4  
Penicillin acylase from Streptomyces lavendulae has been covalently immobilized to epoxy-activated acrylic beads (Eupergit C). Consecutive modification of the matrix with bovine serum albumin leads to a new biocatalyst (ECPVA) with enhanced activity (1.5 fold) in the hydrolysis of penicillin V respect to its soluble counterpart. This biocatalyst had a K m value of 7.6 mM, slightly higher than K m for native acylase (3 mM). In addition, ECPVA can be recycled for at least 50 consecutive batch reactions without loss of catalytic activity.  相似文献   

2.
A new mutant of the industrial enzyme penicillin G acylase (PGA) from Escherichia coli has been designed to improve its reversible immobilization on anionic exchangers (DEAE- or polyethyleneimine [PEI]-coated agarose) by assembling eight new glutamic residues distributed homogeneously through the enzyme surface via site-directed mutagenesis. The mutant PGA is produced and processed in vivo as is the native enzyme. Moreover, it has a similar specific activity to and shows the same pH activity profile as native PGA; however, its isoelectric point decreased from 6.4 to 4.3. Although the new enzyme is adsorbed on both supports, the adsorption was even stronger when supports were coated with PEI, allowing us to improve the enzyme stability in organic cosolvents. The use of restrictive conditions during the enzyme adsorption on anionic exchangers (pH 5 and high ionic strength) permitted us to still further increase the strength of adsorption and the enzyme stability in the presence of organic solvents, suggesting that these conditions allow the penetration of the enzyme inside the polymeric beds, thus becoming fully covered with the polymer. After the enzyme inactivation, it can be desorbed to reuse the support. The possibility to improve the immobilization properties on an enzyme by site-directed mutagenesis of its surface opens a promising new scenario for enzyme engineering.  相似文献   

3.
The folding and solution conformation of penicillin G acylase   总被引:1,自引:0,他引:1  
The solution conformation properties of penicillin G acylase (EC 3.5.1.11) have been characterised by near- and far-ultraviolet circular dichroism, steady-state and time-resolved fluorescence spectroscopy and differential sedimentation velocity. The enzyme (86 kDa) was found to be spherical and stable unfolding over a narrow range of urea concentrations in an apparently cooperative fashion with a mid-point of 4.5 M urea. Separation of its constituent alpha and beta peptides (23.8 kDa and 62.2 kDa, respectively) was accompanied by loss of enzyme activity and unfolding, the kinetics of unfolding being highly dependent upon urea concentration. Urea gradient gel electrophoresis showed that the separated beta peptide aggregates over a wide range of urea concentrations but that the alpha peptide refolds reversibly to a compact state. Physical studies showed that the refolded alpha peptide has a compact but asymmetric structure with more alpha helix than the native enzyme, but is more sensitive to denaturant. The latter is suggested to be due to a hydrophobic patch detected by 8-anilino-1-naphthalene sulfonic acid binding and which is normally covered by the beta peptide in the native enzyme. The results of these investigations indicate that the alpha peptide constitutes a folding domain and suggest that it plays a key role in folding of the precursor for penicillin acylase.  相似文献   

4.
Zhao J  Wang Y  Luo G  Zhu S 《Bioresource technology》2011,102(2):529-535
In this study, macro-mesoporous silica spheres were prepared with a micro-device and used as the support for the immobilization of penicillin G acylase (PGA). To measure the enzymatic activity, the silica spheres with immobilized PGA were placed into a packed-bed reactor, in which the hydrolysis of penicillin G was carried out. The influences of the residence time, the initial concentration of the substrate, the accumulation of the target product 6-aminopenicillanic acid, and the enzyme loading amount on the performance of the immobilized PGA were investigated. The introduction of macropores increased the enzyme loading amount and decreased the internal mass transfer resistance, and the results showed that the enzyme loading amount reached 895 mg/g (dry support), and the apparent enzymatic activity achieved up to 1033 U/g (dry support). In addition, the immobilized PGA was found to have great stability.  相似文献   

5.
A simple, highly sensitive, and rapid assay for high-throughput screening of penicillin G acylase-producing bacteria is presented. The method is based on the specific release of fluorescent 7-amino-4-methyl-coumarin through cleavage of phenylacetyl-4-methyl-coumaryl-7-amide by penicillin G acylase. The present method is suitable for screening pure enzymes as well as various penicillin G acylases like those from Escherichia coli, Proteus rettgeri, and Kluyvera citrophila in cell extracts. In addition, the new substrate was used for rapid assay of amidase activity in nondenaturing polyacrylamide gels.  相似文献   

