首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The long-term regulation of fatty acid synthetase and acetyl-CoA carboxylase and of fatty acid and sterol synthesis was studied in C-6 glial cells in culture. When theophylline (10(-3) M) was added to the culture medium of these cells, rates of lipid synthesis from acetate and activities of synthetase and carboxylase became distinctly lower than in cells that were untreated. This effect appeared after approximately 12 h, and after 48 h enzymatic activities were reduced approx. 2-fold and rates of lipid synthesis from acetate 3- to 4-fold. The likelihood that the decrease in fatty acid synthesis from acetate was caused by the decrease in activities of fatty acid synthetase and acetyl-CoA carboxylase was established by several observations. These indicated that the locus of the effect probably did not reside at the level of acetate uptake into the cell, alterations in acetate pool sizes or conversion of acetate to acetyl-CoA. Moreover, de novo fatty acid synthesis was found to be the predominant pathway in these glial cells, whether treated with theophylline or not. The mechanism of the effect of theophylline on fatty acid synthetase was shown by immunochemical techniques to involve an alteration in content of enzyme rather than in catalytic efficiency. The change in content of fatty acid synthetase was shown by isotopic-immunochemical experiments to involve a decrease in synthesis of the enzyme. The mechanism whereby theophylline leads to a decrease in lipogenesis and in the synthesis of fatty acid synthetase may not be mediated entirely by inhibition of phosphodiesterase and an increase in cyclic AMP levels, because dibutyryl cyclic AMP (10(-3) M) only partially reproduced the effect.  相似文献   

2.
3.
4.
Abstract— C-6 glial cells in culture were utilized to define the role of glucocorticoid in the regulation of palmitic acid synthesis and the important lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase. Particular emphasis was given to fatty acid synthetase which exhibited more than a 50% reduction in specific activity when cells were exposed to hydrocortisone (10 μg/ml) for 1 week. Coordinate changes in acetyl-CoA carboxylase activity and in palmitic acid (and sterol) synthesis from acetate accompanied the alterations in fatty acid synthetase. Immunochemical techniques were utilized to show that the decrease in synthetase activity involved an alteration in enzyme content, not in catalytic efficiency. The changes in content of fatty acid synthetase were caused by alterations in enzyme synthesis. Glucocorticoids may regulate fatty acid synthetase in C-6 glial cells by a mechanism similar to that suggested for adipose tissue. The inhibition of palmitic acid synthesis may be relevant to other effects of glucocorticoids on developing brain.  相似文献   

5.
6.
Acetyl-coenzyme A synthetase (ACS) is a plastidic enzyme that forms acetyl-coenzyme A (acetyl-CoA) from acetate and coenzyme A using the energy from ATP. Traditionally it has been thought to be the major source for the production of acetyl-CoA destined for fatty acid formation. Recent work suggested that the accumulation of lipids in developing Arabidopsis seeds was more closely correlated with the expression of pyruvate dehydrogenase complex than with the expression of ACS, suggesting that most of the carbon for fatty acid formation in the plastids of seeds comes from pyruvate rather than from acetate. To explore the role of this enzyme, Arabidopsis plants with altered amounts of ACS were generated by overexpressing its cDNA in either the sense or the antisense configuration. The resulting plants had in vitro enzyme activities that ranged from about 5% to over 400% of wild-type levels. The rate of [1-14C]acetate conversion into fatty acids was closely related to the in vitro ACS activity, showing that the amount of enzyme clearly limited the capacity of leaves to convert exogenous acetate to fatty acids. There was, however, no relationship between the ACS level and the capacity of the plants to incorporate 14CO2 into 14C-labeled fatty acids. These data strongly support the idea that, although plants can convert acetate into fatty acids, relatively little carbon moves through this pathway under normal conditions.  相似文献   