6.
A procedure is described for the immobilization of penicillin G acylase (PA) on Amberlite XAD7 modified by transamidation with 1,2-ethylenediamine and activated with glutaraldehyde. Reduction with sodium borohydride of the Schiff's bases formed between the amino groups of the protein and glutaraldehyde results in a dramatic improvement of the operational stability of the immobilized enzyme without affecting the catalytic activity. The enzyme kept in presence of the substrate, penicillin G, displays an increased stability with respect to that stored in pure phosphate buffer solution. The inactivation kinetics of the immobilized preparations of PA, determined in a continuous fixed bed reactor, as well as a discontinuous batch reactor, are reported.  相似文献   

7.
Penicillin G (2%, w/v in phosphate buffer, pH 8) was hydrolysed in a flow-through, miniature electro-membrane reactor with the penicillin G acylase immobilized in 5% (w/v) polyacrylamide (diam. 10 mm, thickness 2.6 mm, enzyme activity 24 U ml–1). The conversion of penicillin G increased from 0.15 to almost 0.5 when the electric current applied to the reactor was changed from –600 to +600 A/m2 with a substrate residency of 1 h. Symbols and abbreviations c j p & concentration of component j in product stream (M) c j s & concentration of component j in substrate stream (M) c s o & substrate concentration at reactor inlet (M) C j p=c j p/c S 0 & scaled concentration of component j in product stream C j s=c j s/c S 0 & scaled concentration of component j in substrate stream i & electric current density (A/m2) j & reaction component, j P, Q or S P & main reaction product (6-aminopenicillanic acid) PGA & penicillin G acylase Q & side reaction product (phenylacetic acid) S & substrate (penicillin G) Y s=C P s+C P p & substrate conversion & mean residence time of substrate and product streams in reactor (h) =C Q s+C Q p+C S s+C S s & check-sum of scaled concentrations =C P p/(C P s+C P p) & separation factor of 6-aminopenicillanic acid (0 1)  相似文献   

8.
The usefulness of penicillin acylase immobilized onto butyl acrylate — ethyl glycol dimethacrylate (called in this paper acrylic carrier) in penicillin G hydrolysis performed in a stirred tank reactor is shown. The enzyme-acrylic carrier preparation does not deteriorate its own properties in the mixing condition of slurry reactor. The experiments were carried out in a batch and a continuous stirred tank reactor as well as continuous stirred tank reactors in series. It was found to be a satisfactory agreement between experimental and predicted results. It also indicated the optimal substrate concentration range which provides the most effective enzyme operation. A superiority of the three reactors in series over the batch reactor is shown.List of Symbols CE g/m3 equivalent enzyme concentration - CSO mol/m3 initial penicillin G concentration - KA mol/m3 substrate affinity constant - KiS mol/m3 substrate inhibitory constant - KiP mol/m3 PhAA inhibitory constant - KiQ mol/m3 6-APA inhibitory constant - k3 mol/g min constant rate of dissotiation of the active complex - r mol/m3 rate of reaction - t min. reaction time - tj min. maintenance time - degree of conversion - B, F dimensionless time - min. residence time - PA penicillin acylase - PG penicillin G - PhAA phenylacetic acid - 6-APA 6-aminopenicillanic acid  相似文献   

9.
Phenylacetic acid, as inhibitory product, was formed from a hydrolysis of penicillin G by immobilized penicillin acylase. In this article, electrodialysis was applied to remove phenylacetic acid continuously from the reaction mixture and to enhance an efficiency of the reaction. When 268 and 537 mM of penicillin G solution were used as the substrate, the concentration of phenylacetic acid in the reaction mixture could be maintained at less than 81 and 126 mM, respectively, and eventually, 86% and 88% of phenylacetic acid produced were removed from the reaction mixture at the end of the hydrolysis, respectively. Times required to reach 96% and 94.8% conversion from 268 and 537 mM of initial penicillin G could be reduced to 65% and 64% respectively, by means of electrodialysis; while 3.0% and 4.3% of initial penicillin G of 268 and 537 mM were permeated out of the reaction chamber during the hydrolysis, respectively. However, a loss of penicillin G by permeation could be reduced from 4.3% to 3.4% by a repeated addition of penicillin G.  相似文献   

10.
Enzymatic synthesis of cephalothin from 7-aminocephalosporanic acid (7-ACA) and amide derivatives of 2-thienylacetic acid (2-TA) using penicillin G acylase (pen G acylase) was studied. Two amide derivatives of 2-TA namely 2-thienylacetamide (2-TAA) and 2-thienylacetohydroxamic acid (2-TAH) were used in this study. The main reason for choosing amide but not the methyl ester derivative of 2-TA for the enzymatic synthesis was to increase their solubilities in water. The solubility of 2-TA methyl ester (2-TAM), 2-TAA, and 2-TAH in aqueous solution is 8 +/- 0.05 mM, 87 +/- 0.75 mM and 120 +/- 1.65 mM, respectively. Enzymatic conversion of 2-TAH to cephalothin yielded side products but they were not found in the conversion of 2-TAA to cephalothin. The side products were derived from reactions between hydroxyamine and 7-ACA. The effects of pH, temperature, initial substrate concentrations and reaction time on the conversion of 2-TAA and 7-ACA to cephalothin were examined. The optimum reaction condition was determined at pH 6.5 and 10 approximately 15 degrees C. The best conversion yield of 72% was obtained when the initial concentration of 2-TAA and 7-ACA was at 0.4 M and 0.1 M, respectively. Furthermore, a one-step method was developed to purify cephalothin from the enzymatic reaction mixture with the purity of 91% and the recovery yield of 96%.  相似文献   

11.
《Process Biochemistry》2010,45(3):390-398
A novel approach is proposed to prepare a set of immobilized derivatives of a enzyme covalently rigidified through different regions of its surface. Six different variants of penicillin G acylase (PGA) from Escherichia coli (which lacks Cys) were prepared by introducing a unique Cys residue via site-directed mutagenesis in six different enzyme regions which were rich in Lys residues. All variants exhibited a similar activity and stability compared to those of the native enzyme. Each variant was immobilized on supports having a low concentration of reactive disulfide moieties and a high concentration of poorly reactive epoxy groups. After immobilization at pH 7.0 by site-directed thiol-disulfide intermolecular exchange, derivatives were further incubated at pH 10.0 for 48 h to promote an additional intramolecular reaction between Lys residues of enzyme and epoxy groups of the support. The establishment of at least three covalent attachments per PGA molecule was determined for all immobilized enzyme variants. The different derivatives exhibited diverse stability against several distorting agents and different selectivity in two interesting reactions. The derivative of the PGA variant obtained by replacement of GlnB380 by Cys was the most stable against heat and organic cosolvents: it preserved 90% of the initial activity and was 30-fold more stable than soluble PGA. This derivative also exhibited an improved enantioselectivity in the hydrolysis of chiral esters (E was improved from 8 to 16) and in kinetically controlled synthesis of amides (synthetic yields were increased from 31 to 49%).  相似文献   

12.
Summary The mature penicillin G acylase fromKluyvera citrophila was examined by circular dichroism (CD). The far-UV CD spectrum at neutral pH revealed 11% alpha-helix, 44% beta-sheet, 11% beta-turn and 34% random coil. Far-UV and near-UV CD spectra showed that the enzyme presented a high conformational stability under different conditions of pH and salt concentration. The predictive model of Chou and Fasman indicated the presence of several beta-segments that could be arranged in antiparallel beta-sheets, which might explain the structural stability. The near-UV CD spectrum in the presence of penicillin G sulfoxide showed that the binding of this inhibitor to the enzyme resulted in modification of the dichroism of several aromatic residues.  相似文献   

13.
青霉素酰化酶在新型复合载体上的固定化研究   总被引:1,自引:0,他引:1  
通过γ-氯丙基三甲氧基硅烷的媒介,将聚乙烯亚胺(PEI)化学偶联在硅胶微粒表面,制备了新型复合载体PEI/silica gel,然后通过双官能团试剂戊二醛的作用,将青霉素酰化酶固定在复合载体上;考察了戊二醛用量、pH值、固定化温度、固定化时间及给酶量等条件对固定化青霉素酰化酶表观活力、活性回收率等性能的影响;并通过测定复合载体在固定化前的ζ电位,探索了复合载体PEI/silica gel固定化酶的作用机理。研究结果表明,由于PEI分子链中含有大量胺基,共价键联与物理吸附相结合,使青霉素酰化酶被快速稳定地固定化,并具有高的催化活性与活力回收率。复合载体PEI/silica gel(0.5 g)固定青霉素酰化酶的适宜固定化条件为:固定化温度为30℃;固定化时间为14~15 h;戊二醛用量为1.2 mmol/g;pH=7.92;给酶量为0.1 mL/g。  相似文献   

14.
Paramagnetic aldehyde-functionalized mesostructured cellular foams (PAMCFs), synthesized by grafting 3-aminopropyltriethoxysilane modified Fe3O4 (NH2-Fe3O4) nanoparticles with larger particle size than the window pore size of MCFs on the outer surface of aldehyde-functionalized mesostructured cellular foams (AMCFs), were investigated as efficient supports for immobilization of penicillin G acylase (PGA). The results show that NH2-Fe3O4 nanoparticles were successfully grafted on the outer surface of AMCFs and PGA molecules were mainly immobilized covalently on the inner surface of PAMCFs, which was because amino groups of NH2-Fe3O4 nanoparticles or PGA molecules reacted with aldehyde groups of AMCFs or PAMCFs to form imine bonds. PGA/PAMCFs-15 showed a rather high initial activity of 9563 U g−1 and retained 89.1% of its initial activity after recycled for 10 times. PGA/PAMCFs are easily recycled by magnetic field in order to replace tedious separation of high-speed centrifugation for mesoporous materials.  相似文献   