7.
8.
9.
SCAP与胆固醇水平的调节机制   总被引:2,自引:0,他引:2  
刘芳  周新 《生命科学》2002,14(3):146-149,179
SREBP裂解激活蛋白(SREBP cleavage-activating protein,SCAP)是哺乳动物脂质合成和摄入的中心调节因素。在胆固醇代谢的反馈调节系统中,SCAP与膜结合转录因子胆固醇调节元件结合蛋白(sterol regulatory element binding proteins,SREBPs)等调节因子,共同控制一系列酶编码基因的转录过程,包括胆固醇和脂肪酸生物合成过程中所需的酶。作者介绍了SREBP的结合、分类和功能及其二步蛋白水解释放;SCAP的结合和作用机制及其在胆固醇水平调节中的作用;SCAP基因缺陷型及其胆固醇水平异常,并提出了尚待解决的问题,对SCAP的研究是胆固醇水平调节领域的一个新课题。  相似文献   

10.
11.
12.
13.
14.
15.
Exposure to fibroblast-conditioned cortisol-containing medium increased fatty acid synthase activity and fatty acid synthase, acetyl-CoA carboxylase and ATP citrate lyase mRNA abundance in fetal type II alveolar epithelial cells. Both fibroblast conditioning and cortisol in the medium were required for maximal effect on the mRNA levels, indicating involvement of mesenchymal-epithelial interaction in the cortisol effects. The observed effects provide evidence for an earlier hypothesis that increased activity of CTP:phosphocholine cytidylyltransferase in lung tissue caused by glucocorticoid is due to increased fatty acid synthesis. However, evidence suggesting pre-translational regulation of this enzyme by glucocorticoid was also found.  相似文献   

16.
ATP citrate-lyase (ACL) is a key enzyme supplying acetyl-CoA for fatty acid and cholesterol synthesis. Its expression is drastically up-regulated when an animal is fed a low fat, high carbohydrate diet after prolonged fasting. In this report, we describe the role of sterol regulatory element-binding proteins (SREBPs) in the transactivation of the rat ACL promoter. ACL promoter activity was markedly stimulated by the overexpression of SREBP-1a and, to a lesser extent, by SREBP-2 in Alexander human hepatoma cells. The promoter elements responsive to SREBPs were located within the 55-base pair sequences from -114 to -60. The gel mobility shift assay revealed four SREBP-1a binding sites in this region. Of these four elements, the -102/-94 region, immediately upstream of the inverted Y-box, and the -70/-61 region, just adjacent to Sp1 binding site, played critical roles in SREBPs-mediated stimulation. The mutation in the inverted Y-box and the coexpression of dominant negative nuclear factor-Y (NF-Y) significantly attenuated the transactivation by SREBP-1a, suggesting that NF-Y binding is a prerequisite for SREBPs to activate the ACL promoter. However, the multiple Sp1 binding sites did not affect the transactivation of the ACL promoter by SREBPs. The binding affinity of SREBP-1a to SREs of the ACL promoter also was much higher than that of SREBP-2. The transactivation potencies of the chimeric SREBPs, of which the activation domains (70 amino acids of the amino terminus) were derived from the different species of their carboxyl-terminal region, were similar to those of SREBPs corresponding to their carboxyl termini. Therefore, it is suggested that the carboxyl-terminal portions of SREBPs containing DNA binding domains are important in determining their transactivation potencies to a certain promoter.  相似文献   

17.
The TSC13/YDL015c gene was identified in a screen for suppressors of the calcium sensitivity of csg2Delta mutants that are defective in sphingolipid synthesis. The fatty acid moiety of sphingolipids in Saccharomyces cerevisiae is a very long chain fatty acid (VLCFA) that is synthesized by a microsomal enzyme system that lengthens the palmitate produced by cytosolic fatty acid synthase by two carbon units in each cycle of elongation. The TSC13 gene encodes a protein required for elongation, possibly the enoyl reductase that catalyzes the last step in each cycle of elongation. The tsc13 mutant accumulates high levels of long-chain bases as well as ceramides that harbor fatty acids with chain lengths shorter than 26 carbons. These phenotypes are exacerbated by the deletion of either the ELO2 or ELO3 gene, both of which have previously been shown to be required for VLCFA synthesis. Compromising the synthesis of malonyl coenzyme A (malonyl-CoA) by inactivating acetyl-CoA carboxylase in a tsc13 mutant is lethal, further supporting a role of Tsc13p in VLCFA synthesis. Tsc13p coimmunoprecipitates with Elo2p and Elo3p, suggesting that the elongating proteins are organized in a complex. Tsc13p localizes to the endoplasmic reticulum and is highly enriched in a novel structure marking nuclear-vacuolar junctions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号