15.
Summary Direct activity determination by a flow-through microcalorimetry in the enzyme thermistor system was employed for a fast comparison of (poly)acrylamide gel-entrapped penicillin G acylase preparations. Composition of the pre-polymerization cocktail and both the storage and operational stabilities of optimal gel-entrapped enzyme preparations isolated from the Escherichia coli industrial strain were optimized by this method. The validity of the results was corroborated by spectrophotometric measurements.  相似文献   

16.
A rapid, continuous, colorimetric enzyme assay for penicillin G acylase has been developed. The assay measures the formation of the acidic products of penicillin G hydrolysis by following the decrease in pH using Phenol Red as an indicator. The activity measured is directly proportional to the amount of enzyme added to the assay, having a linear relationship with an R 2 value of 0.9994.  相似文献   

17.
The matter of this work was to evaluate possibilities of biospecific immobilization of synthetic mannan-penicillin G acylase neoglycoconjugate on Concanavalin A support. The conjugate containing 37% (w/w) of yeast mannan was prepared. Significant biospecific interaction of this neoglycoenzyme with Con A was confirmed by precipitation method. The biospecific sorption of conjugate was investigated using Concanavalin A-triazine bead celluloses MT-100 with different content of Con A (from 1.4 to 9.8 mgCon A/gwet support). The results obtained under optimal conditions were compared with those from covalent immobilization of PGA. The sorbent capacity was observed higher for covalent binding of enzyme. On the other hand, the biospecifically immobilized neoglycoenzyme retained a greater amount of initial activity. The maximum amount of 6.6mgimmobilizedneoglycoenzyme/gwet Con A-sorbent (18.1 U/g) was achieved. The amount as well as activity of immobilized mannan-penicillin G acylase was increased by its two multiple layering on surface of sorbent (10.1mg, respectively, 23.5 U/gwet sorbent). Determined storage and operational (using flow calorimetric method) stabilities of biospecifically immobilized enzyme, were similar, possibly somewhat higher that those of covalent bound penicillin G acylase.  相似文献   

18.
The immobilized metal affinity membrane (IMAM) with modified regeneration cellulose was employed for purification of penicillin G acylase (PGA). For studying PGA adsorption capacity on the IMAM, factors such as chelator surface density, chelating metal, loading temperature, pH, NaCl concentration and elution solutions were investigated. The optimal loading conditions were found at 4 degrees C, 0.5 M NaCl, 32.04 micromol Cu(2+) per disk with 10 mM sodium phosphate buffer, pH 8.5, whereas elution conditions were: 1 M NH(4)Cl with 10 mM sodium phosphate buffer, pH 6.8. By applying these chromatographic conditions to the flow experiments in a cartridge, a 9.11-fold purification in specific activity with 90.25% recovery for PGA purification was obtained. Meanwhile, more than eight-times reusability of the membrane was achieved with the EDTA regeneration solutions.  相似文献   

19.
青霉素G酰化酶是近几十年来β内酰胺类抗生素领域应用最广、开发最成功的酶之一。伴随着β-内酰胺类抗生素由化学合成法变更为酶法在中国的大规模产业化,得到了充分的开发与应用,取得了成功。青霉素G酰化酶不但用于水解制备6-APA、7-ADCA,更重要的是用于氨苄西林、头孢氨苄、阿莫西林、头孢拉定、头孢克洛等抗生素的制备。本文综述了近15年青霉素G酰化酶在我国研究与应用的历史沿革、基因与蛋白质结构、工业应用表达体系、工业评价标准与进化研究,还对各种突变株在具体医药工业领域的开发应用进行了综述,旨在梳理青霉素G酰化酶结构与性能的进化趋势以及在医药工业领域取得的巨大成就,同时也为相关人员在此领域进行深耕提供参考。  相似文献   

20.
比较研究了几种破碎大肠杆菌细胞的方法,如渗透压法、超声波法、玻珠震碎法、玻珠研磨法、有机溶剂法、冻融法以及盐酸胍/EDTA法等,以确定出一种简单、快速、高效的破碎重组大肠杆菌细胞的方法获得粪产碱杆菌青霉素G酰化酶(AfPGA)用于后续试验。结果表明玻珠震碎法、超声波法和渗透压法是较优的细胞破碎方法,活力回收率分别为99.7%、78.4%、60.7%,其他方法均低于22%。而比活力以渗透压法为最高,达到4.40 U/mg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号